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Abstract

We present a novel approach to quantum theory construction that in-
volves solving a maximization problem on the Shannon entropy of all pos-
sible measurements of a system relative to its initial preparation. By con-
straining the maximization problem with a phase that vanishes under mea-
surements, we obtain quantum mechanics (vanishing U(1)-valued phase),
relativistic quantum mechanics (vanishing Spinc(3, 1)-valued phase), and
quantum gravity (also a vanishing Spinc(3, 1)-valued phase, but with a
non-vanishing dilation part). The first two cases are equivalent to estab-
lished theory, whereas the latter case yields a quantum theory of arbitrary
frame fields, in which a quantized version of the Einstein field equation
lives. Specifically, the spacetime interval is promoted to an observable,
effectively building the metric tensor from the underlying quantum struc-
ture. Moreover, the SU(3)× SU(2)×U(1) gauge symmetries of the Stan-
dard Model arise naturally without additional assumptions. Finally, the
solution is consistent only with 3+1 spacetime dimensions, as it encoun-
ters obstructions in all other dimension configurations. This framework
integrates quantum mechanics, relativistic quantum mechanics, quantum
gravity, spacetime dimensionality, and particle physics gauge symmetries
from a simple entropy maximization problem constrained by a vanishing
phase.

1 Introduction

The canonical formalism of quantum mechanics (QM) is based on five principal
axioms[1, 2]:

QM Axiom 1 of 5 State Space: Each physical system corresponds to a complex Hilbert
space, with the system’s state represented by a ray in this space.
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QM Axiom 2 of 5 Observables: Physical observables correspond to Hermitian operators
within the Hilbert space.

QM Axiom 3 of 5 Dynamics: The time evolution of a quantum system is dictated by the
Schrödinger equation, where the Hamiltonian operator signifies the sys-
tem’s total energy.

QM Axiom 4 of 5 Measurement: The act of measuring an observable results in the sys-
tem’s transition to an eigenstate of the associated operator, with the mea-
surement value being one of the eigenvalues.

QM Axiom 5 of 5 Probability Interpretation: The likelihood of a specific measurement
outcome is determined by the squared magnitude of the state vector’s
projection onto the relevant eigenstate.

Contrastingly, statistical mechanics (SM), the other statistical pillar of physics,
derives its probability measures through entropy maximization, constrained by
the following expression:

SM Constraint 1 of 1: Average Energy Constraint: The average of energy measurements of
a system at thermodynamic equilibrium converge to a specific value (E):

E =


q∈Q
ρ(q)E(q) (1)

To maximize entropy while satisfying this constraint, the theory uses a La-
grange multiplier approach.

Definition 1 (Fundamental Lagrange Multiplier Equation of SM).

L(ρ,λ,β) = −kB


q∈Q
ρ(q) ln ρ(q)

  
Boltzmann entropy

+ λ



1−


q∈Q
ρ(q)





  
Normalization Constraint

+β



E −


q∈Q
ρ(q)E(q)





  
Average Energy Constraint

(2)

where λ and β are the Lagrange multipliers.

Theorem 1 (Gibbs Measure). The solution to the Lagrange multiplier equation
of SM, is the well-known Gibbs measure.

ρ(q) =
1

r∈Q exp(−βE(r))
  
Microcanonical Ensemble

exp(−βE(q)) (3)

Proof. This is an well-known result by E. T. Jaynes [3, 4]. As a convenience,
we replicate the proof in Annex A.
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As evident from E. T. Jaynes’ methodological innovation, SM relies on a
single constraint related to the nature of the measurements under consideration,
which allows the formulation of an optimization problem sufficient to derive the
relevant probability measure. This is an exceptionally parsimonious formulation
of a physical theory.

We propose a generalization of E. T. Jaynes’ approach to the realms of Quan-
tum Mechanics (QM), Relativistic Quantum Mechanics (RQM), and Quantum
Gravity (QG). For each of these three domains, we will introduce a single con-
straint related to measurements, formulate a corresponding entropy maximiza-
tion problem, and present a main theorem that fully encapsulates the theory.
This formulation reduces fundamental physics to its most parsimonious expres-
sion, deriving the core theories as optimal solutions to a well-defined entropy
maximization problem.

1.1 Quantum Mechanics

To reformulate QM as the solution to an entropy maximization problem, we
propose the following constraint:

QM Constraint 1 of 1 Vanishing Complex-Phase: Quantum measurements admit a vanish-
ing complex phase. The constraint is:

0 = tr


q∈Q
ρ(q)


0 −E(q)

E(q) 0


(4)

where the matrix representation engenders the complex phase, and the
trace will cause it to vanish under measurement.

which associates to the follow equation:

Definition 2 (Fundamental Lagrange Multiplier Equation of QM).

L(ρ,λ, τ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  

Relative Shannon Entropy

+λ



1−


q∈Q
ρ(q)





  
Normalization
Constraint

+ τ



− tr


q∈Q
ρ(q)


0 −E(q)

E(q) 0






  
Vanishing Complex-Phase

(5)

where λ and τ are the Lagrange multipliers.

The relative Shannon entropy[5, 6] is utilized because we are solving for
the least biased theory that connects an initial preparation p(q) to its final
measurement ρ(q).

Theorem 2. The least biased theory that connects an initial preparation p(q) to
its final measurement ρ(q), under the constraint of the vanishing complex-phase,
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is:

ρ(q) =
1

r∈Q p(r)exp(−itE(r)/)
  

Unitarily Invariant Ensemble

exp(−itE(q)/)  
Born Rule

p(q)
Initial Preparation

(6)

where we have defined τ = t/ (analogous to β = 1/(kBT ) in SM).

The proof of this theorem will be presented in the results section. We will
show that this solution entails the five axioms of QM, which are now promoted
to theorems, yielding a parsimonious formulation of QM.

1.2 Relativistic Quantum Mechanics

Before we can discuss RQM, we first need to introduce some notation. Let
u = a+ x+ f + v + b, where a is a scalar, x is a vector, f is a bivector, v is a
pseudo-vector and b is a pseudo-scalar, be a multivector of the geometric algebra
GA(3, 1), and let Mu be its matrix representation. Then, the fundamental
constraint of RQM is:

RQM Constraint 1 of 1 Vanishing Relativistic Phase: Our formulation of RQM is based around
a vanishing phase spanning the Spinc(3, 1) group. The constraint is:

0 = tr
1
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q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0 (7)

whereMu(q) is the matrix representation of the multivector u of GA(3, 1),
using the real Majorana representation of the gamma matrices:

Mu|a→0,x→0,v→0 =





f02 b− f13 −f01 + f12 f03 + f23
−b+ f13 f02 f03 + f23 f01 − f12
−f01 − f12 f03 − f23 −f02 −b− f13
f03 − f23 f01 + f12 b+ f13 −f02





(8)

The matrix representation engenders the Spinc(3, 1)-phase and the trace
will cause it to vanish under measurement.

The Lagrange multiplier equation is as follows:

Definition 3 (Fundamental Lagrange Multiplier Equation of RQM).

L(ρ,λ, ζ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  
Relative Shannon
Entropy

+λ



1−


q∈Q
ρ(q)





  
Normalization
Constraint

+ ζ



− tr
1

2



q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0





  
Vanishing Relativistic Phase

(9)

where λ and ζ are the Lagrange multipliers.
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Theorem 3. The least biased theory that connects an initial preparation p(q)
to its final measurement ρ(q), under the constraint of the vanishing relativistic
phase, is:

ρ(q) =
1

r∈Q p(r) det exp

−ζ 1

2Mu(r)|a→0,x→0,b→0


  

Spinc(3,1) Invariant Ensemble

det exp


−ζ

1

2
Mu(q)|a→0,x→0,b→0



  
Spinc(3,1) Born Rule

p(q)
Initial Preparation

(10)

In the results section, we aim to demonstrate that this solution represents
a quantum mechanical theory of inertial reference frames, where ζ is a one-
parameter generator of boosts, rotations, and phase transformations. This the-
ory allows for measurements, superpositions, and interference between inertial
reference frames, providing the arena in which RQM lives. The formulation
thus lays the foundation for the forthcoming development of quantum gravity
through the introduction of quantum frames of reference.

1.3 Quantum Gravity

Our formulation of QG is based on a quantum theory of frame fields. To formu-
late the maximization problem whose resolution automatically yields the theory,
we utilize the same vanishing phase constraint as in the RQM case, but we add
dilations:

Definition 4 (Fundamental Lagrange Multiplier Equation of QG).

L(ρ,λ, ζ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  
Relative Shannon
Entropy

+ λ



1−


q∈Q
ρ(q)





  
Normalization Constraint

+ ζ



2a− tr
1

2



q∈Q
A(q)M(q)|x→0,v→0





  
Vanishing Relativistic Phase,
with Dilations

(11)

where λ and ζ are the Lagrange multipliers.

Using the real Majorana representation of the gamma matrices,Mu(q)|x→0,v→0

is:

Mu|x→0,v→0 =





a+ f02 b− f13 −f01 + f12 f03 + f23
−b+ f13 a+ f02 f03 + f23 f01 − f12
−f01 − f12 f03 − f23 a− f02 −b− f13
f03 − f23 f01 + f12 b+ f13 a− f02



 (12)

Theorem 4. The least biased theory which connects an initial preparation p(q)
to its final measurement ρ(q), under the constraint of the vanishing linear phase
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with dilations, is:

ρ(q) =
1

r∈Q p(q) det exp

− 1

2ζM(q)|x→0,v→0


  

Geometrically Invariant Ensemble

det exp


−ζ

1

2
M(q)|x→0,v→0



  
Geometric Born Rule

p(q)
Initial Preparation

(13)

In the results section, we aim to demonstrate that the solution entails a
quantum theory of frame fields. This theory defines the arena in which QG
operates. The solution will admit the spacetime interval as an observable, en-
abling the construction of the metric tensor, valid for metrics of any curvature.
This allows us to derive the quantized Einstein field equations.

1.4 Dimensional Obstructions

We end the results section with a number of theorems showing that the formal-
ism, except for SM (no vanishing phase) and QM (vanishing complex phase), is
found to be consistent only with 3+1-dimensional spacetime (vanishing Spinc(3, 1)
phase), encountering various obstructions in all other dimension configurations,
and we discuss the implications.

2 Results

2.1 Quantum Mechanics

In statistical mechanics, the founding observation is that energy measurements
of a thermally equilibrated system tend towards an average value. Compar-
atively, in QM, the founding observation involves the interplay between the
systematic elimination of complex phases in measurement outcomes and the
presence of interference effects in repeated measurement outcomes. To represent
this observation, we introduce the Vanishing Complex-Phase Anti-Constraint:

0 = tr


q∈Q
ρ(q)


0 −E(q)

E(q) 0


(14)

where E(q) are scalar-valued functions of Q. The usage of the matrix generates
a U(1) phase, and the trace causes it to vanish under specific circumstances
(which will correspond to measurements).

At first glance, this expression may seem to reduce to a tautology equating
zero with zero, suggesting it imposes no restriction on energy measurements.
However, this appearance is deceptive. Unlike a conventional constraint that
limits the solution space, this expression serves as a formal device to expand it,
allowing for the incorporation of complex phases into the probability measure.
The expression’s role in broadening, rather than restricting, the solution space
leads to its designation as an ”anti-constraint.”
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In general, usage of anti-constraints expand classical probability measures
into larger domains, such as quantum probabilities.

Its significance will become evident upon the completion of the optimization
problem. For the moment, this expression can be conceptualized as the correct
expression that, when incorporated as an anti-constraint within an entropy-
maximization problem, resolves into the axioms of quantum mechanics.

Our next procedural step involves solving the corresponding Lagrange mul-
tiplier equation, mirroring the methodology employed in statistical mechanics
by E. T. Jaynes. We utilize the relative Shannon entropy because we wish to
solve for the least biased measure that connects an initial preparation p(q) to its
final measurement ρ(q). For that, we deploy the following Lagrange multiplier
equation:

L = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  
Relative Shannon
Entropy

+λ



1−


q∈Q
ρ(q)





  
Normalization
Constraint

+ τ



tr


q∈Q
ρ(q)


0 −E(q)

E(q) 0






  
Vanishing Complex-Phase

(15)

Where λ and τ are the Lagrange multipliers.
We solve the maximization problem as follows:

∂L(ρ,λ, τ)
∂ρ(q)

= − ln
ρ(q)

p(q)
− p(q)− λ− τ tr


0 −E(q)

E(q) 0


(16)

0 = ln
ρ(q)

p(q)
+ p(q) + λ− τ tr


0 −E(q)

E(q) 0


(17)

=⇒ ln
ρ(q)

p(q)
= −p(q)− λ− τ tr


0 −E(q)

E(q) 0


(18)

=⇒ ρ(q) = p(q) exp(−p(q)− λ) exp

−τ tr


0 −E(q)

E(q) 0


(19)

=
1

Z(τ)
p(q) exp


−τ tr

 0 −E(q)
E(q) 0


(20)

The partition function, is obtained as follows:

1 =


r∈Q
p(r) exp(−p(q)− λ) exp


−τ tr


0 −E(r)

E(r) 0



(21)

=⇒ (exp(−p(q)− λ))
−1

=


r∈Q
p(r) exp


−τ tr


0 −E(r)

E(r) 0


(22)

Z(τ) :=


r∈Q
p(r) exp


−τ tr


0 −E(r)

E(r) 0


(23)

Finally, the least biased theory that connects an initial preparation p(q) to its
final measurement ρ(q), under the constraint of the vanishing complex phase,
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is:

ρ(q) =
1


r∈Q p(r) exp


−τ tr


0 −E(r)

E(r) 0

 exp

−τ tr


0 −E(q)

E(q) 0


p(q) (24)

Though initially unfamiliar, this form effectively establishes a comprehensive
formulation of quantum mechanics, as we will demonstrate.

Upon examination, we find that phase elimination is manifestly evident in
the probability measure: since the trace evaluates to zero, the probability mea-
sure simplifies to classical probabilities, aligning precisely with the Born rule’s
exclusion of complex phases:

ρ(q) =
p(q)
r∈Q p(r)

(25)

However, the significance of this phase elimination extends beyond this mere
simplicity. As we will soon see, the partition function Z gains unitary invari-
ance, allowing for the emergence of interference patterns and other quantum
characteristics under appropriate basis changes.

We will begin by aligning our results with the conventional quantum me-
chanical notation. As such, we transform the representation of complex num-
bers from


a −b
b a


to a + ib. For instance, the exponential of a complex matrix

is:

exp

a −b
b a


= r


cos(b) − sin(b)
sin(b) cos(b)


, where r = exp a (26)

Then, we associate the exponential trace to the complex norm using exp trM ≡
det expM:

exp tr

a −b
b a


= det exp


a −b
b a


= r2 det


cos(b) − sin(b)
sin(b) cos(b)


, where r = exp a (27)

= r2(cos2(b) + sin2(b)) (28)

= r(cos(b) + i sin(b)) (29)

= r exp(ib) (30)

Finally, substituting τ = t/ analogously to β = 1/(kBT ), and applying the
complex-norm representation to both the numerator and to the denominator,
consolidates the Born rule, normalization, and initial prepration into :

ρ(q) =
1

r∈Q p(r)exp(−itE(r)/)
  

Unitarily Invariant Partition Function

exp(−itE(q)/)  
Born Rule

p(q)
Initial Preparation

(31)

We are now in a position to explore the solution space.
The wavefunction is delineated by decomposing the complex norm into a

complex number and its conjugate. It is then visualized as a vector within a
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complex n-dimensional Hilbert space. The partition function acts as the inner
product. This relationship is articulated as follows:



r∈Q
p(r)exp(−itE(r)/) = Z = 〈ψ|ψ〉 (32)

where



ψ1(t)
...

ψn(t)



 =




exp(−itE(q1)/)

. . .

exp(−itE(qn)/)








ψ1(0)

...
ψn(0)



 (33)

We clarify that p(q) represents the probability associated with the initial
preparation of the wavefunction, where p(qi) = 〈ψi(0)|ψi(0)〉.

We also note that Z is invariant under unitary transformations.
Let us now investigate how the axioms of quantum mechanics are recovered

from this result:

• The entropy maximization procedure inherently normalizes the vectors
|ψ〉 with 1/Z = 1/


〈ψ|ψ〉. This normalization links |ψ〉 to a unit vector

in Hilbert space. Furthermore, as the POP formulation of QM associates
physical states with its probability measure, and the probability is defined
up to a phase, we conclude that physical states map to Rays within Hilbert
space. This demonstrates QM Axiom 1 of 5.

• In Z, an observable must satisfy:

O =


r∈Q
p(r)O(r)exp(−itE(r)/) (34)

Since Z = 〈ψ|ψ〉, then any self-adjoint operator satisfying the condition
〈Oψ|φ〉 = 〈ψ|Oφ〉 will equate the above equation, simply because 〈O〉 =
〈ψ|O |ψ〉. This demonstrates QM Axiom 2 of 5.

• Upon transforming Equation 33 out of its eigenbasis through unitary op-
erations, we find that the energy, E(q), typically transforms in the manner
of a Hamiltonian operator:

|ψ(t)〉 = exp(−itH/) |ψ(0)〉 (35)

The system’s dynamics emerge from differentiating the solution with re-
spect to the Lagrange multiplier. This is manifested as:

∂

∂t
|ψ(t)〉 = ∂

∂t
(exp(−itH/) |ψ(0)〉) (36)

= −iH/ exp(−itH/) |ψ(0)〉 (37)

= −iH/ |ψ(t)〉 (38)

=⇒ H |ψ(t)〉 = i
∂

∂t
|ψ(t)〉 (39)

Which is the Schrödinger equation. This demonstrates QM Axiom 3 of 5.
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• From Equation 33 it follows that the possible microstates E(q) of the
system correspond to specific eigenvalues of H. An observation can thus
be conceptualized as sampling from ρ(q, t), with the measured state be-
ing the occupied microstate q of Q. Consequently, when a measurement
occurs, the system invariably emerges in one of these microstates, which
directly corresponds to an eigenstate of H. Measured in the eigenbasis,
the probability measure is:

ρ(q, t) =
1

〈ψ|ψ〉 (ψ(q, t))
†ψ(q, t). (40)

In scenarios where the probability measure ρ(q, τ) is expressed in a basis
other than its eigenbasis, the probability P (λi) of obtaining the eigenvalue
λi is given as a projection on a eigenstate:

P (λi) = |〈λi|ψ〉|2 (41)

Here, |〈λi|ψ〉|2 signifies the squared magnitude of the amplitude of the
state |ψ〉 when projected onto the eigenstate |λi〉. As this argument hold
for any observables, this demonstrates QM Axiom 4 of 5.

• Finally, since the probability measure (Equation 31) replicates the Born
rule, QM Axiom 5 of 5 is also demonstrated.

Revisiting quantum mechanics with this perspective offers a coherent and
unified narrative. Specifically, the vanishing complex phase constraint (Equation
14) is sufficient to entail the foundations of quantum mechanics (Axiom 1, 2, 3,
4 and 5) through the principle of entropy maximization. Equation 14 becomes
the formulation’s new singular foundation, and Axioms 1, 2, 3, 4, and 5 are now
theorems.

2.2 RQM in 2D

In this section, we investigate RQM in 2D. Although all dimensional configu-
rations except 3+1D contain obstructions, which will be discussed later in this
section, the 2D case provides a valuable starting point before addressing the
more complex 3+1D case. In RQM 2D, the fundamental Lagrange Multiplier
Equation is:

L(ρ,λ, θ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  

Relative Shannon
Entropy

+λ



1−


q∈Q
ρ(q)





  
Normalization
Constraint

+ θ



− tr
1

2



q∈Q
ρ(q)Mu(q)|a→0,x→0





  
Vanishing Relativistic Phase

(42)

where λ and θ are the Lagrange multipliers, and where Mu(q) is the matrix
representation of a multivector u = a+ x+ b of GA(2), where a is a scalar, x
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is a vector and b is a bivector:

a+ x y − b
y + b a− x


∼= a+ xx̂+ yŷ + bx̂ ∧ ŷ (43)

where the basis elements are defined as:

x̂ =


1 0
0 −1


, ŷ =


0 1
1 0


, x̂ ∧ ŷ =


0 −1
1 0


(44)

If we take a → 0,x → 0 then Mu reduces as follows:

u = a+ x+ b|a→0,x→0 = b =⇒ Mu|a→0,x→0 =


0 −b
b 0


(45)

The Lagrange multiplier equation can be solved as follows:

∂L(ρ,λ, θ)
∂ρ(q)

= 0 = − ln
ρ(q)

p(q)
− p(q)− λ− θ tr

1

2


0 −b(q)

b(q) 0


(46)

0 = ln
ρ(q)

p(q)
+ p(q) + λ+ θ tr

1

2


0 −b(q)

b(q) 0


(47)

=⇒ ln
ρ(q)

p(q)
= −p(q)− λ− θ tr

1

2


0 −b(q)

b(q) 0


(48)

=⇒ ρ(q) = p(q) exp(−p(q)− λ) exp


−θ tr

1

2


0 −b(q)

b(q) 0


(49)

=
1

Z(θ)
p(q) exp


−θ tr

1

2


0 −b(q)

b(q) 0


(50)

The partition function Z(θ), serving as a normalization constant, is deter-
mined as follows:

1 =


r∈Q
p(r) exp(−p(q)− λ) exp


−θ tr

1

2


0 −b(q)

b(q) 0



(51)

=⇒ (exp(−p(q)− λ))
−1

=


r∈Q
p(r) exp


−θ tr

1

2


0 −b(q)

b(q) 0


(52)

Z(θ) :=


r∈Q
p(r) exp


−θ tr

1

2


0 −b(q)

b(q) 0


(53)

Consequently, the least biased theory that connects an initial preparation
p(q) to a final measurement ρ(q), under the constraint of the vanishing rela-
tivistic phase in 2D is:

ρ(q) =
1


r∈Q p(r) det exp


− 1

2θ


0 −b(q)
b(q) 0



  
Spin(2) Invariant Ensemble

det exp


−1

2
θ


0 −b(q)
b(q) 0



  
Spin(2) Born Rule

p(q)
Initial Preparation

(54)
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where det expM = exp trM .
In 2D, the Lagrange multiplier θ correspond to an angle of rotation, and in

1+1D it would correspond to the rapidity ζ:

2D : exp θ

0 −1
1 0


=


cos θ − sin θ
sin θ cos θ


θ is the angle of rotation (55)

1 + 1D : exp ζ

0 1
1 0


=


cosh ζ sinh ζ
sinh ζ cosh ζ


ζ is the rapidity (56)

The 2D solution may appear equivalent to the QM case because they are
related by an isomorphism Spin(2) ∼= SO(2) ∼= U(1) and under the replacement
θ → τ . However, an isomorphism is not an equality, and in Spin(2) we gain
extra structures related to a relativistic description, which are not available in
the QM case.

To investigate the solution in more detail, we introduce the multivector
conjugate, also known as the Clifford conjugate, which generalizes the concept
of complex conjugation to multivectors.

Definition 5 (Multivector conjugate (a.k.a Clifford conjugate)). Let u = a +
x+b be a multi-vector of the geometric algebra over the reals in two dimensions
GA(2). The multivector conjugate is defined as:

u‡ = a− x− b (57)

The determinant of the matrix representation of a multivector can be ex-
pressed as a self-product:

Theorem 5 (Determinant as a Multivector Self-Product).

u‡u = detMu (58)

Proof. Let u = a+ xx̂+ yŷ + bx̂ ∧ ŷ, and let Mu be its matrix representation a+x y−b
y+b a−x


. Then:

1 : u‡u (59)

= (a+ xx̂+ yŷ + bx̂ ∧ ŷ)‡(a+ xx̂+ yŷ + bx̂ ∧ ŷ) (60)

= (a− xx̂− yŷ − bx̂ ∧ ŷ)(a+ xx̂+ yŷ + bx̂ ∧ ŷ) (61)

= a2 − x2 − y2 + b2 (62)

2 : detMu (63)

= det
 a+x y−b
y+b a−x


(64)

= (a+ x)(a− x)− (y − b)(y + b) (65)

= a2 − x2 − y2 + b2 (66)
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Building upon the concept of the multivector conjugate, we introduce the
multivector conjugate transpose, which serves as an extension of the Hermitian
conjugate to the domain of multivectors.

Definition 6 (Multivector Conjugate Transpose). Let |V 〉〉 ∈ (GA(2))n:

|V 〉〉 =




a1 + x1 + b1

...
an + xn + bn



 (67)

The multivector conjugate transpose of |V 〉〉 is defined as first taking the
transpose and then the element-wise multivector conjugate:

〈〈V | =

a1 − x1 − b1 . . . an − xn − bn


(68)

Definition 7 (Bilinear Form). Let |V 〉〉 and |W 〉〉 be two vectors valued in GA(2).
We introduce the following bilinear form:

〈〈V |W 〉〉 = (a1 − x1 − b1)(a1 + x1 + b1) + . . . (an − xn − bn)(an + xn + bn)
(69)

Theorem 6 (Inner Product). Restricted to the even sub-algebra of GA(2), the
bilinear form is an inner product.

Proof.

〈〈V |W 〉〉x→0 = (a1 − b1)(a1 + b1) + . . . (an − bn)(an + bn) (70)

This is isomorphic to the inner product of a complex Hilbert space, with the
identification i ∼= x̂ ∧ ŷ.

Definition 8 (Spin(2)-valued Wavefunction).

|ψ〉〉 =




e

1
2 (a1+b1)

...

e
1
2 (an+bn)



 =





√
ρ1R1

...√
ρ2R2



 (71)

where
√
ρi = e

1
2ai representing the square root of the probability and Ri = e

1
2bi

representing a rotor in 2D (or boost in 1+1D).

The partition function of the probability measure can be expressed using the
bilinear form applied to the Spin(2)-valued Wavefunction:

Theorem 7 (Partition Function). Z = 〈〈ψ|ψ〉〉
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Proof.

〈〈ψ|ψ〉〉 =


q∈Q
ψ(q)‡ψ(q) =



q∈Q
ρ(q)R(q)‡R(q) =



q∈Q
ρ(q) = Z (72)

Thus, the Spin(2)-valued wavefunction |ψ〉〉 is a linear object whose inner
product reduces to the partition function.

Definition 9 (Spin(2)-valued Evolution Operator).

T =




e−

1
2 θb1

. . .

e−
1
2 θbn



 (73)

Theorem 8. The partition function is invariant with respect to the Spin(2)-
valued evolution operator.

Proof.

〈〈Tψ|Tψ〉〉 =


q∈Q
det(T (q)ψ(q)) =



q∈Q
detT (q) detψ(q) =



q∈Q
detψ(q) = 〈〈ψ|ψ〉〉

(74)

where detT (q) = 1, because e−
1
2 θb(q) is traceless.

We note that since the even sub-algebra of GA(2) is closed under addition
and multiplication, and the bilinear form constitutes an inner product, it follows
that it can be employed to construct a Hilbert space, in this case a Spin(2)-
valued Hilbert space. The primary difference between a wavefunction living in
a complex Hilbert space and one living in a Spin(2) Hilbert space relates to
the subject matter of the theory. In the present case, the subject matter is a
quantum theory of inertial reference frames in 2D.

The dynamics of reference frame transformations follow from the Schrödinger
equation, which is obtained by taking the derivative of the wavefunction with
respect to the Lagrange multiplier θ. Each element of the wavefunction repre-
sents an inertial reference frame, whose transformation is generated by the θ
angle (for instance, the change of angle experienced by an inertial observer).

Definition 10 (Spin(2)-valued Schrödinger Equation).

d

dθ




ψ1(θ)

...
ψn(θ)



 =




− 1

2b1

. . .

− 1
2bn








ψ1(θ)

...
ψn(θ)



 (75)
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The Spin(2)-valued Schrödinger Equation can be parametrized in space

d

dθ
ψ(θ, x, y) = −1

2
b(x, y)ψ(θ, x, y) (76)

In this case θ represents a global one-parameter evolution parameter akin to
time, which is able to transform the wavefunction under the Spin(2), locally
across 2D space. This is an extremely general equation that captures all trans-
formations that can be done consistently with the evolution group of the wave-
function.

Definition 11 (Reference Frame Measurement). The QM Axiom 5 of 5, re-
garding the measurement postulates, is derived as a theorem in the RQM case
as well (for the same reason as it is in the QM case). This allows us to measure
the wavefunction |ψ〉 into one of its states q according to probability ρ(q). Here
the post-measurement state q corresponds to picking a specific inertial reference
frame q from Q.

We note that, as a linear system, linear combinations of the wavefunction
(such as ψ(q) = λ1ψ1(q) + λ2ψ2(q)) will also be solutions. This can introduce
interference patterns between inertial reference frames:

Theorem 9 (Reference Frame Superpositions and Interference).

Proof. Let T = 1√
2


1 1
1 −1


, and |ψ〉〉 = 1√

2

√
ρ1R1√
ρ2R2


, then:

T |ψ〉〉 = 1√
2


1 1
1 −1


1√
2

√
ρ1R1√
ρ1R2


(77)

=
1

2

√
ρ1R1 +

√
ρ2R2√

ρ1R1 −
√
ρ2R2


(78)

=
1

2
(
√
ρ1R1 +

√
ρ2R2) |0〉〉+

1

2
(
√
ρ1R1 −

√
ρ2R2) |1〉〉 (79)

Then the probability can be computed as follows:

|〈〈0|ψ〉〉|2 =
1

2
(
√
ρ1R1 +

√
ρ2R2)

‡(
√
ρ1R1 +

√
ρ2R2) (80)

=
1

2
ρ1 +

1

2
ρ2 +

1

2

√
ρ1ρ2(R

‡
1R2 +R‡

2R1) (81)

=
1

2
ρ1 +

1

2
ρ2 +

1

2

√
ρ1ρ2 cos(θb1 − θb2)

  
Spin(2)-valued Interference

(82)

Since Spin(2)∼=U(1), then Spin(2)-valued interference is isomorphism to com-
plex interference.

Definition 12 (David Hestenes’ Formulation). In 3+1D, the David Hestenes’
formulation [7] of the wavefunction is ψ =

√
ρReib/2, where R = ef/2 is a
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Lorentz boost or rotation and where eib/2 is a phase. In 2D, as the algebra only
admits a bivector, his formulation would reduce to ψ =

√
ρR, which is identical

to what we recovered.

The definition of the Dirac current applicable to our wavefunction follows
the formulation of David Hestenes:

Definition 13 (Dirac Current). Given the basis x̂ and ŷ, the Dirac current is
defined as:

J1 ≡ ψ(q)‡x̂ψ(q) = ρ(q)R(q)‡x̂(q)R(q) = ρ(q)e1 (83)

J2 ≡ ψ(q)‡ŷψ(q) = ρ(q)R(q)‡ŷ(q)R(q) = ρ(q)e2 (84)

where e1 and e2 are a Spin(2) rotated frame field.

2.2.1 Obstructions

We identify two obstructions:

1. In 1+1D: The 1+1D theory results in a split-complex quantum theory
due to the bilinear form (a − bt̂ ∧ x̂)(a + bt̂ ∧ x̂), which yields negative
probabilities: a2 − b2 ∈ R for certain wavefunction states, in contrast to
the non-negative probabilities a2 + b2 ∈ R≥0 obtained in the Euclidean
2D case. (This is why we had to use 2D instead of 1+1D in this two-
dimensional introduction...)

2. In 1+1D and in 2D: The basis vectors (x̂ and ŷ in 2D, and t̂ and x̂
in 1+1D) are not self-adjoint. Although used in the context defining the
Dirac current, their non-self-adjointness prevents the construction of the
spacetime interval (or in 2D, the Euclidean distance) as a quantum ob-
servable. The benefits of having the basis vectors self-adjoint will become
obvious in the 3+1D case, where we will be able to construct the metric
tensor from spacetime interval measurements. Specifically, in 2D:

(x̂µu)
‡u ∕= u‡x̂µu (85)

because (x̂µu)
‡u = u‡x̂‡

µu = u‡(−x̂µ)u.

In the following section, we will explore the obstruction-free 3+1D case.

2.3 RQM in 3+1D

In this section, we extend the concepts and techniques developed for multivector
amplitudes in 2D to the more physically relevant case of 3+1D dimensions. The
Lagrange multiplier equation is as follows:

L(ρ,λ, τ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  

Relative Shannon
Entropy

+λ



1−


q∈Q
ρ(q)





  
Normalization
Constraint

+ ζ



− tr
1

2



q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0





  
Vanishing Relativistic-Phase

(86)
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The solution (proof in Annex B) is obtained using the same step-by-step
process as the 2D case, and yields:

ρ(q) =
1

r∈Q p(r) det exp

−ζ 1

2Mu(r)|a→0,x→0,b→0


  

Spinc(3,1) Invariant Ensemble

det exp


−ζ

1

2
Mu(q)|a→0,x→0,b→0



  
Spinc(3,1) Born Rule

p(q)
Initial Preparation

(87)

where ζ is a ”twisted-phase” rapidity. (If the invariance group was Spin(3,1)
instead of Spinc(3,1), obtainable by posing b → 0, then it would simply be the
rapidity).

Our initial goal will be to express the partition function as a self-product of
elements of the vector space. As such, we begin by defining a general multivector
in the geometric algebra GA(3, 1).

Definition 14 (Multivector). Let u be a multivector of GA(3, 1). Its general
form is:

u = a (88)

+ xx̂+ yŷ + zẑ+ t̂t (89)

+ f01t̂ ∧ x̂+ f02t̂ ∧ ŷ + f03t̂ ∧ ẑ+ f12x̂ ∧ ŷ + f13x̂ ∧ ẑ+ f23ŷ ∧ ẑ (90)

+ px̂ ∧ ŷ ∧ ẑ+ qt̂ ∧ ŷ ∧ ẑ+ vt̂ ∧ x̂ ∧ ẑ+ wt̂ ∧ x̂ ∧ ŷ (91)

+ bt̂ ∧ x̂ ∧ ŷ ∧ ẑ (92)

where t̂, x̂, ŷ, ẑ are the basis vectors in the real Majorana representation.
A more compact notation for u is

u = a+ x+ f + v + b (93)

where a is a scalar, x a vector, f a bivector, v is pseudo-vector and b a pseudo-
scalar.

This general multivector can be represented by a 4× 4 real matrix using the
real Majorana representation:

Definition 15 (Matrix Representation Mu of u).

Mu =





a+ f02 − q − z b− f13 + w − x −f01 + f12 − p+ v f03 + f23 + t+ y
−b+ f13 + w − x a+ f02 + q + z f03 + f23 − t− y f01 − f12 − p+ v
−f01 − f12 + p+ v f03 − f23 + t− y a− f02 + q − z −b− f13 − w − x
f03 − f23 − t+ y f01 + f12 + p+ v b+ f13 − w − x a− f02 − q + z





(94)

To manipulate and analyze multivectors in GA(3, 1), we introduce several
important operations, such as the multivector conjugate, the 3,4 blade conju-
gate, and the multivector self-product.
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Definition 16 (Multivector Conjugate (in 4D)).

u‡ = a− x− f + v + b (95)

Definition 17 (3,4 Blade Conjugate). The 3,4 blade conjugate of u is

⌊u⌋3,4 = a+ x+ f − v − b (96)

The results of Lundholm[8], demonstrates that the multivector norms in the
following definition, are the unique forms which carries the properties of the
determinants such as N(uv) = N(u)N(v) to the domain of multivectors:

Definition 18. The self-products associated with low-dimensional geometric
algebras are:

GA(0, 1) : ϕ†ϕ (97)

GA(2, 0) : ϕ‡ϕ (98)

GA(3, 0) : ⌊ϕ‡ϕ⌋3ϕ‡ϕ (99)

GA(3, 1) : ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ (100)

GA(4, 1) : (⌊ϕ‡ϕ⌋3,4ϕ‡ϕ)†(⌊ϕ‡ϕ⌋3,4ϕ‡ϕ) (101)

We can now express the determinant of the matrix representation of a mul-
tivector via the self-product ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ. This choice is not arbitrary, but the
unique choice with allows us to represent the determinant of the matrix repre-
sentation of a multivector within GA(3, 1):

Theorem 10 (Determinant as a Multivector Self-Product).

⌊u‡u⌋3,4u‡u = detMu (102)

Proof. Please find a computer assisted symbolic proof of this equality in Annex
C.

Definition 19 (GA(3, 1)-valued Vector).

|V 〉〉 =




u1

...
un



 =




a1 + x1 + f1 + v1 + b1

...
an + xn + fn + vn + bn



 (103)

These constructions allow us to express the partition function in terms of
the multivector self-product.

Definition 20 (Multilinear Form).

〈〈V |V |V |V 〉〉 = ⌊

u‡
1 . . . un





u1 . . . 0
...

. . .
...

0 . . . un



⌋3,4




u‡
1 . . . 0
...

. . .
...

0 . . . u‡
n








u1

...
un





(104)
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Theorem 11 (Partition Function). Z = 〈〈V |V |V |V 〉〉

Proof.

〈〈V |V |V |V 〉〉 (105)

= ⌊

u‡
1 . . . un





u1 . . . 0
...

. . .
...

0 . . . un



⌋3,4




u‡
1 . . . 0
...

. . .
...

0 . . . u‡
n








u1

...
un



 (106)

= ⌊

u‡
1u1 . . . unun


⌋3,4




u‡
1u1

...
u‡
nun



 (107)

= ⌊u‡
1u1⌋3,4u‡

1u1 + · · ·+ ⌊u‡
nun⌋3,4u‡

nun (108)

=

n

i=1

detMui (109)

= Z (110)

Theorem 12 (Non-negative inner product). The multilinear form, applied to
the even sub-algebra of GA(3, 1) is awlays non-negative.

Proof. Let |V 〉〉 =




a1 + f1 + b1

...
an + fn + bn



. Then,

〈〈V |V |V |V 〉〉 (111)

= ⌊

(a1 + f1 + b1)

‡(a1 + f1 + b1) . . .

⌋3,4


(a1 + f1 + b1)

‡(a1 + f1 + b1)
...



(112)

= ⌊

(a1 − f1 + b1)(a1 + f1 + b1) . . .


⌋3,4


(a1 − f1 + b1)(a1 + f1 + b1)

...



(113)

= ⌊

a21 + a1f1 + a1b1 − f1a1 − f21 − f1b1 + b1a1 + b1f1 + b2

1 . . .

⌋3,4 . . .

(114)

= ⌊

a21 − f21 + b2

1 . . .

⌋3,4 . . . (115)

We note 1) b2 = (bI)2 = −b2 and 2) f2 = −E2
1 − E2

2 − E2
3 + B2

1 + B2
2 + B2

3 +
4e0e1e2e3(E1B1 + E2B2 + E3B3)

= ⌊

a21 − b21 + E2

1 + E2
2 + E2

3 −B2
1 −B2

2 −B2
3 − 4e0e1e2e3(E1B1 + E2B2 + E3B3) . . .


⌋3,4 . . .

(116)
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We note that the terms are now complex numbers, which we rewrite as Re(z) =
a21− b21+E2

1 +E2
2 +E2

3 −B2
1 −B2

2 −B2
3 and Im(z) = −4(E1B1+E2B2+E3B3)

= ⌊

z1 . . . z2


⌋3,4




zn
...
zn



 (117)

=

z†1 . . . z†2





zn
...
zn



 (118)

= z‡1z1 + · · ·+ z‡nzn (119)

Which is always non-negative.

We now define the Spinc(3, 1)-valued wavefunction, which is valued in the
even sub-algebra of GA(3, 1):

Definition 21 (Spinc(3, 1)-valued Wavefunction).

|ψ〉〉 =




e

1
2 (a1+f1+b1)

...

e
1
2 (an+fn+bn)



 =





√
ρ1R1B1

...√
ρnRnBn



 (120)

where Ri is a rotor, Bi is a phase, and


q∈Q ρ(q) = 1.

The evolution operator, leaving the partition function invariant, becomes:

Definition 22 (Spinc(3, 1) Evolution Operator).

T =




e−

1
2 ζ(f1+b1)

. . .

e−
1
2 ζ(fn+bn)



 (121)

In turn, this leads to a Schrödinger equation obtained by taking the deriva-
tive of the wavefunction with respect to the Lagrange multiplier ζ:

Definition 23 (Spinc(3, 1)-valued Schrödinger equation).

d

dζ




ψ1(ζ)

...
ψn(ζ)



 =




− 1

2 (f1 + b1)
. . .

− 1
2 (fn + bn)








ψ1(ζ)

...
ψn(ζ)



 (122)

The Spinc(3, 1)-valued Schrödinger Equation can be parametrized in space-
time

d

dθ
ψ(θ, t, x, y, z) = −1

2
(f(t, x, y, z) + b(t, x, y, z))ψ(θ, t, x, y, z) (123)
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In this case ζ represents a global one-parameter evolution parameter akin to
time, which is able to transform the wavefunction under the Spinc(3, 1), lo-
cally across spacetime. This is an extremely general equation that captures all
transformations that can be done consistently with the evolution group of the
wavefunction.

Definition 24 (David Hestenes’ Formulation). Our Spinc(3, 1)-valued wave-
function is identical to David Hestenes’[7] formulation of the wavefunction within
GA(3,1). Both contain a rotor R = e−f/2, a phase B = e−b/2 and the probabil-
ity term

√
ρ.

Definition 25 (Dirac Current). The definition employed in the 2D case (same
as Hestenes’) applies here as well:

J ≡ ψ‡γµψ = ρR‡B‡γµBR = ρR‡γµB
−1BR = ρeµ (124)

We will now demonstrate that the multilinear form is invariant with respect
to the U(1), SU(2), and SU(3) gauge symmetries, which play a fundamental
role in the standard model of particle physics. Using the γ0 basis to enforce the
invariance means that we are interested in a transformation that preserves a
charge density in time, rather than that of a charge current in space (γ1, γ2, γ3).

Theorem 13 (U(1) Invariance). [9, 10]

〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈e 1
2bψ(q)|γ0e

1
2bψ(q)|e 1

2bψ(q)|γ0e
1
2bψ(q)〉 (125)

Proof.

〈e 1
2bψ(q)|γ0e

1
2bψ(q)|e 1

2bψ(q)|γ0e
1
2bψ(q)〉 (126)

= ⌊ψ(q)‡e 1
2bγ0e

1
2bψ(q)⌋3,4ψ(q)‡e

1
2bγ0e

1
2bψ(q) (127)

= ⌊ψ(q)‡γ0e−
1
2be

1
2bψ(q)⌋3,4ψ(q)‡γ0e−

1
2be

1
2bψ(q) (128)

= ⌊ψ(q)‡γ0ψ(q)⌋3,4ψ(q)‡γ0ψ(q) (129)

= 〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 (130)

Theorem 14 (SU(2) Invariance). [9, 10]

〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈e 1
2 fψ(q)|γ0e

1
2 fψ(q)|e 1

2 fψ(q)|γ0e
1
2 fψ(q)〉 (131)

implies f = θ1γ0γ1 + θ2γ0γ2 + θ3γ0γ3, which generates SU(2).

Proof.

〈e 1
2 fψ(q)|γ0e

1
2 fψ(q)|e 1

2 fψ(q)|γ0e
1
2 fψ(q)〉 (132)

= ⌊ψ(q)‡e− 1
2 fγ0e

1
2 fψ(q)⌋3,4ψ(q)‡e−

1
2 fγ0e

1
2 fψ(q) (133)
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We can now identify that the condition to preserve the equality reduces to
this expression:

e−
1
2 fγ0e

1
2 f = γ0 (134)

We further note that moving the left most term to the right yields:

e−θ1γ0γ1−θ2γ0γ2−θ3γ0γ3−B1γ2γ3−B2γ1γ3−B3γ1γ2γ0e
1
2 f (135)

= γ0e
−θ1γ0γ1−θ2γ0γ2−θ3γ0γ3+B1γ2γ3+B2γ1γ3+B3γ1γ2e

1
2 f (136)

Therefore, the product e−
1
2 fγ0e

1
2 f reduces to γ0 if and only if B1 = B2 = B3 = 0,

leaving f = θ1γ0γ1 + θ2γ0γ2 + θ3γ0γ3:
Finally, we note that eθ1γ0γ1+θ2γ0γ2+θ3γ0γ3 generates SU(2).

Theorem 15 (SU(3) invariance). [9, 10]

〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈fψ(q)|γ0fψ(q)|fψ(q)|γ0fψ(q)〉 (137)

Proof. From the above relation, we identify that the following expression must
remain invariant: −fγ0f = γ0. Now, let f = E1γ0γ1 + E2γ0γ2 + E3γ0γ3 +
B1γ2γ3 +B2γ1γ3 +B3γ1γ2. Then:

−(E1γ0γ1 + E2γ0γ2 + E3γ0γ3 +B1γ2γ3 +B2γ1γ3 +B3γ1γ2)γ0f (138)

The first three terms anticommute with γ0, while the last three commute with
γ0:

= γ0(E1γ0γ1 + E2γ0γ2 + E3γ0γ3 −B1γ2γ3 −B2γ1γ3 −B3γ1γ2)f (139)

This can be written as:

γ0(E−B)(E+B) (140)

= γ0(E
2 +EB−BE−B2) (141)

where E = E1γ0γ1 + E2γ0γ2 + E3γ0γ3 and B = B1γ2γ3 +B2γ1γ3 +B3γ1γ2.
Thus, for −fγ0f = γ0, we require: 1) E2 −B2 = 1 and 2) EB = BE. The

second requirement means that E andBmust commute (and thus be isomorphic
to three complex numbers), and the first implies:

E2 −B2 = (E2
1 +B2

1) + (E2
2 +B2

2) + (E2
3 +B2

3) = 1 (142)

which are the defining conditions for the SU(3) symmetry group.

We have now demonstrated that the solution to the entropy maximization
problem offers a powerful framework that naturally incorporates SU(3)×SU(2)×
U(1) gauge symmetries, retains invariance with respect to the Spinc(3, 1) group,
includes the Dirac current and equation, and introduces the notion of the metric
tensor via spacetime interval measurements. The specificity of these gauges is
attributable to the set of all time-invariant gauges supported by the multilinear
form in GA(3, 1), and cannot be different.
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2.4 Quantum Gravity in 3+1D

In the previous section, we developed a quantum theory of inertial reference
frames valued in Spinc(3,1), in which RQM lives. Our goal in this section is
to extend the methodology to arbitrary frame fields, in which General Rela-
tivity (GR) lives. To formulate the theory, we will exploit the features of the
multilinear form, which will allow us to formulate the spacetime interval as an
observable from which the metric tensor can be constructed.

2.4.1 Initial Investigation

The multilinear form supports more operation than are possible with a bilinear
form:

Definition 26 (Double-Copy). Let ψ and ϕ be two Spinc(3,1)-valued wavefunc-
tions. Then, the double copy

⌊ψ(q)‡ψ(q)⌋3,4  
copy 1

ϕ(q)‡ϕ(q)  
copy 2

= eibρψρϕ = eibρ (143)

yields a transition amplitude that satisfies the probability measure. We note
that the multiplication of two probabilities measure yields a probability measure
ρψρφ = ρ.

Furthermore, the multilinear form supports a double-basis measurement.
This feature will be crucial to formulate the spacetime interval as an observable.

First, let us explore how the adjoint action of the wavefunction acts on a
single basis element.

eµ = ψ‡γµψ (144)

= e
1
2ae−

1
2 fe

1
2bγµe

1
2be

1
2 fe

1
2a (145)

= e
1
2ae−

1
2 fγµe

− 1
2be

1
2be

1
2 fe

1
2a (146)

= e
1
2a e−

1
2 fγµe

1
2 f

  
rotation/boost

e
1
2a

  
dilation

(147)

From this, we note that the wavefunction contains all the multivectorial com-
ponents required to map a vector such as γµ to any other vector eµ, allowing for
rotations/boosts and dilations of the vector, but leaving the origin unchanged.

Comparatively, we previously defined the Dirac current as ρeµ = ψ‡γµψ.

The difference here is that we absorbed e
1
2a into a dilation of the basis vector.

Tthe construction of the metric tensor requires the multiplication of two
basis elements:

gµν =
1

2
(eµeν + eνeµ) (148)

Constructing this object will require separate joint actions on both γµ and γν
simultaneously, which the multilinear form makes possible.
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Theorem 16 (Metric Measurement). The metric measurement is the expec-
tation value of the γµ and γν vectors, applied to a set of Spinc(3, 1)-valued
wavefunctions, identified as ψ, ϕ, φ and ξ:

g00 =
1

2


⌊ψ‡γ0ψ⌋3,4ψ‡γ0ψ + ⌊ψ‡γ0ψ⌋3,4ψ‡γ0ψ


(149)

g01 =
1

2


⌊ψ‡γ0ψ⌋3,4ϕ‡γ1ϕ+ ⌊ϕ‡γ1ϕ⌋3,4ψ‡γ0ψ


(150)

g02 =
1

2


⌊ψ‡γ0ψ⌋3,4φ‡γ1φ+ ⌊φ‡γ1φ⌋3,4ψ‡γ0ψ


(151)

g03 =
1

2


⌊ψ‡γ0ψ⌋3,4φ‡γ1φ+ ⌊φ‡γ1φ⌋3,4ψ‡γ0ψ


(152)

etc. (153)

Proof. Without loss of generality, let us prove g01. Let ψ = e
1
2ae

1
2 fe

1
2b and

ϕ = e
1
2a

′
e

1
2 f

′
e

1
2b

′
:

1

2


⌊ψ‡γ0ψ⌋3,4ϕ‡γ1ϕ+ ⌊ϕ‡γ1ϕ⌋3,4ψ‡γ0ψ


(154)

=
1

2


⌊e 1

2ae
1
2 fe

1
2bγ0e

1
2ae

1
2 fe

1
2b⌋3,4e

1
2a

′
e

1
2 f

′
e

1
2b

′
γ1e

1
2ae

1
2 fe

1
2b + . . .


(155)

=
1

2
(e0e1 + e1e0) (156)

= g01 (157)

As one can swap γµ with γν and obtain the same metric tensor, the multilin-
ear form guarantees that gµν is symmetric. Finally, since ⌊γµψ‡ψ⌋3,4γνψ‡ψ =
⌊ψ‡γµψ⌋3,4ψγνψ, then γµ and γν are self-adjoint within the multilinear form,
entailing the interpretation of gµν as an observable.

In general, we can formulate the spacetime interval as an observable:

Definition 27 (Spacetime Interval Measurement). The spacetime interval mea-
surement is the expectation value of the v = v0γ0 + v1γ1 + v2γ2 + v3γ3 and
w = w0γ0 + w1γ1 + w2γ2 + w3γ3 vectors, with wavefunctions ψ, ϕ, φ and ξ:

v ·w =
1

2


⌊ψ‡v0γ0ψ⌋3,4ψ‡w0γ0ψ + ⌊ψ‡w0γ0ψ⌋3,4ψ‡v0γ0ψ


(158)

+
1

2


⌊ψ‡v0γ0ψ⌋3,4ϕ‡w1γ1ϕ+ ⌊ϕ‡w1γ1ϕ⌋3,4ψ‡v0γ0ψ


(159)

... (160)

2.4.2 The Lagrange Multiplier Equation

Following this initial heuristic investigation, we now define the problem for-
mally via a Lagrange multiplier equation. First, we raise an interpretational
observation regarding the scalar term e

1
2a of ψ. In the previous sections on
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QM and RQM, this term was associated with the square root of the probabil-
ity e

1
2a =

√
ρ. However, as we noted in Theorem 16, it here associates with a

dilation factor. Specifically, the frame field absorbed this term within its curvi-
linear transformation. Finally, we note that a probability varies between [0, 1],
but dilations can vary between ]0,∞[ (in the case of an orientable manifold).

Understanding the correspondence between dilations and probabilities came
from dimensional analysis. Specifically, to construct the entries of the met-
ric tensor from the wavefunction, the scalar terms ends up being multiplied
four times (twice per gamma matrix). The 4-volume density of the metric,
given by the square root of the metric determinant


−|g|, thus scales as e4a.

Significantly, e2a is the square root of the 4-volume e4a, indicating that the
probabilistic weight of a quantum state grows with the area (or square root of
the 4-volume) associated with the metric it defines.

The constraint, which permits dilations, is:

2a =
1

2
tr


q∈Q
ρ(q)Mu(q)|x→0,v→0 (161)

where 2a is the average dilation scale.
The Lagrange multiplier equation is as follows:

Definition 28 (The Fundamental Lagrange Multiplier Equation of QG).

L(ρ,λ, ζ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  

Relative Shannon Entropy

+ λ



1−


q∈Q
ρ(q)





  
Normalization Constraint

+ ζ



2a− 1

2
tr


q∈Q
ρ(q)Mu(q)|x→0,v→0





  
Vanishing Relativistic Phase, with Dilation

(162)

where ρ(q) is the measure, p(q) is the initial preparation, Mu(q) maps q to a
4× 4 matrix, and where ζ is the Lagrange multiplier.

The solution to this optimization problem is obtained as follows:

Theorem 17. The least biased theory which connects an initial preparation p(q)
to its final measurement ρ(q), under the constraint of the vanishing relativistic
phase, is:

ρ(q) =
1

r∈Q p(r) det exp

− 1

2ζMu(r)|x→0,v→0


  

Geometrically Invariant Ensemble

det exp


−1

2
ζMu(q)|x→0,v→0



  
Geometric Born Rule

p(q)
Initial Preparation

(163)
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Proof. The Lagrange multiplier equation can be solved as follows:

∂L(ρ,λ, ζ)
∂ρ(q)

= 0 = − ln
ρ(q)

p(q)
− 1− λ− ζ tr

1

2
Mu(q)|x→0,b→0 (164)

0 = ln
ρ(q)

p(q)
+ 1 + λ+ ζ tr

1

2
Mu(q)|x→0,b→0 (165)

=⇒ ln
ρ(q)

p(q)
= −1− λ− ζ tr

1

2
Mu(q)|x→0,b→0 (166)

=⇒ ρ(q) = p(q) exp(−1− λ) exp


−ζ tr

1

2
Mu(q)|x→0,b→0


(167)

=
1

Z(ζ)
p(q) exp


−ζ tr

1

2
Mu(q)|x→0,b→0


(168)

The partition function Z(ζ), serving as a normalization constant, is deter-
mined as follows:

1 =


r∈Q
p(r) exp(−1− λ) exp


−ζ tr

1

2
Mu(q)|x→0,b→0



(169)

=⇒ (exp(−1− λ))
−1

=


r∈Q
p(r) exp


−ζ tr

1

2
Mu(q)|x→0,b→0


(170)

Z(ζ) :=


r∈Q
p(r) exp


−ζ tr

1

2
Mu(q)|x→0,b→0


(171)

2.4.3 Dynamics

The dynamics are governed by the metric Schrödinger equation. It is able
to generate all possible metrics as a continuous one-parameter flow from the
initial preparation. The equation is obtained by taking the derivative of the
wavefunction with respect to the Lagrange multiplier ζ:

Definition 29 (Metric Schrödinger Equation).

d

dζ




ψ1(ζ)

...
ψn(ζ)



 = −1

2




a1 + f1 + b1

. . .

an + fn + bn








ψ1(ζ)

...
ψn(ζ)



 (172)

where ai accounts for dilation changes, fi accounts for Spin(3,1) transforma-
tions, and bi for phase transformations. When parametrized in (t, x, y, z), the
equation performs an arbitrary metric transformation at every event.
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2.4.4 Multilinear Observables

Theorem 18 (Multilinear Observable).

1

2
(〈〈ψ|Aφ|ϕ|Bξ〉〉+ 〈〈ψ|Bφ|ϕ|Aξ〉〉) = 1

2
(〈〈Aψ|φ|Bϕ|ξ〉〉+ 〈〈Bψ|φ|Aϕ|ξ〉〉) (173)

=⇒ A‡ = ±A,B‡ = ±B (174)

Proof.

1 :〈〈ψ|Aφ|ϕ|Bξ〉〉 (175)

=

ψ1 ψ2

 a00 a01
a10 a11

 
φ1

φ2

 
ϕ1

ϕ2

 
b00 b01
b10 b11

 
ξ1
ξ2


(176)

2 :〈〈Aψ|φ|Bϕ|ξ〉〉 (177)

=

ψ1 ψ2

 a‡00 a‡01
a‡10 a‡11

 
φ1

φ2

 
ϕ1

ϕ2

 
b‡00 b‡10
b‡01 b‡11

 
ξ1
ξ2


(178)

=⇒ A‡ = ±A and B‡ = ±B (179)

This permits the measurement of various geometric objects constructed from
multivectors. The plus/minus signs follow from the double copy which elimi-
nates (−1)2.

In their eigenbasis, multilinear observables are expressed as follows:

DAD−1 =




λ1

. . .

λn



 (180)

where λ1, . . . ,λn are multivector valued, and where λ‡
i = ±λi. For instance, a

metric measurement involves these observables:

γ̂µ =




γµ

. . .

γµ



 , and γ̂ν =




γν

. . .

γν



 (181)

Since,

γ̂‡
µ =




−γµ

. . .

−γµ



 , and γ̂‡
ν =




−γν

. . .

−γν



 (182)

then the observables meet the requirement λ‡
i = ±λi.

In general, all observables A and B whose eigenvalues are vector-valued, will
yield the value of the inner product between the eigenvalues of A and of B, within
the multilinear measurement equation: 1

2 (〈〈ψ|Aψ|ψ|Bψ〉〉+ 〈〈ψ|Bψ|ψ|Aψ〉〉)

27



Definition 30 (Metric Operator).

〈ĝµν〉 =
1

2
(〈〈ψµ|γ̂µψµ|ψν |γ̂νψν〉〉+ 〈〈ψν |γ̂νψν |ψµ|γ̂µψµ〉〉) (183)

where

γ̂µ =




γµ

. . .

γµ



 γ̂ν =




γν

. . .

γν



 (184)

where ψ and g are parametrized in (t, x, y, z).

2.4.5 Quantum Einstein Field Equations

To study the EFE within the present framework, we must express the Einstein-
Hilbert action (EH):

S(gµν) =
c4

16πG


R
√
−gd4x (185)

in terms of the metric operator 〈ĝµν〉 (Definition 30):

Definition 31 (EH). The Einstein-Hilbert action expressed in terms of 〈ĝµν〉
is:

S(〈ĝµν〉) =
c4

16πG


R

− det〈ĝµν〉d4x (186)

Varying this action with respect to 〈ĝµν〉 yields the EFE, simply because gµν =
〈ĝµν〉.

Definition 32 (Quantum EFE). The quantum EFE is obtained by varying the
action with respect to 〈ĝµν〉:

Rµν − 1

2
R〈ĝµν〉 = 0 (187)

We obtain an equation which constrains the expectation value of the metric
operator, the metric tensor, to the EFE.

We note the symmetries of this theory. The metric expectation value con-
tains a SO(3,1) symmetry at the quantum level of the metric operator, and a
diffeomorphism symmetry at the EFE level of the metric expectation value.

In a future paper, we will investigate this quantum EFE in more details.

2.5 Dimensional Obstructions

In this section, we explore the dimensional obstructions that arise when at-
tempting to extend the multivector amplitude formalism to other dimensional
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configurations. We found that all dimensional configurations except those we
have explored here (e.g. GA(0), GA(0, 1) and GA(3, 1)) are obstructed:

Dimensions Obstruction

GA(0) Unobstructed =⇒ statistical mechanics (188)

GA(0, 1) Unobstructed =⇒ quantum mechanics (189)

GA(1, 0) Negative probabilities in the RQM (190)

GA(2, 0) No metric measurement =⇒ Geometry not observationally complete (191)

GA(1, 1) Negative probabilities in the RQM (192)

GA(0, 2) Not isomorphic to a real matrix algebra (193)

GA(3, 0) Not isomorphic to a real matrix algebra (194)

GA(2, 1) Not isomorphic to a real matrix algebra (195)

GA(1, 2) Not isomorphic to a real matrix algebra (196)

GA(0, 3) Not isomorphic to a real matrix algebra (197)

GA(4, 0) Not isomorphic to a real matrix algebra (198)

GA(3, 1) Unobstructed =⇒ quantum gravity ∧ SU(3) × SU(2) × U(1) (199)

GA(2, 2) Negative probabilities in the RQM (200)

GA(1, 3) Not isomorphic to a real matrix algebra (201)

GA(0, 4) Not isomorphic to a real matrix algebra (202)

GA(5, 0) Not isomorphic to a real matrix algebra (203)

...
...

GA(6, 0) No multilinear form as a self-product (204)

...
...

∞ (205)

Let us now demonstrate the obstructions mentioned above.

Theorem 19 (Not isomorphic to a real matrix algebra). The determinant of
the matrix representation of the geometric algebras in this category is either
complex-valued or quaternion-valued, making them unsuitable as a probability.
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Proof. These geometric algebras are classified as follows:

GA(0, 2) ∼= H (206)

GA(3, 0) ∼= M2(C) (207)

GA(2, 1) ∼= M2
2(R) (208)

GA(1, 2) ∼= M2(C) (209)

GA(0, 3) ∼= H2 (210)

GA(4, 0) ∼= M2(H) (211)

GA(1, 3) ∼= M2(H) (212)

GA(0, 4) ∼= M2(H) (213)

GA(5, 0) ∼= M2
2(H) (214)

The determinant of these objects, when such a thing exists, is valued in C or in
H, where C are the complex numbers, and where H are the quaternions.

Theorem 20 (Negative Probabilities in the RQM). The even sub-algebra, which
associates to the RQM part of the theory, of these dimensional configurations
allows for negative probabilities, making them unsuitable as a RQM.

Proof. We note three cases:

GA(1, 0): Let ψ(q) = a+ be1, then:

(a+ be1)
‡(a+ be1) = (a− be1)(a+ be1) = a2 − b2e1e1 = a2 − b2 (215)

which is valued in R.

GA(1, 1): Let ψ(q) = a+ be0e1, then:

(a+ be0e1)
‡(a+ be0e1) = (a− be0e1)(a+ be0e1) = a2 − b2e0e1e0e1 = a2 − b2

(216)

which is valued in R.

GA(2, 2): Let ψ(q) = a+ be0e∅e1e2, where e20 = −1, e2∅ = −1, e21 = 1, e22 = 1, then:

⌊(a+ b)‡(a+ b)⌋3,4(a+ b)‡(a+ b) (217)

= ⌊a2 + 2ab+ b2⌋3,4(a2 + 2ab+ b2) (218)

We note that b2 = b2e0e∅e1e2e0e∅e1e2 = b2, therefore:

= (a2 + b2 − 2ab)(a2 + b2 + 2ab) (219)

= (a2 + b2)2 − 4a2b2 (220)

= (a2 + b2)2 − 4a2b2 (221)

which is valued in R.
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In all of these cases the RQM probability can be negative.

We repeat the following self-products[8] (Definition 18), which will help us
demonstrate the next theorem:

GA(0, 1) : ϕ†ϕ (222)

GA(2, 0) : ϕ‡ϕ (223)

GA(3, 0) : ⌊ϕ‡ϕ⌋3ϕ‡ϕ (224)

GA(3, 1) : ⌊ϕ‡ϕ⌋3,4ϕ‡ϕ (225)

GA(4, 1) : (⌊ϕ‡ϕ⌋3,4ϕ‡ϕ)†(⌊ϕ‡ϕ⌋3,4ϕ‡ϕ) (226)

Theorem 21 (No Metric Measurements). This obstruction applies to GA(2, 0).
Multilinear forms of at least four self-products are required for the theory to be
observationally complete with respect to the geometry.

Proof. A metric measurement requires a multilinear form of 4 self products
because the metric tensor is defined using 2 self-products of the gamma matrices:

gµν =
1

2
(eµeν + eνeµ) (227)

Each pair of wavefunction products fixes one basis elements. Thus, two pairs
of wavefunction products are required to fix the geometry from the wavefunc-
tion. As multilinear forms of four self-products begin to appear in 3D, then the
GA(2, 0) cannot produce a metric measurement as a quantum observable, thus
its geometry is not observationally complete.

Conjecture 1 (No multilinear form as a self-product (in 6D)). The multivector
representation of the norm in 6D cannot satisfy any observables.

Argument. In six dimensions and above, the self-product patterns found in Def-
inition 18 collapse. The research by Acus et al.[11] in 6D geometric algebra
demonstrates that the determinant, so far defined through a self-products of
the multivector, fails to extend into 6D. The crux of the difficulty is evident
in the reduced case of a 6D multivector containing only scalar and grade-4
elements:

s(B) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (228)

This equation is not a multivector self-product but a linear sum of two multi-
vector self-products[11].

The full expression is given in the form of a system of 4 equations, which is
too long to list in its entirety. A small characteristic part is shown:

a40 − 2a20a
2
47 + b2a

2
0a

2
47p412p422 + 〈72 monomials〉 = 0 (229)

b1a
3
0a52 + 2b2a0a

2
47a52p412p422p432p442p452 + 〈72 monomials〉 = 0 (230)

〈74 monomials〉 = 0 (231)

〈74 monomials〉 = 0 (232)
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From Equation 228, it is possible to see that no observable O can satisfy
this equation because the linear combination does not allow one to factor it out
of the equation.

b1OBf5(f4(B)f3(f2(B)f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) = b1Bf5(f4(B)f3(f2(B)f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B)))
(233)

Any equality of the above type between b1O and b2O is frustrated by the factors
b1 and b2, forcing O = 1 as the only satisfying observable. Since the obstruction
occurs within grade-4, which is part of the even sub-algebra it is questionable
that a satisfactory quantum theory (with observables) be constructible in 6D.

This conjecture proposes that the multivector representation of the deter-
minant in 6D does not allow for the construction of non-trivial observables,
which is a crucial requirement for a consistent quantum formalism. The lin-
ear combination of multivector self-products in the 6D expression prevents the
factorization of observables, limiting their role to the identity operator.

Conjecture 2 (No multilinear form as a self-product (above 6D)). The norms
beyond 6D are progressively more complex than the 6D case, which is already
obstructed.

These theorems and conjectures provide additional insights into the unique
role of the unobstructed 3+1D signature in our proposal.

It is also interesting that our proposal is able to rule out GA(1, 3) even if
in relativity, the signature of the metric (+,−,−,−) versus (−,−,−,+) does
not influence the physics. However, in geometric algebra, GA(1, 3) represents
1 space dimension and 3 time dimensions. Therefore, it is not the signature
itself that is ruled out but rather the specific arrangement of 3 time and 1 space
dimensions, as this configuration yields quaternion-valued ”probabilities” (i.e.
GA(1, 3) ∼= M2(H) and detM2(H) ∈ H).

Consequently, 3+1D is the only dimensional configuration (other than the
”non-geometric” configurations of GA(0) ∼= R and GA(0, 1) ∼= C) in which a
’least biased’ solution to the problem of maximizing the Shannon entropy of
quantum measurements relative to an initial preparation, exists. This is an
extremely strong claim regarding the possible spacetime configurations of the
universe, and our ability (or inability) to construct a least biased theory to
explain it.

3 Discussion

3.1 Maximizing The Relative Shannon Entropy

The principle of maximum entropy[3] states that the probability
measure that best represents the current state of knowledge about
a system is the one with the largest entropy, constrained by prior
data.
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In QM, an experiment begins with an initial preparation, followed by some
transformations, and concludes with a final measurement of the system, yielding
the result of the experiment. Consistent with the maximum entropy principle,
our aim is to derive the ’least biased’ theory that connects the initial preparation
p(q) to its final measurement ρ(q), thereby formulating the theory as a solution
to a maximization problem, rather than merely by axiomatic stipulation.

Using this methodology, fundamental physics can be formulated as the gen-
eral solution to a maximization problem involving the Shannon entropy of all
possible measurements of an arbitrary system relative to its initial preparation,
under the constraint of a vanishing phase. As such, the structure of the inferred
theory is determined by the nature and generality of the employed constraint.
In this paper, we have investigated these four entropy maximization problems:

Constraint Vanishing Phase Inferred Theory Wavefunction

E =


q∈Q
ρ(q)E(q) none SM R

0 = tr


q∈Q
ρ(q)


0 −E(q)

E(q) 0


U(1) QM C

0 = tr


q∈Q
ρ(q)Mu|a→0,x→0,v→0 Spinc(3, 1) RQM R× Spinc(3, 1)

2a = tr


q∈Q
A(q)Mu|x→0,v→0 Spinc(3, 1), with dilations QG R× Spinc(3, 1)

Despite the differences in constraints, all four theories hereso formulated
share a common logical genesis, adhere to the same principle of maximum en-
tropy, and qualify as the least biased theory for their given constraint.

3.2 The Multilinear Form

David Hestenes’ work on the representation of the relativistic wavefunction
within GA(3, 1) was instrumental in the development of this research. His re-
sults served as a milestone, confirming the validity of our approach at various
stages. Hestenes’ wavefunction, ψ = e

1
2 (a+f+b) =

√
ρRe−ib/2, contains the same

geometric structures as the Spinc(3, 1) wavefunction in our theory.
However, it is noteworthy that Hestenes’ work does not include a fully satis-

factory probability measure. To illustrate the difficulty, let us investigate a few
options.

1. Multiplying the wavefunction with its reverse yields:

ψ̃ψ = ρR̃e−ib/2Re−b/2 = ρe−ib (234)

The result ρe−ib does contains ρ, but it also includes a phase factor e−ib.
As such, it is not a proper probability measure.
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2. Applying a joint action to the γµ basis, yields the Dirac current:

J = ψ̃γµψ = ρeµ (235)

This approach eliminates the phase contribution because e−ib/2γµe
−ib/2 =

γµe
ib/2e−ib/2 = γµ. However, as it contains a basis eµ, the Dirac current

is not a proper probability measure (nor is it designed to be).

3. To construct an adapted Born rule that directly yields the probability
when applied to the wavefunction, one might be tempted to apply the
conjugate to ψ in addition to the reverse:

ψ̃‡ψ = ρR̃eib/2Re−ib/2 = ρ (236)

In this case one indeeds maps ψ to ρ, however, this approach disrupts the
definition of the Dirac current: ψ̃‡γµψ = ρR̃γµe

ib/2Re−ib/2 = ρeµe
−ib/2 ∕=

J .

4. Finally, the proposal retained by David Hestenes is to define probability
measure as

〈ψ,ψ〉 = 〈ψψ‡〉0 = ρ (237)

where 〈u〉0 retains only the scalar part (grade 0) of the multivector.

However, such a definition is not the solution to an entropy maximization
problem, and therefore does not represent the least biased probability mea-
sure for the situation. Specifically, it erases some of the features required
to fully describe the system.

To correctly incorporate all the necessary features, including both the Dirac
current and a probability measure yielding the probability density, and to retain
all the geometric features of the formulation, the multilinear form must be
employed. Transitioning from bilinear forms to multilinear forms involving four
self-products of ψ represents a significant conceptual leap. The strength of the
entropy maximization problem lies in its ability to automatically reveal the
appropriate form to use. Specifically:

1. The multilinear form maps ψ to a probability measure:

⌊ψ‡ψ⌋3,4ψ‡ψ = ⌊√ρR̃e−ib/2√ρRe−ib/2⌋3,4
√
ρR̃e−ib/2√ρRe−ib/2 (238)

= ρ2R̃RR̃Reib/2eib/2e−ib/2e−ib/2 (239)

= ρ2 (240)
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2. The definition of the Dirac current is retained:

ψ‡γµψ =
√
ρR‡e−ib/2γµ

√
ρeib/2R (241)

= ρR̃γµR (242)

= ρeµ (243)

= J (244)

3. In the multilinear form the ”Dirac current” (i.e. sandwiching the gamma
matrices within the form) is upgraded to a metric measurement:

1

2


⌊ψ‡

µγµψµ⌋3,4ψ‡
νγνψν + ⌊ψ‡

νγνψν⌋3,4ψ‡
µγµψµ


= gµν (245)

In general the multilinear form permits arbitrary spacetime interval mea-
surement, which is used as the foundation to our proposal for a quantum
theory of gravity.

4. The multilinear form admits invariances with respect to:

U(1) : 〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈e 1
2bψ(q)|γ0e

1
2bψ(q)|e 1

2bψ(q)|γ0e
1
2bψ(q)〉

(246)

SU(2) : 〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈e 1
2 fψ(q)|γ0e

1
2 fψ(q)|e 1

2 fψ(q)|γ0e
1
2 fψ(q)〉

(247)

SU(3) : 〈ψ(q)|γ0ψ(q)|ψ(q)|γ0ψ(q)〉 = 〈fψ(q)|γ0fψ(q)|fψ(q)|γ0fψ(q)〉
(248)

5. Finally, the multilinear form leads to an obstruction-free quantum theory
only in 3+1D.

3.3 Interpretation

The Born rule is the least biased probability measure for a complex Hilbert space
(Theorem 2). However, when extending to 3+1D, this is no longer the case. The
least biased probability measure becomes the multilinear form (Theorem 3). It
is because of the increased geometric flexibility of the multilinear form that the
results we have obtained are possible, notably a quantum description of 3+1D
spacetime in the form of a quantum theory of frame fields.

4 Conclusion

In conclusion, this paper presents a novel approach to physical theory con-
struction by solving a maximization problem on the Shannon entropy of all
possible measurements of a system relative to its initial preparation, under the
constraint of a vanishing phase. By appropriately selecting the group of the van-
ishing phase, the solution resolves to quantum mechanics, relativistic quantum
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mechanics, or a theory of quantum gravity. Our findings reveal the exceptional
ability of this approach to generate a mathematically well-behaved theory that
generalizes quantum probabilities through the introduction of vanishing phases.
The resulting measure is invariant under a wide range of geometric transforma-
tions, including those generated by the gauge groups of the Standard Model,
those associated to general relativity, and leads to the metric tensor as a quan-
tum mechanical observable, without the need for additional assumptions be-
yond the vanishing phase. This finding aligns with the observed dimensionality
and gauge symmetries of the universe and suggests a possible explanation for
its specificity. By reducing fundamental physics to the optimal solution to an
entropy maximization problem, the framework integrates statistical mechan-
ics, quantum mechanics, relativistic quantum mechanics, and quantum gravity,
while also accounting for the dimensionality of spacetime and the gauge sym-
metries of particle physics, under the same conceptual and mathematical basis.
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A SM

Here, we solve the Lagrange multiplier equation of SM.

L(ρ,λ,β) = −kB


q∈Q
ρ(q) ln ρ(q)

  
Boltzmann
Entropy

+λ



1−


q∈Q
ρ(q)





  
Normalization
Constraint

+β



E −


q∈Q
ρ(q)E(q)





  
Average Energy Constraint

(249)
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We solve the maximization problem as follows:

∂L(ρ,λ,β)
∂ρ(q)

= 0 = − ln ρ(q)− 1− λ− βE(q) (250)

0 = ln ρ(q) + 1 + λ+ βE(q) (251)

=⇒ ln ρ(q) = −1− λ− βE(q) (252)

=⇒ ρ(q) = exp(−1− λ) exp (−βE(q)) (253)

=
1

Z(τ)
exp (−βE(q)) (254)

The partition function, is obtained as follows:

1 =


r∈Q
exp(−1− λ) exp (−βE(q)) (255)

=⇒ (exp(−1− λ))
−1

=


r∈Q
exp (−βE(q)) (256)

Z(τ) :=


r∈Q
exp (−βE(q)) (257)

Finally, the probability measure is:

ρ(q) =
1

r∈Q exp (−βE(q))
exp (−βE(q)) (258)

B RQM in 3+1D

L(ρ,λ, τ) = −


q∈Q
ρ(q) ln

ρ(q)

p(q)
  

Relative Shannon
Entropy

+λ



1−


q∈Q
ρ(q)





  
Normalization
Constraint

+ ζ



− tr
1

2



q∈Q
ρ(q)Mu(q)|a→0,x→0,v→0





  
Vanishing Relativistic-Phase
Anti-Constraint

(259)

The solution is obtained using the same step-by-step process as the 2D case,
and yields:

ρ(q) =
1

r∈Q p(r) det exp

−ζ 1

2Mu(r)|a→0,x→0,b→0


  

Spinc(3,1) Invariant Ensemble

det exp


−ζ

1

2
Mu(q)|a→0,x→0,b→0



  
Spinc(3,1) Born Rule

p(q)
Initial Preparation

(260)
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Proof. The Lagrange multiplier equation can be solved as follows:

∂L(ρ,λ, ζ)
∂ρ(q)

= 0 = − ln
ρ(q)

p(q)
− p(q)− λ− ζ tr

1

2
Mu(q)|a→0,x→0,b→0 (261)

0 = ln
ρ(q)

p(q)
+ p(q) + λ+ ζ tr

1

2
Mu(q)|a→0,x→0,b→0 (262)

=⇒ ln
ρ(q)

p(q)
= −p(q)− λ− ζ tr

1

2
Mu(q)|a→0,x→0,b→0 (263)

=⇒ ρ(q) = p(q) exp(−p(q)− λ) exp


−ζ tr

1

2
Mu(q)|a→0,x→0,b→0



(264)

=
1

Z(ζ)
p(q) exp


−ζ tr

1

2
Mu(q)|a→0,x→0,b→0


(265)

The partition function Z(ζ), serving as a normalization constant, is deter-
mined as follows:

1 =


r∈Q
p(r) exp(−p(q)− λ) exp


−ζ tr

1

2
Mu(q)|a→0,x→0,b→0



(266)

=⇒ (exp(−p(q)− λ))
−1

=


r∈Q
p(r) exp


−ζ tr

1

2
Mu(q)|a→0,x→0,b→0


(267)

Z(ζ) :=


r∈Q
p(r) exp


−ζ tr

1

2
Mu(q)|a→0,x→0,b→0


(268)

C SageMath program showing ⌊u‡u⌋3,4u‡u = detMu

from sage . a l g eb ra s . c l i f f o r d a l g e b r a import C l i f f o rdA lg eb ra
from sage . quadrat i c f o rms . quadrat i c fo rm import QuadraticForm
from sage . symbol ic . r i ng import SR
from sage . matrix . c on s t ruc to r import Matrix

# Def ine the quadrat i c form f o r GA(3 , 1 ) over the Symbolic Ring
Q = QuadraticForm (SR, 4 , [−1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 ] )

# I n i t i a l i z e the GA(3 , 1 ) a lgebra over the Symbolic Ring
a lgebra = Cl i f f o rdA lg eb ra (Q)

# Def ine the ba s i s v e c t o r s
e0 , e1 , e2 , e3 = a lgebra . gens ( )
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# Def ine the s c a l a r v a r i a b l e s f o r each ba s i s element
a = var ( ’ a ’ )
t , x , y , z = var ( ’ t x y z ’ )
f01 , f02 , f03 , f12 , f23 , f13 = var ( ’ f01 f02 f03 f12 f23 f13 ’ )
v , w, q , p = var ( ’ v w q p ’ )
b = var ( ’ b ’ )

# Create a gene ra l mu l t i vec to r
udegree0=a
udegree1=t ∗ e0+x∗ e1+y∗ e2+z∗ e3
udegree2=f01 ∗ e0∗ e1+f02 ∗ e0∗ e2+f03 ∗ e0∗ e3+f12 ∗ e1∗ e2+f13 ∗ e1∗ e3+f23 ∗ e2∗ e3
udegree3=v∗ e0∗ e1∗ e2+w∗ e0∗ e1∗ e3+q∗ e0∗ e2∗ e3+p∗ e1∗ e2∗ e3
udegree4=b∗ e0∗ e1∗ e2∗ e3
u=udegree0+udegree1+udegree2+udegree3+udegree4

u2 = u . c l i f f o r d c o n j u g a t e ( )∗u

u2degree0 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 0)
u2degree1 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 1)
u2degree2 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 2)
u2degree3 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 3)
u2degree4 = sum(x f o r x in u2 . terms ( ) i f x . degree ( ) == 4)
u2conj34 = u2degree0+u2degree1+u2degree2−u2degree3−u2degree4

I = Matrix (SR, [ [ 1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

#MAJORANA MATRICES
y0 = Matrix (SR, [ [ 0 , 0 , 0 , 1 ] ,

[ 0 , 0 , −1, 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[−1 , 0 , 0 , 0 ] ] )

y1 = Matrix (SR, [ [ 0 , −1, 0 , 0 ] ,
[−1 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , −1] ,
[ 0 , 0 , −1, 0 ] ] )

y2 = Matrix (SR, [ [ 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , −1, 0 ] ,
[ 0 , −1, 0 , 0 ] ,
[ 1 , 0 , 0 , 0 ] ] )
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y3 = Matrix (SR, [ [−1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , −1, 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

mdegree0 = a
mdegree1 = t ∗y0+x∗y1+y∗y2+z∗y3
mdegree2 = f01 ∗y0∗y1+f02 ∗y0∗y2+f03 ∗y0∗y3+f12 ∗y1∗y2+f13 ∗y1∗y3+f23 ∗y2∗y3
mdegree3 = v∗y0∗y1∗y2+w∗y0∗y1∗y3+q∗y0∗y2∗y3+p∗y1∗y2∗y3
mdegree4 = b∗y0∗y1∗y2∗y3
m=mdegree0+mdegree1+mdegree2+mdegree3+mdegree4

p r i n t ( u2conj34 ∗u2 == m. det ( ) )

The program outputs

True

showing, by computer assisted symbolic manipulations, that the determinant of
the real Majorana representation of a multivector u is equal to the multilinear
form: detMu = ⌊u‡u⌋3,4u‡u.
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