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Abstract
A new trend in the philosophical literature on scientific explanation is that of starting from a
case that has been somehow identified as an explanation and then proceed to bringing to light
its characteristic features and to constructing an account for the type of explanation it
exemplifies. This approach to thinking about explanation — the piecemeal approach, as I will
call it — is used, among others, by Lange (2013) and Pincock (2015) in the context of their
treatment of the problem of mathematical explanations of physical phenomena. This problem
is of central importance in two different recent philosophical disputes: the dispute about the
existence on non-causal scientific explanations and the dispute between realists and
antirealists in the philosophy of mathematics. My aim in this paper is twofold. I will first
argue that Lange (2013) and Pincock (2015) fail to make a significant contribution to these
disputes. They fail to contribute to the dispute in the philosophy of mathematics because, in
this context, their approach can be seen as question begging. They also fail to contribute to the
dispute in the general philosophy of science because, as I will argue, there are important
problems with the cases discussed by Lange and Pincock. I will then argue that the source of
the problems with these two papers has to do with the fact that the piecemeal approach used to
account for mathematical explanation is problematic.

Keywords: mathematical explanation, scientific explanation, mathematical realism, non-
causal explanations.

1. Introduction

The philosophical discussion about scientific explanation has changed a lot since Hempel and
Oppenheim’s 1948 epoch-making paper “Studies in the Logic of Explanation”. The recent
trend is to focus on what scientists are actually doing when providing explanations instead of
employing some type of (detached from the scientific practice) conceptual analysis. The
armchair a priori approach associated with the traditional treatment of this topic has become
disavowed lately.

We can distinguish between two traditional ways of dealing with the topic of scientific
explanation. One of them is to try to clarify the meaning of explanatory claims by analysing
how scientists are using the concept of explanation and by appeal to one’s linguistic
intuitions. Something like this can be found in Friedman (1974). In Friedman’s opinion,
among the desirable properties that a theory of explanation should have is that it must “square
with most of the important, central cases” of theories that we all take pre-theoretically to be
explanatory (Friedman 1974, p. 13). But what if the way scientists usually use the concept of
explanation is too ambiguous or imprecise? What if there is no such a thing as a clear idea
about what counts as a scientific explanation? Hempel thinks that this is the case,' so his
approach to scientific explanation is different. Instead of trying to “describe how working
scientists actually formulate their explanatory accounts,” he aims “to indicate in reasonably

! He claims that “there is no sufficiently clear generally accepted understanding as to what counts as a scientific
explanation” (Hempel 1965, p. 489).



precise terms the logical structure and the rationale of various ways in which empirical
science answers explanation-seeking why-questions” (Hempel 1965, p. 412). He deals, then,
with this topic by providing an explication of scientific explanation in Carnap’s sense.’
According to Carnap (1950, p. 7) the purpose of an explication is that of replacing a vague
concept (the explicandum) with a precise one (the explicatum), i.e. one that is simple and
fruitful and whose rules of use have an exact form, but which is also sufficiently similar to the
explicandum to replace it in most of the cases in which it has been used. Hempel DN-model
of explanation is meant as a (partial)® explicative definition of the “explicatum”-concept of
scientific explanation.

As it turned out, both Friedman’s and Hempel’s models of explanation suffer from
important problems. But what is more important from the perspective of our discussion is
that, for reasons that need not concern us here, the traditional approach to thinking about
scientific explanation itself has fallen from favour nowadays. Many philosophers are no
longer content with just analysing the concept of scientific explanation. They take their
projects to go beyond — but not exclude it altogether — the traditional conceptual analysis.
James Woodward, for example, points out that his approach goes beyond conceptual analysis
because — among other things — unlike the traditional approach, it takes into account the larger
practices of explanation, including those that involve nonverbal components and it also
focuses on the goals behind our explanatory practices (Woodward 2003, p. 7). Even though “a
significant portion of what [Woodward attempts] does involve a description of ordinary and
scientific usage and judgment” because “anything that qualifies as an account of causation
(explanation, etc.), whether descriptive or prescriptive, must be significantly constrained by
prior usage, practice, and paradigmatic examples,” the central part of Woodward’s project
consists in describing our explanatory practices, and not in describing how scientists or
ordinary people are using words such as “explanation” (pp. 7-8).

A similar practice-centred approach can be found, among others, in Strevens (2008).
Like Woodward, Strevens considers that the description of the actual scientific explanatory
practice has to be the focal point of a philosophical study of scientific explanation. In his
opinion, the goal of such a descriptive project is...

“...to say what kinds of explanations we give and why we give them.
This 1s what I call our explanatory practice. The most important
source of evidence concerning our explanatory practice is the sum
total of the explanations regarded as scientifically adequate in their
day, together with an understanding of the background against which
they seemed adequate” (Strevens 2008, p. 37).

The main point in favour of this reorientation of the philosophical attention from
concepts to practices is that there are strong reasons to think that by focusing on the way
scientists actually provide explanations we can produce accounts of scientific explanation that
are a lot more adequate than anything an armchair approach can deliver.

An important thing that needs to be emphasised at this point is that this concern with
the scientific explanatory practice can take two forms. First of all, one can be concerned with
this practice taken as a whole, with the aim of revealing those distinctive features that makes
it explanatory. The main idea behind this general approach is to find out why we regard this
practice as explanatory and try to construct a comprehensive account of scientific explanation.
Secondly, instead of a diversity blurring point of view, one can take a piecemeal approach to
this practice, i.e. look at it more closely and try to bring to light its complexity. The idea is

2 For more on this see Salmon (1989, p. 5) and Weber, Van Bouwel and De Vreese (2013, pp. 25-27).
3 Hempel (1965, p. 273, note 33).



that by concentrating on finding a comprehensive account we disregard the complexity of the
scientific explanatory practices, so a more appropriate approach is a close scrutiny of the
details of these practices. What usually prompts this second type of concern is the belief that
our view about scientific explanation can become more complex if we look more carefully at
the details of the actual scientific explanatory practices.* One of my aims in this paper is to
argue that there are big problems with the way the piecemeal approach tries to flesh out this
belief.

Among those that use a piecemeal approach in their discussions of scientific
explanation, we can count Sober (1983), Nerlich (1994), Batterman (2002, 2010), Batterman
and Rice (2014), Rice (2012, 2015), Huneman (2010), Irvine (2015), Lange (2013) and
Pincock (2015). In this paper I will concentrate mainly on Lange’s and Pincock’s papers.
They use this approach in the context of their discussion of the problem of mathematical
explanations of physical phenomena. My aim is to argue that they fail to make significant
contributions to the two philosophical disputes in which this problem occupies central stage:
the dispute over the existence of non-causal scientific explanations and the dispute between
realists and antirealists in the philosophy of mathematics. The main idea behind doing this is
to show that the problem with Lange (2013) and Pincock (2015) has to do with their use of
the piecemeal approach to thinking about explanation. My strategy is to use this as an
illustration for what is wrong with the piecemeal approach.’

2. The piecemeal approach to explanation

As I said above, the general and the piecemeal approaches are motivated by different ideas.
The (implicit) idea behind a general approach to thinking about explanation is that there is
(are) some feature(s) that everything we call an explanation (in general, in science, or in some
particular domain)® has in common, and it is the job of any theory of explanation to say what
this feature is. For example, in Strevens’s (2008) view, this feature — in science — has to do
with causal relations, so to explain “a phenomenon is... a matter of understanding how the
phenomenon was or is causally produced” (p. 3). According to Craver (2007), in neuroscience
this feature has to do with mechanisms, so an account of good explanations in neuroscience
has to be a causal-mechanical one. Also, according to Craver (2006), Kaplan and Craver
(2011) and Kaplan (2011), in relation to scientific models, this feature has to do with the
accurate description of the causal mechanism(s) responsible for the phenomenon of interest,
so only mechanistic models are explanatory.

By contrast, what motivates the piecemeal approach is the (implicit) idea that the
scientific explanatory practices are a complex heterogeneous bunch of different types of
explanations, so the aim when discussing this topic has to be to bring to light this complexity.
Of course, there is more than one way to try to do this, so what characterizes the piecemeal

4 My paraphrase of Sklar (1993, p. 269).

5 Before proceeding, I need to emphasize an important point: I am not aiming in this paper to show that the
piecemeal approach is bad compared with other approaches to thinking about explanation. My aim is only to
show that, despite what the recent interest in this approach may suggest, it is very problematic and cannot be
used to make contributions to some important philosophical debates.

¢ After Hempel’s attempt to give a truly general theory of explanation, philosophers became less ambitious and
relativized their accounts to specific domains. We have, for example, theories that aspire to account only for
scientific explanation, and there are even less ambitious theories that try to account only for the explanations
within a particular scientific discipline, as e.g. biology or neuroscience. What is important to understand from the
perspective of our discussion is that a general approach to thinking about explanation is not the same thing as a
general theory of explanation. The general approach has to do with the way one sees the task of constructing an
account, not with the domain that such an account is supposed to apply to. So it can be adopted without problems
even if one tries to account for the explanatory practice encountered within some particular discipline.



approach is the way it pursues this aim. In broad strokes, the piecemeal strategy can be taken
to consist of four steps. The first and most important one is to start from a case that is
somehow identified as an explanation and that seems different from the other scientific
explanations. The next step is to analyse this case in order to determine what its characteristic
features are. The third step is to argue that some influential account(s) of scientific
explanation doesn’t accommodate explanations with such features as those revealed at the
previous step. The last step is to tackle the problem of accounting for the kind of explanation
exemplified by the case discussed. This resembles very much with what Pincock (2015) dubs
the case-driven approach to thinking about explanation. Pincock presents his strategy this
way:

“In this article I work with a different case-driven approach to thinking about
explanation. I begin by discussing a case that has been identified as an
explanation by expert practitioners. Then I try to figure out what features of
this case are responsible for its explanatory import. Finally, I will see to what
extent these sorts of cases can be incorporated into some influential theories of
explanation. The risk of this approach is that it may turn out that explanations
are not all of the same kind” (Pincock 2015, p. 858).

The main difference between the piecemeal approach and Pincock’s case-driven
approach is that in a piecemeal approach what counts as evidence’ that in a particular case we
are dealing with an explanation doesn’t need to be limited to the testimony of expert
practitioners (e.g. one can rely for this on intuition).

To illustrate this strategy, let’s take a glimpse at Irvine’s (2015) discussion about the
explanatory worth of optimality models. In Irvine’s opinion, there is more to model
explanation than what the popular causal-mechanical accounts let us think. She believes that
“models are used in far more explanatory contexts than this [those in which we have
knowledge of mechanisms], and in fact are particularly useful when very little is known about
underlying concrete mechanisms” (p. 3947). We can find such a context in biology, where
optimality models are used to explain, for example, phenomena such as the distribution of
phenotypes within a population of organisms (step 1). What characterizes these models is the
fact that they “come from an abstract mathematical template in which the ‘currency’ in a
system is maximised by taking into account constraints and trade-offs within the system” (p.
3950) (step 2). So, these models “do not in any sense represent concrete mechanisms, and
neither do they describe networks of causal connectivity” (p. 3952). If this is the case, then
they cannot provide a sort of mechanistic explanation (step 3). Keeping in mind what is said
at steps 1 and 2, it can be argued that optimality models provide structural explanations, i.e. a
type of explanations in which what is doing the explanatory work is the abstract structure of
the model and the target system (step 4).

An important point that needs to be emphasised here is that, unlike in other approaches
to thinking about explanation, in a piecemeal approach the aim is to analyse what

7 Molinini (2016) draws an interesting distinction between indicators and evidence and argues that, unlike what
we find in some papers by Baker and Colyvan, the “claims from scientific practice should not be considered
evidence of genuineness, but rather indicators of the fact that there is a genuine mathematical explanation” (p.
417). Unlike evidence, an indicator needs justification, i.e. it needs to be complemented with an account able to
“inform us on how these explanations work™ (p. 418). So, Molinini can be taken to suggest that something like
the piecemeal approach should be adopted by the mathematical realists, otherwise “the debate on EIA [Enhanced
Indispensability Argument] will continue to be opaque and suffer a profound indeterminacy” (p. 418). I
personally am not persuaded that we should operate with such a distinction between indicator and evidence. If
we take something as evidence that in a certain case we are dealing with an explanation it doesn’t mean that we
don’t still need an account that can tell us how such an explanation works.



characterizes a particular case of scientific explanation — how it works — not to show that we
are actually dealing in that case with a genuine scientific explanation. This is supposed to be
determined somehow from the start.®

In broad strokes, the gist of this paper is to show that, depending on the context and on
one’s aim,” two things are important (but not necessarily together) in order for this approach
to work properly. First of all, we need a good (pre-theoretic) explanation identification tool, '
otherwise one can arbitrarily choose something as an explanation and use this approach to
obtain an account of what makes it and similar cases explanatory — this way any part of the
scientific practice can be taken as explanatory. Secondly, it needs an objective criterion for
determining the characteristic features of an explanation — without this, one can take as
explanatory whatever aspect of the case discussed one fancies.

3. Two debates, one strategy

In order to have a better idea about how important the piecemeal approach is in recent
philosophy, I think it is helpful to take a look at the way it has been/can be used in two
explanation related philosophical debates: the debate over the existence of mathematical
entities and the debate about the existence of non-causal explanation.

3.1. The mathematical realism debate

An important discussion in the philosophy of mathematics concerns the existence of
mathematical entities. The participants in this discussion can be divided into two camps: those
that believe that there are such abstract entities — the realists — and those that deny their
existence — the nominalists. The most successful argument that the mathematical realists used
in favour of their position, i.e. the indispensability argument, is considered by many to have
been advanced many years ago by Quine and Putnam. The gist of this argument is that, if we
are scientific realists, besides the concrete unobservable posits, we ought to be ontologically
committed to the existence of abstract mathematical entities because they play an
indispensable role in our best scientific theories. One way to unpack the strategy behind this
argument is the following:

The Q-P indispensability argument

(1) Some scientific realists are ontologically committed only to the entities that are
indispensable for our recent well confirmed scientific theories.

(2) Mathematical entities play an indispensable role in our recent well confirmed
scientific theories.

(3) Scientific theories are confirmed or disconfirmed as a whole.

(4) Hence, if a scientific realist of the type delineated by (1) is a holist (i.e. accepts
premise (3)) and accepts (2) as a fact, then she ought to be ontologically committed
also to the existence of mathematical entities.

8 Lange (2013), for example, aims to specify how the cases of explanations that he considers work — that is, to
identify the source of their explanatory power (p. 486). Also, Pincock (2015) is concerned with figuring out what
features are responsible for the explanatory import of the case he discusses.

9 See the discussion in section 6, especially footnote 19.

10 By ‘explanation identification tool’ I mean here something (like €.g. intuition or the testimony of expert
practitioners) that can be taken as evidence (or something that is an indicator, if one adopts Molinini’s distinction
— see footnote 7) that in a certain case we are dealing with an explanation.



As it turned out, there are many scientific realists that are not very happy with
confirmational holism and there are some, such as Hartry Field, who are not convinced that
(2) is actually a fact. So, despite being so extensively discussed, the target of this argument
proved to be very small.

A very peculiar thing about this argument that can be easily noticed at a closer look is
the complete disregard for the actual role played by mathematics in science. All it requires is
that mathematics is indispensable for science. But, as Baker points out, “the phrase
‘indispensability for science’ is vague. What, exactly, is the scientific purpose (or purposes)
for which mathematics is supposed to be indispensable?” (Baker 2005, p. 223). This is a
crucial question because, depending on its answer, one can either give a final blow to the
indispensability argument or can open a new path for its recasting. The final blow was
attempted in Melia (2000, 2002) where it is argued that mathematics is not indispensable for
science in the right kind of way (Baker 2005, p. 224) to rationally constrain a scientific realist
to be committed to the existence of mathematical entities. For Melia, the right way is “the
way in which the postulation of theoretical physical entities increases the utility of our
scientific theories” (Melia 2002, p. 75).

Luckily for the mathematical realist, there is an answer to the above question that can
be exploited to save the indispensability argument. Baker (2005, 2009) provides the most
extensive and influential discussion of this answer. Baker argues that mathematics plays an
indispensable explanatory role in science. If this is the case, then we can give the following
modified indispensability argument:

The Enhanced Indispensability Argument (EIA)
(1) Some scientific realists believe in the existence of any entity that plays an
indispensable explanatory role in our best scientific theories.
(2) Mathematical objects play an indispensable explanatory role in science.
(3) Hence, the scientific realists referred to in (1) ought to rationally believe in the
existence of mathematical objects.'!

This argument is more powerful than the Q-P argument. First of all, its target is
considerably bigger — there are many scientific realists that use inference to the best
explanation to argue for their position. Secondly, it doesn’t need to use something as
controversial as confirmational holism to prevent the scientific realist from dissociating
between entities worthy and unworthy of entering one’s ontology. All is needed for it to work
is that inference to the best explanation is taken as central for defending scientific realism and
that there is a convincing case for premise (2). The first part is trivially obtained so all that the
mathematical realist is left with is the problem of showing that (2) is indeed the case. But how
can she do that? An important thing that needs to be acknowledged is that (2) can be split into
two parts: (a) mathematical objects play an indispensable role in science; (b) mathematical
objects play an explanatory role in science.!? Some mathematical realists (most notably
Baker) seem to argue that a good way to construct a case for (2.b.) is by showing that (2.a.)
holds for scientific explanations (i.e. that mathematics is in some cases indispensable for
scientific explanations). But indispensable in the context of an explanation doesn’t necessarily
mean explanatory, so the realist is still left with the problem of showing that (2.b.) is the case.
This is where the piecemeal approach to thinking about explanation can enter the scene.

! This is only a presentation of what I take to be the idea behind this indispensability argument for mathematical
realism and it should not be confused with the actual argument as it can be found in Baker (2005).

12 For EIA to work, these two aspects need to overlap in some cases, i.e. it has to be the case that there are
mathematical objects whose role is both indispensable and explanatory.



The classical literature on scientific explanation (i.e. the work of Hempel, Friedman,
Salmon, Kitcher, etc.) doesn’t address the problem of mathematical explanations of physical
phenomena. So trying to find something that can help with showing that (2.b.) is the case by
looking in that direction is not a good strategy. Also, taking a general approach to explanation
is unlikely to be of much help because the idea behind such an approach is to search for a
comprehensive account of scientific explanation by analysing the scientific explanatory
practices. But constructing a comprehensive account usually requires an artificially created
uniformity, so it implies a certain disregard for potential differences in the scientific
explanatory practice, or a focus on the most common aspects of such a practice. So, it seems
that a good strategy when trying to show that mathematics plays an explanatory part in
science is to adopt a piecemeal approach, i.e. to start from cases of scientific explanation in
which mathematics is apparently used in a different way than it is used in regular scientific
explanations and offer an account for the way such explanations succeed in explaining.

To sum up, the idea in this section was to point out that the problem of the existence of
mathematical explanations of physical phenomena is of central importance for the debate in
the philosophy of mathematics between realists and nominalists and to show that a good
strategy for dealing with this problem, from the perspective of the mathematical realist, can be
to adopt a piecemeal approach to thinking about explanation.

3.2. Non-causal scientific explanations

A different discussion for which the piecemeal approach is of central importance is that in the
general philosophy of science about the existence of non-causal scientific explanations.

After overcoming the initial qualms about accepting that something which makes
heavy use of idealisations and fictionalisations — and so seems far from satisfying the usual
requirement that for something to be an explanation, the explanans has to be true — can have
explanatory worth, philosophers started recently to be interested in developing accounts about
what makes a scientific model explanatory. This interest grew so much that we can almost
speak nowadays about a reorientation of the philosophical focus towards model-based
approaches to scientific explanation (e.g. Batterman 2002; Craver 2006; Kaplan and Craver
2011; Bokulich 2008; Rice 2012, 2015; Batterman and Rice 2014; Irvine 2015). An important
contribution to this change of heart about model explanations was made by Cartwright’s
(1983) and Teller’s (2001) objections to the idea that there are true laws of nature (which gave
a powerful blow to the Hempelian DN-model of explanation and to all the other scientific
laws involving accounts).

So, one of the main problems in recent philosophical discussion about scientific
explanation is no longer whether scientific models can explain, but what kind of explanations
can they offer. The mechanistic accounts seem to offer the most well received answer to this
problem. According to Kaplan’s and Craver’s version of such an account, in order to “explain
the phenomenon, the model must ... reveal the causal structure of the mechanism” (Kaplan
and Craver 2011, p. 605), i.e. it must satisfy the following model-to-mechanism-mapping
requirement:

“(3M) In successful explanatory models ... (a) the variables in the model
correspond to components, activities, properties, and organizational features
of the target mechanism that produces, maintains, or underlies the
phenomenon, and (b) the (perhaps mathematical) dependencies posited
among these variables in the model correspond to the (perhaps quantifiable)
causal relations among the components of the target mechanism” (Kaplan and
Craver 2011, p. 611).



Not everybody agrees though that the only way models gain their explanatory power is
by representing mechanistic organization and causal relations. There are philosophers (most
notably Batterman (2002, 2009, and 2010)) who consider that idealisations and abstractions
can also play a role in scientific explanation because, in some cases, they are “explanatorily
ineliminable. That is to say ... the full understanding of certain phenomena cannot be obtained
through a completely detailed, nonidealized representation” (Batterman 2009, p. 428). This
and similar considerations made the debate gravitate around the following question: are there
non-causal scientific explanations? There are several positive answers to this question in the
literature. Between the contenders for the title of non-causal explanation, the most discussed
are equilibrium explanations (Sober 1983), optimality explanations (Rice 2012, 2015),
structural explanations (Bokulich 2011) and mathematical explanations (Nerlich 1994,
Batterman 2010, Huneman 2010, Lange 2013, Pincock 2015).

Why should this be of any interest to us in the context of the present discussion?
Because in all the papers that argue for non-causal explanations listed above (except Bokulich
2011), the piecemeal approach to thinking about explanation plays an essential role in the
argumentative strategy. Take, for example, Rice (2015). What Rice wants to do in this paper
is to argue against the causal-mechanical account of model explanation. His strategy for doing
that is to show that scientists often use in order to provide explanations a type of optimality
models that instead of representing the causal structure of their target system(s), work by
eliminating or distorting many of its causally relevant details. Rice explicitly disavows the
traditional a priori approach to explanation and he is far from interested in a comprehensive
account, so he adopts a piecemeal approach which, in this case, amounts to starting first by
analysing “‘scientists’ use of optimality models independent of any particular theory of
explanation and then investigate how these cases fit with our current philosophical theories of
explanation” (p. 591).

4. Mathematical explanation: some examples

The discussion in the previous section was meant to emphasise two things: the importance of
the problem of mathematical explanations of physical phenomena for two recent
philosophical debates and the relevance of the piecemeal approach for dealing with this
problem. What I want to do next (sections 5 and 6) is to analyse two different papers that use
the piecemeal approach to develop accounts for mathematical explanations and see if they
manage to make significant contributions to two important disputes in recent philosophy.

Before I do that, since the main idea behind the piecemeal approach to explanation is
to start from the way scientists provide explanatory informations in different contexts, it is
important to see if there are any cases in which mathematics was used to explain physical
phenomena, i.e. if we can find in science examples of mathematical explanations. As even a
quick survey of the literature on this topic revels, finding such examples doesn’t appear to
represent a problem — it seems that scientists make use of mathematics to explain physical
phenomena even in unlikely disciplines such as biology.

Among the most discussed examples in the literature we can find the following ones: '3

The honeycomb — biologists explain the fact that bees build their honeycombs as hexagonal
grids with the help of the following mathematical theorem: a hexagonal grid is the optimal
way to divide the Euclidean plane into regions of equal area with least total perimeter. The

13 Besides these, there are other cases that are either non-scientific and therefore irrelevant if one wants to use
EIA (e.g. the sticks example (Lipton 2011, p. 51), the division of toys example (Lange 2013, p. 488), the trefoil
knot example (Lange 2013, pp. 489-90)), or are highly controversial (e.g. the antipodal weather patterns example
(Colyvan 2001, p. 49)).



explanation goes as follows: in order to win the natural selection fight, bees had to choose the
most economic (in terms of labour and amount of wax used) way to build their honeycombs.
As it is clear from the mathematical theorem presented above, from all the possible shapes,
the hexagonal grid is the most economical in the relevant respects. This is why the
honeycombs have that boggling shape (Lyon and Colyvan 2008, p. 228).

The cicadas — biologists explain the fact that the North American periodical cicadas (fly like
insects that spend many years underground in larval form) have life-cycle period lengths that
are prime, with the help of the following mathematical theorem: the lowest common multiple
of two numbers is maximal when the numbers are co-prime. The structure of the explanation
is this:

(1) Having a life-cycle period which minimizes intersection with

other (nearby/ lower) periods is evolutionarily advantageous.

[biological ‘law’]

(2) Prime periods minimize intersection (compared to non-prime

periods).

[number theoretic theorem]

(3) Hence organisms with periodic life-cycles are likely to evolve

periods that are prime.

[‘mixed’ biological/mathematical law] (Baker 2005, p. 233).

The bridges of Koénigsberg — why no one can ever succeed in crossing each bridge in
Konigsberg only once and then return to the starting point. The explanandum here is the
impossibility of finding (no matter how many times one tries) a way to cross only once each
of the seven bridges and then return to the starting place. The explanation is that such a
crossing is impossible because the geometrical graph of the bridges cannot have an Euler trail,
i.e. a closed path that includes each edge of the graph only once. For such a trail to be
possible, the graph must not include any vertex of odd degree or more than two such
vertices,'* because every time we get to a vertex we must be able to leave it using a different
edge. But in the graph of the bridges, all the vertices are touched by an odd number of
edges.!’

5. Lange’s and Pincock’s accounts of mathematical explanation and mathematical realism

Of course, presenting such examples, as the ones discussed in the previous section, does little
to convince one that there is indeed such a thing as mathematical explanations of physical
phenomena. So, in order to tip the balance in their favour, the mathematical realists, for
example, have to do more than point to one, some or all the examples listed above (or to
similar ones). What more do the advocates of mathematical explanations need to do in order
to construct a convincing case? In Alan Baker’s opinion, what is needed is a philosophical
account for the type of explanatory relation involved in such examples:

“A striking feature of this recent literature is the almost total absence of any
analysis of just what kind of explanatory relation is involved in a typical MES
[mathematical explanation in science]. This is a puzzling lacuna since the
availability of an analysis of this sort would enable the discussion to move

The degree of a vertex or its valence is the number of edges touching it.
15 One of the vertices is touched by five edges and the other by three.



beyond the trading of intuitions about individual candidate cases of MES”
(Baker 2012, p. 3-4).!6

Lange (2013) and Pincock (2015) use a piecemeal approach to explanation to obtain
such accounts. My aim in the rest of this section is to argue that, despite what may seem as
evidence to the contrary,!” Lange’s and Pincock’s accounts of what makes some mathematics
using scientific explanations distinctively mathematical are useless in the context of the recent
debate in the philosophy of mathematics between the realists and nominalists.

In Lange’s view, a “distinctively mathematical explanation” is one that works by
exploiting “what the world is like as a matter of mathematical necessity” (Lange 2013, p.
496). In order to get to his account, Lange uses a piecemeal approach to explanation. He starts
his discussion (step 1) by presenting some examples of what he considers to be “scientific
explanations that are mathematical in a way that intuitively differs profoundly from ordinary
scientific explanations employing mathematics” (p. 486, my emphasis). After that he
discusses what sets apart these explanations (steps 2 and 3). What characterizes such cases is
not the fact that they fail to cite the explanandum’s cause, because some of them do specify
such causes (pp. 493, 495). It is also not the fact that they incorporate a mathematical
explanation in mathematics, as Steiner (1978) suggested, because none of Lange’s examples
fit this account. And it is not even the fact that they are “carried out by essential appeal to
mathematical facts” (Mancosu as quoted in Lange (2013, p. 491)) because this criterion is not
restrictive enough in Lange’s opinion. In the end (step 4) Lange offers an account of how
these explanations work: a distinctively mathematical explanation works by “showing how
the explanandum arises from the framework that any possible causal structure must inhabit,
where the ‘possible’ causal structures extend well beyond those that are logically consistent
with all of the actual natural laws there happen to be” (p. 505).

Take, for example, the case of crossing the Konigsberg bridges. In Lange’s opinion,
unlike the usual scientific explanations, this explanation doesn’t get its explanatory power
from revealing something about the world’s causal structure. What it does is to show that
crossing the bridges in that particular way is mathematically impossible, and the fact that it is
so explains why no trial to find such a path will ever succeed. So, the explanation is
mathematical because it "exploits what the world is like as a matter of mathematical
necessity" (Lange 2013, p. 496).

Pincock (2015) uses a similar piecemeal approach as Lange (he dubs it the case-driven
approach) but he comes up with a very different account. In Pincock’s view, a mathematical
explanation is an abstract explanation. Since he favours an ontic conception of explanation, he
takes abstract explanations as those explanations that describe an abstract dependence relation
which obtains in the world and is completely objective. He starts by discussing Almgren and
Taylor’s alleged explanation of Plateau’s laws for soap-film surfaces and bubbles — “a case
that has been identified as an explanation by expert practitioners” (Pincock 2015, p. 858, my
emphasis). In this case, we start by showing how soap films can be taken as instances of
almost minimal sets and then prove that this requires the soap films to obey Plateau’s laws.
“This explained why Plateau’s laws held for actual soap films and soap bubbles due to the

16 For a similar remark, see Molinini (2016, p. 418).

17 Lange (2013) and Pincock (2015) both make it clear that the ontological dispute in the philosophy of
mathematics is irrelevant for their discussion. So, why am I assessing their contributions to it? For two reasons.
First of all, the mathematical realists can try nonetheless to use these results to support their position by
reasoning along the lines sketched here. Second of all, our interest in not with the actual contribution, but is with
bringing to light some of the problems faced by the piecemeal approach and I believe that a good way to do this
is by looking at these papers from the perspective of this dispute in the philosophy of mathematics. One can still
wonder whether it isn’t more appropriate to show what is wrong with a case of a piecemeal approach actually
aimed at contributing to this dispute. From what I know, there is no such thing to be found in the literature.
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intimate connection between these physical systems and the mathematical model” (p. 865).
The next step is to account for this “intimate connection.” Pincock takes it to be an abstract
dependence relation that is explanatory pretty much in the same way as a causal dependence
relation.

Does this help in any way the mathematical realists in their debate with the
nominalists? Apparently it does. As we said above (section 3./.), the main idea behind the
new indispensability argument is that it is possible to argue for the existence of mathematical
entities by using the same type of argument that the scientific realists are using in favour of
their position. All is needed for that is to show that there are scientific explanations in which
mathematics plays an indispensably explanatory role. One way to do this is to argue that, in
some cases of scientific explanations using mathematics, the mathematical part is
indispensably explanatory because removing it (or trying to replace it) destroys the
explanations. There is a problem with this argumentative strategy, though: it leaves open for
the nominalist the possibility to reply that, even though mathematics is indeed indispensable
in the cases discussed, it doesn’t play an explanatory role, but it has other function. An
apparently better strategy — one that seems to get rid of such problems — is to give an account
for the explanatory relation that (allegedly) holds between mathematics and the physical
phenomenon in cases as the ones presented above.'® But this is exactly what Lange and
Pincock did in their papers. So, yes, we can consider that Lange (2013) and Pincock (2015)
make a significant contribution to the recent ontological dispute in the philosophy of
mathematics by providing an important support to the mathematical realists.

There is a big problem with this way of assessing the importance of Lange (2013) and
Pincock (2015) for the recent ontological dispute in the philosophy of mathematics, namely
that it overlooks a key aspect of this debate: the complete lack of agreement about the cases
that are discussed. If we take this into consideration, we can show that Lange’s and Pincock’s
approaches are either question begging or useless, depending on the type of disagreement one
is concerned with.

We can distinguish between two types of disagreement common in the recent
philosophical discussion of the problem of mathematical explanations of physical phenomena.
First of all, there is the disagreement between realists and nominalists about whether we are
dealing or not, in the cases under discussion, with examples of scientific explanations and, if
this is the case, whether mathematics plays indeed a genuinely explanatory part in them — the
nominalists typically argue that the examples provided by the mathematical realists are not
cases of mathematical scientific explanations. Second of all, there is disagreement among the
advocates of mathematical explanation about which examples are special and which are just
regular scientific explanations. In this case there is agreement about the existence of a class of
special mathematics using scientific explanations, but not about the examples that belong to
that class. In the first case there is no agreement about the existence of mathematical
explanations; in the second case we have such an agreement, but we lack consensus about
what characteristic features these explanations have.

Using a piecemeal strategy to account for mathematical explanations in a context in
which there is disagreement of the first type amounts to begging the question against the
nominalist. There are many philosophers who argue that there is no such thing as
mathematical explanations of physical phenomena (e.g. Melia (2002), Daly and Langford
(2009), Saatsi (2011)). So, in order to help the mathematical realist in this context, what is
needed is a way to show that the examples presented are indeed cases of scientific explanation
and that mathematics plays a genuinely explanatory part in them. But the piecemeal approach
completely bypasses these problems. In this approach to thinking about explanation, the

18 See also footnote 7 above.
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examples discussed are somehow taken (Lange appeals to intuition for this and Pincock to the
testimony of expert practitioners) from the start as special mathematics employing cases of
scientific explanations, i.e. the starting point is exactly what the mathematical realists need to
show to be the case in order to answer to the nominalists. So, if one intends to use Lange’s
and Pincock’s accounts in this dispute all she will manage to do is to beg the question against
the nominalist.

Someone can point out that the next steps in a piecemeal approach (especially step
two) are meant to bring to light the characteristic features of the cases under discussion. So, it
should, in principle, count as showing that these cases are not only apparently different, i.e.
that we are indeed dealing with special cases of mathematics using scientific explanations
(Lange (2013), for example, takes his analysis to show how the examples presented “differ
from ordinary scientific explanations that use mathematics and how do they succeed in
explaining” (p. 492)). Also, in Pincock (2015) the main task is that of determining what
features can be taken to characterize explanations such as Almgren’s and Tylor’s). The
problem is that this is helpful only to the unlikely extent that the nominalists share Lange’s
intuitions about the cases or agree with Pincock’s reliance on and interpretation of what the
expert practitioners are saying. Otherwise, all that their analysis can be taken to do is to show
what characteristic features some cases of mathematics using scientific (non-explanatory)
practice have, because there is no independent reason for taking such features as explanatory
other than the fact that we decided/agreed from the start that we are dealing with genuine
cases of scientific explanations.

The piecemeal strategy is not of much help for dealing with the problem of
mathematical explanations even if used in a context in which there is agreement about the
existence of a class of special mathematics using scientific explanations, because here too we
can find disagreement about the examples — which should and which shouldn’t be included in
this class. Baker (2005), for example, is not happy with Colyvan’s (2001) meteorological
example, and Lange (2013) dismisses both Baker’s cicada example and Lyon and Colyvan’s
(2008) honeycomb example. If there is no agreement about the starting cases, there will be no
agreement about the account that is obtained with the help of the piecemeal approach and so
such an account will be useless — it will not convince the nominalists and it will not be taken
seriously by the other advocates of mathematical explanation.

6. Are there non-causal scientific explanations?

Lange (2013) and Pincock (2015) both provide accounts for what makes mathematical
explanations different and how they succeed in explaining, but, for the reasons discussed in
the previous section, these accounts are useless in the context of the recent explanation related
ontological debate in the philosophy of mathematics. What about the debate over the
existence of non-causal scientific explanations? The problem of mathematical explanations is
of central importance for this debate also. Is Lange’s and Pincock’s way of dealing with it
more suited for this context? I believe it is, because in this context agreement over the cases
or the lack of it is no longer a concern. All that those who are discontent with the causal
account need to do in order to challenge it is to construct a plausible case for considering that
there are non-causal explanations and then let the burden of proof fall on whoever doesn’t
agree with it.!” The most straightforward way to do this is by using a piecemeal approach and
reason along the following lines:

1% Someone can wonder at this point why such a strategy is good here, but something similar cannot work in the
context of the ontological debate discussed above, i.e. why the mathematical realists cannot use the piecemeal
approach and then let the burden of proof fall on the nominalists. As I see it, it all depends on one’s aim. If the
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1. The most popular account of scientific explanation take it as being essentially linked
with causal relations.

2. But there are examples in which physical phenomena is explained some other way
than by pointing to the chain of events that led up to it.

3. Therefore, in such cases other relations than the causal ones have to be taken as
explanatorily relevant.?’

But this is, in part, exactly what Lange and Pincock are doing in their papers. So,
unlike the ontological dispute in the philosophy of mathematics, this is a far more appropriate
context against which to try to understand and assess their contributions.

The question that will preoccupy us in the rest of this section is whether Lange and
Pincock manage to construct convincing cases for thinking that there are non-causal
mathematical explanations. My aim is to argue that they fail to do this. In order to dismiss a
piecemeal case for non-causal explanations, one has to argue that the examples presented in
support of this case are not genuine scientific explanations, but, obviously, without resorting
for this to the fact that they don’t work by describing causal relations.

Let’s start with Lange (2013). In his case it can be argued that the examples he
discusses are not of explanations, but of justifications. This is problematic for several reasons.
First of all, it casts great doubt on the adequacy of the explanation identification tool used by
Lange. Also, his account becomes dubious: he claims that the examples he analyses are cases
of scientific explanation that are mathematical in a different way than ordinary mathematics
using scientific explanations; but since they are in fact something else, there is no wonder that
he finds that there is a fundamental difference between them and “other” scientific
explanations. The worst part is that it doesn’t seem to be a way out of this situation that
doesn’t make the approach circular.

Lange gives several examples of what he considers to be distinctively mathematical
scientific explanations. Between these, the division of toys, the trefoil knot and the bridges in
Konigsberg examples. The problem is that, in each of these examples, the justification for
believing that things stand in that particular way comes after and as a consequence of the
mathematical reasoning. How do we know that the bridges in Konigsberg cannot be crossed
in that particular way, or that the trefoil knot cannot be untied or that one cannot distribute
evenly five toys among three children? The mathematical facts in these examples are not used
to answer a “why is x the case?” type of question, but a “why should we believe that x is the
case?” question. What Euler did, for example, in the bridges of Konigsberg case, was not to
give an explanation but to provide a powerful justification for believing that it is impossible to
find a route that would allow one to cross all the bridges only once. That this is so was not
known independently before Euler’s treatment of the problem — it was at most suspected. The
same goes for other similar cases: we don’t explain why a trefoil knot cannot be untied by
showing that it is distinct from the unknot, but we justify the belief in this impossibility; and
by pointing to the mathematical fact that twenty-three cannot be divided evenly by three we
don’t explain why a particular attempt will fail but we give reasons for believing that it will
fail. So, what Lange takes as being distinctively mathematical explanations are actually
mathematical justifications. But then he chooses a bad starting point in his piecemeal
approach to the problem of mathematical explanations and this compromises his entire

aim is to tip the scales in favor of one of the sides in a debate, then trying to do this by assuming from the start
the very thing around which the debate gravitates can only end in question begging. If, on the other hand, the aim
is only to challenge a preexistent account by coming up with cases that (apparently) are not accommodated by it,
as [ take it to be the case with the second debate, then it makes sense to appeal to a shift of burden of proof kind
of strategy.

20 This is very similar with the way Batterman and Rice (2014) present their argumentative strategy against the
“common features account of what makes a model explanatory” (Batterman and Rice 2014, p. 350).
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account. This may not make a lot of sense to someone who adopts something resembling
Hempel’s symmetry thesis: every explanation is a potential prediction?! and every prediction
is a potential explanation (Hempel 1965, p. 234 and p. 367). Of course, we can find in the
literature plenty reasons for rejecting such a thesis??> and even Hempel expresses doubts about
the second part (p. 367). As Kim (1964) argues, “there are important conceptual differences
between explanation on the one hand and predictive and retrodictive arguments on the other,
and these differences have some interesting consequences” (p. 361). Between them, we can
count the fact that — against what is stated in the first part of the symmetry thesis — there are
explanations that lack predictive power (i.e. explanations of phenomena that could not have
been predicted before they actually occurred) like e.g. the explanation for earthquakes. There
are also problems with the second part of the thesis. This is usually exemplified in the
literature with cases such as the flagpole, the barometer and the tides (Salmon 1989, p. 47).
So, pace Hempel, justifications and explanations are not always different sides of the same
coin. This doesn’t mean, though, that there are no justifications that can be potential
explanations. So, it may seem that there is nothing wrong with Lange’s account — if it can be
shown that the cases he discusses belong to this category. In order to do this, he needs to show
that the information used in these cases can also be explanatorily relevant. But this doesn’t
work at all well with a piecemeal approach (remember that in such an approach the task is to
show how the cases discussed succeed in explaining, not that they are successful in this regard
(see section 2)). This, first of all, because, for a piecemeal approach to make sense, the
starting cases have to unequivocally be cases of explanations, otherwise the account
developed would be unacceptable (it makes no sense to develop an account about what
characterizes e.g. a certain type of plant when we have no idea whether the thing under
consideration is indeed a plant). Now, the worst thing one can do in this situation is to try to
use the account arrived at to remove the doubts about the starting cases. This would, of
course, make the approach circular. So, I see no way for Lange to do what is needed to save
his account — i.e. show that the starting cases are cases of justification that can be potential
explanations.

There is something else problematic with Lange’s account.”> As we said above, in
Lange’s view a distinctively mathematical explanation works by showing that the fact to be
explained is more than physically necessary, it is mathematically so. But is showing that a
phenomenon is more than physically necessary equivalent to providing an explanation for it?
Before attempting an answer, I think it is instructive to look for a second at another problem:
when does something stand in need for an explanation? This topic has drawn very little
attention, so there are not many accounts in the literature; but many philosophers?* seem to
adopt a sort of surprise account of the need for explanation: something is in need of an
explanation if it is surprising,” i.e. if we have reasons to believe that it would not be the
case.?® Now, since in the case of necessary truths there are no reasons for believing that things
could have been otherwise, they are not surprising and so — if we accept this view about the

21 A prediction can be taken as an ex-ante justification (see Schurz (1995, p. 438).

22 See for example the discussion in Rescher (1958), Kim (1964), Salmon (1989) and Schurz (1995).

23 What follows should not be taken as a further argument against Lange’s account, but only as an attempt to
show that there are strong reasons to consider it strange.

24 For example Peirce (1908/1968), Hempel (1965), Laudan (1977), Berkovski (2002), Baker (2011), and
Schupbach and Sprenger (2011).

25 See for example Schupbach and Sprenger (2011, p. 108): “a hypothesis offers a powerful explanation of a
proposition, in this sense, to the extent that it makes that proposition less surprising.”

26 Hempel, for example, says that “explanation-seeking questions of the standard type ‘Why is it the case that p?’
are often, though by no means invariably, prompted by the belief that p would not be the case — a belief which,
again, may seem to the questioner to be more or less strongly supported by certain other empirical assumptions
which he accepts as being true.” (Hempel 1965, p. 429)
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need for explanation — they are not in need of explanation. Starting from here, we can give a
negative answer to our question, because showing that something happens or cannot happen
as a matter of mathematical necessity is better taken as a dismissal of the search for an
explanation rather than as a way of providing an explanation. This means that Lange’s
account — granted we adopt a surprise account of the need for explanation (or something
related to it)?’ — instead of being an account about how distinctively mathematical
explanations work, can be better taken as a strategy for dismissing the need for explanation in
some cases.

In conclusion, what Lange does is this: he misidentifies some examples of
mathematical justifications as cases of mathematical explanation and then he proceeds to give
an account of what makes such cases distinctively mathematical scientific explanations which
for many may look more as a way of showing that in such cases there is no need for
explanation.

sk

We said above that one way to argue against a piecemeal case for non-causal
explanations is to try to show that the examples used to support such a case are not genuine
scientific explanations. But what can we do if someone adopts a sort of rigid attitude towards
these examples, i.e. takes any attempt at showing that these examples are not scientific
explanations as a violation of the piecemeal methodology? This is exactly what Pincock does.
The case study discussed in Pincock (2015) is that of the alleged explanation for why
Plateau’s laws hold for actual soap films/bubbles provided by Almgren theory of (M, €, §)-
minimal sets (including Taylor’s proof that these sets satisfy Plateau’s laws). As Pincock
draws the attention repeatedly, there is not much that one can say against this case, because
trying to reject that we are dealing with a genuine explanation amounts to a violation of the
“case-driven methodology. It is expert practitioners who should guide our judgements on
cases and influence our philosophical theory of explanation” (p. 870).

There is a way, though, to question the example while still playing by the rules of
Pincock’s case-driven game, namely by arguing that the ‘expert practitioners’ themselves are
not really taking such a case to be an example of explanation. I believe we can show that this
is the case with the example discussed by Pincock. The explanandum in this example is
supposed to be the fact that the soap film/bubble systems obey Plateau’s laws. What would
explain such a fact? In Pincock’s opinion this fact is explained by the theory of (M, €, §)-
minimal sets as developed by Almgren and Taylor. The alleged explanation can be
decomposed into three parts:?® a definition of a mathematical analogue for soap films and
soap bubbles; a derivation of Plateau’s laws about the way surfaces meet, starting from the
assumption that we deal with smooth surfaces with a finite total area; a proof that every soap-
film-like or soap-bubble-like geometric configuration is composed of smooth surfaces whose
total area is finite. This does seem to accurately represent the structure of Almgren and Taylor
1976 paper, except for one crucial detail. In their paper, Almgren and Taylor’s aim to
“demonstrate how a few observations concerning the way in which soap films and soap
bubbles are free to change to decrease their energy form the basis of a mathematical model of
soap-film-like and soap-bubble-like configurations of surfaces” and so, to show that “the area-
minimizing principle alone is sufficient to account for the overall geometry of soap films and
soap bubbles” (Almgren and Taylor 1976, p. 93). They do not undertake the task of
explaining why soap film/bubble systems obey Plateau’s laws.

27 This account has been criticised recently in Grimm (2008) and Wong and Yudell (2015), but the alternative
accounts proposed in these papers are far from making things better for Lange. For lack of space I will refrain
from entering into details here.

28 Pincock (2015, p. 861) attributes this way of presenting the ‘explanation’ to Almgren and Taylor (1976).
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According to a physical principle governing the behaviour of soap films and soap
bubbles, a physical system tends towards the state of lowest energy, so it preserves a certain
configuration only if it cannot easily alter it to one with less energy. In the case of soap
films/bubbles, this principle is related to a physical system’s tendency to minimize its surface
area. The surface energy (tension) of a soap bubble is the result of the unbalance of the
attractive forces between molecules at the boundary of the surface of the liquid. In the
absence of gravity and differences in air pressure, the existence of these unbalanced forces
produces an interesting effect: a liquid’s surface turns into (sort of) an elastic membrane that
tends to minimize its area and so its surface energy. Almgren and Taylor capture this area-
minimizing principle in mathematical terms this way: a geometric arrangement of two-
dimensional surfaces attached to a frame or enclosing one or more regions of space is soap-
film-like, respectively soap-bubble-like if it cannot be forced to have a smaller area by any
small deformation that leaves the frame fixed and/or that doesn’t alter a region’s volume (p.
85). In order to show that the mathematical model created with the help of this principle
accurately represents the manner in which actual soap films/bubbles are formed, two things
have to be shown: that given a frame or the volume of some region of space being specified,
there are soap-film-like and soap-bubble-like configurations of mathematical surfaces
spanning that frame or enclosing that region, and, secondly, that any such configuration of
surfaces conforms exactly to the Plateau’s laws. Almgren and Taylor managed to prove that
this is the case, and this is what they discuss in their 1976 paper.

As it is obvious — I hope — from this short presentation, this has nothing to do with
explaining why the actual physical systems obey Plateau’s laws. Nowhere in their paper
Almgren and Taylor claim otherwise. Taylor’s proof that for two-dimensional (M, €, §)-
minimal surfaces in R’ there are only two possible kinds of singularities (i.e. those discovered
experimentally by Plateau) is taken as showing only that these surfaces provide a good
mathematical model for soap films and soap bubbles and not that it explains something about
these physical systems.?> Why would Pincock claim otherwise?

Actually, Pincock doesn’t credit Almgren and Taylor with taking their mathematical
theory as explaining something about the actual soap films and soap bubbles, but gives the
following quote from Frank Morgan:

“Physical surfaces such as soap films often consist of pieces of
surface meeting along whole singular curves. These curves, although
not part of the given boundary, unfortunately count as boundary for
rectifiable currents. Explaining the structure of soap films required a
new theory of (M, €, §)-minimal sets developed by F. Almgren and J.
Taylor” (Morgan 1996, p. 376, my emphasis).

I believe that taking Morgan’s claim at face value is a mistake. Morgan asserts this in
the context of his discussion of the problem of finding an inclusive definition for a general
surface in R®. The best contender for providing such a definition is the theory of rectifiable
currents.’ There is a problem, though: rectifiable currents do not allow surfaces that are non-
orientable, but many surfaces, such as the Mobius strip, are not oriented. Also, as Morgan

2 Pincock has a different opinion. According to him, “Taylor’s purely mathematical proof established that the
almost minimal sets satisfy Plateau’s three laws. This explained why Plateau’s laws held for actual soap films
and soap bubbles due to the intimate connection between these physical systems and the mathematical model.”
(2015, p. 865) But Taylor doesn’t say anything like this. A philosopher can, of course, take the relation of
instantiation as an explanatory relation and argue that a model, due to its “intimate connection” with the modeled
physical system, explains something about it. But that is arguably far from what a mathematician would say and
is definitely not something that Almgren and Taylor are saying.

30 A rectifiable current is a current (i.e. a linear functional on differential forms) associated to a rectifiable set.
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remarks in the above quote, the curves along which surfaces such as soap films meet count as
boundary for rectifiable currents. In order to tackle these issues, new theories have been
developed. Among them, the one that seems to best model the kind of surfaces which arise in
soap films and soap bubbles is Almgren and Taylor theory of (M, €, §)-minimal sets. I take
this to be the meaning of Morgan’s claim. By “explaining” he means constructing a model. If
we look carefully at the broader context, we realize that it wouldn’t make sense for him to say
that the theory of (M, €, §)-minimal sets is required for explaining something about the actual
physical systems.

Remember that the problem here is that of determining if the expert practitioners
explicitly take this case as an explanation for why soap films/bubbles obey Plateau’s laws.
The point in doing this is that of finding out if it is possible to apply a case-driven accounting
strategy to it. As I argued above, neither Almgren and Taylor, nor Morgan take the theory of
(M, €, 6)-minimal sets as explaining something about soap films or soap bubbles, so Pincock
uses a bad starting point for his case-driven accounting methodology and this compromises
his entire account.

7. Problems with the piecemeal approach

The piecemeal approach is a relatively new but fairly widespread strategy for dealing with
explanation related philosophical topics. But how good is it? Until now I tried to make a little
bit clearer what this approach amounts to (section 2) and how important it is (and can be) in
recent philosophy (section 3). I also drew attention to how it can go wrong if it is misused.
We have seen (section J) that if one tries to use such an approach in the context of a dispute in
which there is strong disagreement about the explanatory worth of the cases discussed — as it
happens in the recent ontological dispute in the philosophy of mathematics — it will
degenerate into question begging. But, even when used in a more appropriate context, this
approach is not problems free (section 6). The most important problem plaguing such an
approach has to do with the correct pre-theoretic identification of something as an explanation
(we have seen that both Lange and Pincock used bad starting cases in their piecemeal
approaches to the problem of mathematical explanations). As we said above, in a piecemeal
approach we start from a case that has been somehow identified as an explanation and then
we proceed to bringing to light its characteristic features and to constructing an account for
the type of explanation it exemplifies. But the characteristic features of such a case have to do
with its explanatory power only to the extent that the case is a genuine example of scientific
explanation, and the account constructed at the end is an account of how such explanations
succeed in explaining to the same extent. So everything depends in such an approach on
managing to correctly identify as explanatory those aspects of the scientific practice that are
indeed so. The crucial question that anyone who wants to use a piecemeal approach to
thinking about explanation has to answer then is this: what can be reliably used to identify
something as an explanation? This is not a trivial task! My aim here is to analyse three
answers to it and show why they are not good. We already encountered two of these in our
discussion of Lange’s and Pincock’s papers: intuition and the testimony of expert
practitioners. Beside them, I will discuss one other contender that, even though not used (as
far as I know) in the literature, is important because of its relation with the testimony of expert
practitioners: the feeling of understanding.

7.1. Intuition

Can we rely on intuition for distinguishing between the genuinely explanatory and the other
parts of the scientific practice? Lange (2013) reserves a special place for intuition in his
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endeavour to characterize the distinctively mathematical scientific explanations. Also, a closer
look at the literature reveals that intuition is indeed taken by many to play an important (even
if only backstage) role in guiding the (front stage) discussion on explanation. It is usually
considered, for example, that the DN-model of explanation failed because it did not “capture
the intuitive relation of explanatory relevance” (Hitchcock 1995, p. 304, my emphasis) and so
it allows for “derivations which are intuitively non-explanatory to meet the conditions of the
model” (Kitcher 1981, p. 508, my emphasis). And so we can say that an important (if not the
main) task on the agenda of many philosophers preoccupied with accounting for scientific
explanation seems to be that of capturing the intuitively explanatory judgments encountered
in a scientific context.3! This suggests that many philosophers may agree with the following
thesis:

I: something is an explanation or has explanatory value if it intuitively seems
this way.

There are obvious problems with this thesis, the most important one for our discussion
having to do with the fact that intuition is notoriously unreliable. In our discussion this
surfaced in section 6, where we have seen that Lange’s reliance on intuition in delimiting
from ordinary scientific explanations that use mathematics those examples of scientific
explanation that are distinctively mathematical made him take some cases of mathematical
justification as examples of mathematical explanation. Another problem has to do with the
fact that people usually have conflicting intuitions. We have seen above that there is little
agreement even among the advocates of mathematical explanation about which examples
should be considered genuine cases of mathematical explanation and which not. I believe this
is enough to suggest that relying on intuition when selecting the starting case in a piecemeal
approach to thinking about explanation is a very poor choice.

7.2. The feeling of understanding

Let’s try a different approach and start by attempting to answer the following question: how
do we usually recognize an explanation as such??? Intuitively, this question should be easy to
answer. After all, explanation occupies a central place in our cognitive lives: ever since
childhood all of us are involved in some sort of explanatory practice — always
asking/searching for, judging and producing explanations. So, recognizing such a thing should
not be a difficult matter.>> How do we do it then? It seems that the main identification
resource that is commonly exploited in this context is the close link between explanations and
our sense of understanding.®* So, we normally consider (in a pre-theoretical and

31 The literature is replete with considerations involving intuition so I will refrain from giving any more
references here.

32 What I have in mind here is not the different and much more difficult problem of recognizing a correct or good
explanation.

33 1 am not saying here that because we are all involved in some sort of explanatory practice it should be easy to
describe what we are doing when explaining something or how we manage to understand with the help of an
explanation. I am making the much weaker claim that involvement in a certain practice presupposes being able
to recognize and to play by the rules constituting that practice — in our case, recognizing an explanation when
presented with one and being able to produce one.

34 1 am concerned in this section only with the subjective feeling of understanding and its relation with our pre-
theoretic concept of explanation, not some philosophical objectivist conception about understanding. Someone
can be puzzled by this choice, given the recent enthusiasm for understanding in epistemology and the philosophy
of science. Instead of discussing about the feeling of understanding, wouldn’t it be better to try to see how good
can one of the accounts of understanding found in the literature be for helping us to determine if something is or
not an explanation? I do not believe so, no. Due to space limitations, I cannot enter into much details here for
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commonsensical way) that something is an explanation if it helps us understand some
unexpected, surprising or puzzling fact, event, action etc. Of course, this is enough only when
we want to know if something is an explanation or not; if, on the other hand, we are
concerned with how good a certain explanation is, we focus on the measure of fulfilment of
the goal. We say “I don’t get it, so this is a bad explanation” if we don’t understand the thing
that is meant to be understood with its help, or “I find this explanation better than the other
one” if it helped us understand something better than another explanation did.

Someone can use such considerations to argue that it is the relation with the sense of
understanding that helps us determine (pre-theoretically) if something is or not an explanation
and we rely on the way our feeling of understanding is affected to distinguish between bad,
good, or better explanations. When realizing, for example, that we cannot have an explanation
of the length of a certain tower in terms of its shadow, we are guided by the fact that we
cannot understand the former with the help of the latter. What makes us reject as non-
explanatory a derivation of the length of a pendulum from information about its period and
the value of the acceleration produced by gravity is the fact that such a derivation doesn’t
produce understanding. Such considerations can be taken to lend support to the following
thesis:

SU: something is an explanation or has explanatory value if it helps with making
intelligible some unexpected, surprising or puzzling fact, event, action etc...

Unfortunately, if we attempt to use it this way, the feeling of understanding suffers
from the same kind of problems as intuition does: it is unreliable and subjective.’® Let’s take
them one at a time. First of all, the feeling of understanding is nothing more than the
subjective experience one may have when presented with an explanation, and, as any
respectable subjective experience, it varies from person to person — the information one takes
as contributing to understanding in the context of a particular explanation may lack such a
quality or even be complete gibberish for someone else; so, using importance for
understanding to distinguish between explanatory and non-explanatory scientific practices
would render it hopelessly relative. Secondly, the feeling of understanding cannot be taken as
reliable evidence for good explanations so whatever judgments we make with its help are
worthless.

7.3. The testimony of expert practitioners

What about the testimony of expert practitioners (in our case, the scientists)? Can we rely on
them to sort the explanatory from the rest of scientific practices? Does something like the
following thesis makes sense?

EP: something is an explanation or has explanatory value if the expert
practitioners say so.

There are philosophers who seem to think so. Baker, for example, says:

“I do not know how to demonstrate that the mathematical component
is explanatory. On the other hand, I think it is reasonable to place the

why I believe this to be the case. I will say, though, that it has to do with circularity: between understanding and
explanation there is an intimate connection, so, if one wants to use an account of understanding for determining
if something is an explanation or not, one has to make sure that that account is not derived from an analysis of
some representative cases of explanation (and I am not sure that this is not the case with most of the accounts of
understanding that I know about).

35 See also the discussion in Trout (2002, 2007).
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burden of proof here on the nominalist. The way biologists talk and
write about the cicada case suggests that they do take the
mathematics to be explanatory , and this provides good grounds, at
least prima facie, for adopting this same point of view” (Baker 2009,
p. 625, my emphasis).*

But how reliable are scientists in this respect? Do they have some sort of objective
criteria for distinguishing the explanatory from the rest of scientific practices? If not, relying
on what scientists say in this context amounts to nothing more than relying on their intuitions
or their feeling of understanding. But are their intuitions or their subjective experiences more
reliable? If we cannot find good answers to these questions, and I see no way we can do this,
than Baker’s ‘good grounds’ vanish into thin air.

Let’s elaborate. Prima facie, it seems to be something right in trusting/relying on what
scientists have to say when it comes to discussing about scientific explanations. After all,
being involved in the business of producing scientific explanations gives them more authority
on matters related to such a topic. But how far should we take their authority to stretch? This
is an instance of a more general question: how much knowledge the involvement in a certain
practice gives one about that practice? Not much, I’'m afraid, because, to use Peter Lipton’s
words, “it is one thing to be good at doing something, quite another to understand how it is
done or why it is done so well” (Lipton 2004, p. 1). Being involved in a certain practice
doesn’t give one a privileged knowledge about that practice. So, the fact that scientists are
experts at producing scientific explanations doesn’t make them also experts in knowing what
a scientific explanation is, what kind of explanatory relation is involved in a certain scientific
explanation or what part is doing the explanatory job. Their expertise stops at producing
scientific explanations. So, from the perspective of a philosophical concern with explanation,
their opinions on it should not be of much value. To see why, let’s look at the following quote
from Steven Weinberg:

... “it 1s a tricky business to say exactly what one is doing when one
answers such a question [a why question]. Fortunately, it is not really
necessary. Scientific explanation is a mode of behavior that gives us
pleasure, like love or art. The best way to understand the nature of
scientific explanation is to experience the peculiar zing that you get
when someone (preferably yourself) has succeeded in actually
explaining something” (Weinberg 1994, p. 26, my emphasis).

What Weinberg means here by the “peculiar zing” that one experiences when
presented with or discovering an explanation is nothing more than the feeling of
understanding we discussed about above. So, if we take his words as representative for how
scientists in general think about explanation, and I see no reason why not do it, the
explanation identification tool used in science is not that different from what lay people
commonly use in everyday life — the only difference has to do with what the feeling of
understanding is susceptible to be affected by. But then, looking at what “expert practitioners”
have to say and permitting them to influence our philosophical theories of explanation
amounts to nothing more than relying on the subjective, vague and misleading feeling of
understanding as it manifest itself in a scientific context. Everything we have said in the
previous sections applies here as well.

8. Conclusion

36 See also Pincock (2015, p. 870).
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Many philosophers share nowadays the conviction that our view about scientific explanation
can become more complex if we look more carefully at the details of the actual scientific
explanatory practices. This makes them repudiate the detached from the scientific explanatory
practice armchair approach to this topic, and also the general approach that does take into
consideration this practice but disregards its complexity in order to search for a
comprehensive account. Instead of these, many of them prefer a piecemeal approach to
thinking about explanation. In this approach, the idea is to look more closely at the way
scientists are producing explanations in different contexts — at the type of information they are
using for this and at the way they are using it — in order to provide a more adequate view of
such a practice. A closer look is not without its problems though. If when looking from afar at
something one runs into the danger of missing its complexity, when taking a very close look
one risks to miss entirely what she is looking at. In order to avoid this, what the closer look
needs is something to keep it on the right track. In our case, what the piecemeal approach
needs is a reliable pre-theoretic way to distinguish between the genuinely explanatory and the
other parts of the scientific practice. Without this, it risks to replace the general approach’s
diversity blurring point of view with a diversity booming one (i.e. a point of view that
presents as explanatory parts of the scientific practice that are not so). I tried to show this here
by analysing Lange’s (2013) and Pincock’s (2015) piecemeal approaches to the problem of
mathematical explanation.
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