
1

Why “17 Gen r” is undecidable: Gödel's proof and the paradox of self-reference

Vitor Tschoepke

Abstract

The aim of this text is to offer an explanation of Gödel's Theorem according to the schemes
and notations of the original article. There are many good didactic explanations of the theorem that
reveal its  central  points and implications,  but these are difficult  to recognize when reading the
original  work,  due  to  the  complexity  of  its  formulation  and  the  author's  economical  style  in
explaining the steps of his argument. An exposition of the central concepts will be made, as well as
a detailed explanation of the main points of the algebraic development of the proof, which will
allow the non-specialist1 reader to find the well-known paradox from them.
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Introduction

There are two typical situations in which paradoxes arise. The first occurs when the same
element shows contradictory consequences for being multiple when it is understood as unique. The
twin paradox is a classic example. Under normal conditions, two identical twins after the same time
should age in the same way. But both in different circumstances (on a cosmological scale) would
each have their own timeline, and this would become clear at their reunion. Time, which a priori
would be understood as the same everywhere, is in reality different.

The second situation presents itself when an object is defined by a certain property, and
from this, another is presented that does not have it. And finally it is revealed then that they are in
fact the same object, but that this makes it possess both the property and its negation. We see this in
the case of the liar's paradox, about someone who says “I only tell lies.” The statement of someone
who utters  a  possibly true statement,  regarding the generalized falsity  of  the statements  of  the
person being spoken to, has the same subject and object. This creates a contradiction: if he is lying,
he sometimes speaks truths; If he is telling the truth, he is lying precisely by denying the statement.

It is possible, however, to find cases in which both situations occur simultaneously. This is
what happens in Russell's Paradox (Almeida, 1998), which originates from a problem that arose
from the definition of  numbers from classes.  The question arises when we consider a  class of
classes that are not members of themselves. Is the class itself a member of the set? If it is a member
of itself, it is not a member of itself. The consequence, besides being a paradox of the second kind
(the class has and at the same time doesn't have a property), is a case of the first – there is an
inconsistency within set theory, one of the foundations of logic, the structure of the definition of
functions and concepts in terms of sets is imperfect.

The generating mechanism of this vicious circle, according to Russell, comes from what he
called “illegitimate totalities”—those that contain members defined in terms of the totality itself.

1 The author of the text, who is not a mathematician, spent a few months obstinately analyzing the article, looking for
the paradoxes so mentioned in the literature on the subject. It was very difficult to find them, since the text is not at
all obvious. But as the rule goes, the original is always better than the versions, and this is no exception. The
development  of  the  problem in  the  article  is  more  sophisticated,  and  raises  more  questions  than  the  didactic
versions, and knowing it in detail is very rewarding. As in the time of research I had to take many notes, and
formulate different hypotheses on how to explain it, I ended up gathering a set of ideas that, I believe, can be useful
to those who decide to follow in the endeavor.
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These are denoted by expressions such as “all propositions”, “all properties”, “all classes”, etc. A
case of this fallacy would be the enunciation of the law of the excluded middle in the form “all
propositions are true or false” which applied to the law itself results that it itself is true or false. And
so, the vicious circle requires a kind of restriction in the formulation of statements: “no function can
be contained in the domain of its real or apparent variables” (ibid, p. 142). A function cannot be
assumed in its values, and these must be defined before the function itself is. And so, we should
state the law of the excluded middle in such a way that it does not apply to itself, even if we have
not said so. The big problem is to elaborate the question in such a way as to say that we won't
mention something without mentioning it.

But it was through the discovery of a self-referential short circuit that the mathematician
Kurt Gödel (1962) showed the impossibility of arriving at a general system of mathematical proof
(of  which  Russell  was  one  of  the  proponents).  He showed that  a  mathematical  system cannot
demonstrate its own consistency2, and so it must be somewhat incomplete. And yet, the attempt to
insist on the demonstration of consistency only with the resources it possesses generates types of
propositions whose proof or its negative cannot be offered within it. The theorem (Ernst and Nagel,
1973) put an end to the hope that a complete set of axioms could be assembled for an area of
mathematics, or that it could be completed by adding a finite number to the original list.

As  these  authors  explain,  the  theorem  exposes  an  inconsistency  in  the  claim  to
completeness,  but  without  falling into the fallacy of  Richard's  Paradox.  This  originates  from a
hypothetical system for defining cardinal numbers, in which each number in a list, according to the
scenario proposed for the paradox, must be accompanied by a description that is appropriate to the
ordering number itself. The number 2 would be "the first prime number", 10, "twice the third prime
number". It may happen that a number is accompanied by a description that doesn't apply to it, such
as "it's an even number divisible by three" in item 15. In this case, it will be called richardian, and if
the description matches the number, non-richardian. 

The expression to be richardian or not is applicable to numbers, and so can have a number
applied to it. This begs the question: is the corresponding number of this item richardian or not? The
number  n,  corresponding  to  the  definition,  is  richardian  if  and  only  if  it  is  not  related  to  the
definition of being richardian. If it is richardian, it does not have the property designated as defining
the number designates the number of the richardian formula. Therefore, it is richardian if it is not
richardian. The paradox in this case comes from the mixture of statement and case, but it arises
from a  fallacy.  It  comes  from the  attribution  of  an  extra  property  (the  incidental  adequacy or
inadequacy of the description) transformed into a legitimate statement within the system.

In Russell's Paradox, this does not occur. The class of trees is not a tree. The class of
classes is a class. A class can be a member of itself,  and this happens when (for example) the
definition of class is part of the characteristics that every class possesses, such as “the class that
gathers objects”, “the class of thinkable things”, “the class of abstract entities”. Every class gathers
objects, is thinkable, and is an abstract entity, and therefore each class that designates them is a
member of the class itself. The definition of classes that are not members of themselves would

2 A consistent system is free of contradictions. One of the goals of Principia Mathematica (Ernst, Nagel, 1973) was to
seek techniques to eliminate all  self-contradictory forms. This was done by a system of notation in which all
mathematical statements and rules of inference are codifiable in a standard way. The entire system is reduced to a
calculation of  “meaningless  marks”,  with its  formulas  obtained by direct  transformation of  operation rules.  A
parallel to this was also sought in Hilbert's Program, through “finitary arithmetic” (Shapiro, 2021). Expressions
with limited quantifiers can be transformed into computations. This would be a technique for evaluating statements
containing infinites, of “ideal” mathematics. And so, “to use an ideal theory of mathematics we have to formalize it
and then show, within finitary arithmetic, that the theory is consistent.” (ibid, p.237).
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designate those that have elements extrinsic to the definition of class, and that cannot be assigned in
any way to it, such as the class of trees, which have no branches or leaves.

And so, in the first type, all are elements of the same nature, such as “being a collection”
and “being abstract”; in the second, are they of a different nature, and so the class of these classes is
a member of itself? The gathering of these classes (of ships, trees, chess pieces) is a class, but it can
only be a member of itself if it  adopts its designation, “not to be a member of itself”. The set
“definition of class + elements” (such as "statement + cases") is of a different nature, and so the
statement of the class makes it distinct from its contents, and therefore it is not a member of itself.
But as it is (by definition) the class of classes which are distinct from its contents, it is a member of
itself,  or, the class of classes that are distinct from their objects is distinct from its object, and
therefore is and is not at the same time a member of itself. In Richard's paradox, an incidental
property is artificially introduced. In Russell's, the definition of the general class comes from a
property of the member classes. The emergence of inconsistency follows naturally as one of the
corollaries of the general definition of class, and thus is not built on a fallacy (hence its historical
importance).

Neither is Gödel's theorem, since it is not constructed by illegitimately inserting a property
into the system of formulas, but is a natural consequence of a finite proof system, in which the last
or  most  generic  element  of  the  list  has  a  dual  role.  Its  detachment  from the  object  of  proof,
reviewing it through a different set of properties, turns its test into a reconstruction, from which the
decision for its provability or not can emerge as a result. And so, the very formula it tests must
repeat  this  distancing  in  consideration  of  itself,  in  a  self-referential  application,  and  so  its
provability (or negative) as a formula will be non-generalizable; or, there is neither a decision by its
generalization, nor by the impossibility of generalization for any case.

Self-reference  is  a  type  of  pattern  that  generates  theoretical  perplexities,  but  in  some
situations its emergence ends up being an inevitable consequence in areas of scientific development.
There are many cases of what is meant by self-reference, such as those highlighted by Hofstadter
(2007).  These include natural  causal  or  mechanical  feedback patterns;  repeated cyclical  natural
events, such as fractals, in which the pattern repeats at different scales; reflective or symmetrical
optical  phenomena, such as mirrors in opposition,  and also in the linguistic field,  phrases with
references  to  their  own characters,  symbols  and concepts,  or  abstract  engravings  in  which  the
circumstance of  the image itself  is  represented.  And so,  the precision of  the highly formalized
mathematics of the early twentieth century could conceal precisely kinds of propositions with this
property which, due to their key positions in their respective systems, disrupted their entire rigorous
principiological architecture. And so, says the author (ibid, p.168): "(...) what about KG3 (or any of
its cousins) that makes it not probable? In a word, it is its self-referential meaning: if KG were
provable,  its  loopy  meaning  would  flip  around  and  make  it  unprovable,  and  PM  would  be
inconsistent, which we know its not".

Gödel's  work has important  consequences for  the theory of  knowledge.  Popper (1986)
explained that  a  deductive inference is  valid if  it  does not  admit  counterexamples,  and thus is
objective. But objectivity does not mean that we can always ascertain whether a statement is true.
There are many statements whose truth can be demonstrated, but we don't have a general criterion
of truth, and according to Gödel's work, this holds even for arithmetic. We can describe a multitude
of rules of inference, but we have no general criterion for deciding whether or not any arithmetic
statement  legitimately  follows  from  the  axioms  of  arithmetic.  And  this  has  an  important
consequence for epistemology, because, even at a very advanced stage of research in Physics, in

3 Gödel’s formula.
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which it is very difficult to emerge new modifications and corrections in the models, the theories
will remain incomplete, and we will know this a priori, due to Physics being based on Mathematics.

Thomas  Nagel  (1998),  in  response  to  logical  and  epistemological  skepticism,  and  the
subordination  of  reason  to  other  instances,  such  as  social  authority,  or  linguistic  and  cultural
practices, sought to show how reason is independent of any of these contexts. According to him,
rationality is  not a core of fundamental  truths,  but all  those propositions for which there is  no
alternative. Even if some of them can be revised, others still give it meaning. The simple application
of mathematical rules leads to consequences that cannot be fully grasped, but only understood (such
as the fact that the simple sum rule leads to the concept of infinity) and so a comprehensive grasp of
the  reality  of  numbers  is  impossible.  And this  incompleteness  shows that  they  are  not  simply
subjective rules.  Finally,  he presents Gödel's  proof as the greatest  anti-reductionist  argument in
history, because it shows that in any case the explanation of reason will always presuppose itself.
Even if one tries to reduce mathematics to what is probable, this demand for self-justification will
be surrounded by considerations about the nature of mathematical reasoning that do not fit into the
proof. In other words, arguments that seek to reduce rationality itself and its criteria will always be
circular.

As Kripke (1972) explained, because the theorem proves that no formal system can decide
on all mathematical questions, there are always more truths needed than can possibly be included in
a unified scientific system. The fundamental standards that define necessity and apriorism are not
always linked and interdependent. Necessity is a logical criterion, and apriorism is epistemological.
We cannot prove consistency within a system because, if apriorism is the truth originated from
intellectual synthesis, the kinds of truths needed are not, in turn, expressions of a single abstract
core  —  if  they  were,  mathematics  would  not  be  productive.  And  just  as  the  general  set  of
mathematical truths is unapprehensible by a single model, there is no guarantee that there are no
hidden mathematizable patterns in the universe that are necessary truths, although they cannot yet
be recognized as such a priori. The search for consistency is the search for apriorism to encompass
the set of the necessary, but this is a never-ending search.

Another consequence of the theorem discussed by Penrose (1993) is the value of abstract
reasoning,  intuition,  and  creativity  as  central  to  mathematical  and  scientific  understanding  and
development. Even rigorous mathematical reasoning needs, in its development, abstract leaps and
inversions  from  other  perspectives  and  concepts.  A  mechanical  procedure  (symbolic  or
computational)  has  clear  limitations  due  to  the  problem  of  being  a  mere  expression  of  sign
relationships, and not carrying their true understanding and meaning. That is, the system is unable
to abstract itself and step out of its own limits. And the author states that the human capacity for
mathematical  thinking  is  due  precisely  to  an  essentially  non-computable  aspect  of  human
intelligence.

The Theorem

To carry out the demonstration, the author proposed what would be a model with all the
characteristics of a general system of proof, in a own notation scheme in which mathematical and
metamathematical  relations  are  correlated.  The  metamathematics  of  the  system  describes  the
logical/inferential relationships that occur between the steps of a mathematical development and its
formulas (such as the relations of “logical consequence”4, “proof”5, “generalization”6, “negation”).

4 The expression Flg(c) (from the expression “Folgerungsmenge”) represents the set of consequences of a proof
scheme c. A proof in c is one provided only by the resource of its rules.
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It also describes the formalization of elementary rules of symbolic and syntactic transformation,
such as number types and properties7, and the very rules of character operation8. 

And he proposes that formulas could be listed in a numbering system in which the basic
characters, relationships, and formulas would be related to products of prime numbers. And so,
since the product of a prime can always be found exactly its component numbers, each number
would represent a formula in an unmistakable way, and this version would be the one used in the
calculation. Each character number, relation, or other formula could be a variable of some other
formula.

The result is that with the correct formation rules listed systematically, it would be possible
to  mirror  with  mechanical  procedures  a  complete  mathematical  system.  And  since  the  proof
structures are well defined and explained, any proof can be submitted to this system, which would
ideally be a general proof mechanism.

In addition, the author works with the concept of recursion in a broad sense, which is one
of the main points for his argument. A general sense of recursion is the repeated reapplication of a
formal procedure, properties or formula patterns, in new steps of calculation, or the application of
series of values in place of their variables, according to defined rules of formation. A series of
numbered functions is recursive when it is defined by the previous two, or derived from them by
substitution.  A formula,  which  can  be  selected  from  a  list,  has  a  recursive  relation  with  the
preceding and successors.  All  are  expressions  developed from the  same set  of  definition  rules
successively  reapplied  and  made  more  complex  for  new cases.  Recursion  applies  both  to  the
relations of equivalence, attribution, disjunction, the application of mathematical concepts in other
formulas, and to the metamathematical aspect, such as the rules of formation of a formula by the
characters that constitute it. The author explains that function patterns such as x + y, x × y, x/y, and
the relations x < y, x = y are recursive, and from them, he will define other functions and relations
(numbered from 1 to 46), also containing metamathematical concepts such as “formula”, “axiom”,
among others. Here are some examples of these definitions:

A formula with a generic formation rule, which represents a significant relationship within
the system, is called a class-sign. It designates a class of elements, which can be types of relations
between  numbers  and  characters,  formulas,  other  classes,  or,  generalizations  of  the  rules  of

5 The expression “x Bew c y” (“Beweisbar” - provable) means that the formula x, by and only by means of the rules
of c, can prove y.

6 The expression “x Gen y” means that the formula y is generalized by means of the free variable x.
7 The expression “n Gl x” (“Glied”) designates the nth term applied to the variable x.
8 R (11) * x * R(13) - “*” is the concatenation of characters, and the numbers 11 and 13 correspond to the elementary

symbols “(” and “)”, resulting in “(x)”.
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recursion themselves. In the examples in the figure above, there are class-signs for specifying the
degree of the variable, negation, disjunction and generalization operations. The class-sign has one
free variable,  and expressions with two variables  can be simplified to  one,  and this  allows its
different cases to be numbered by variables that serve as indexes in recursive structures.

Another important pattern, then, is the recursive class-sign. This is a case where a class-
sign  with  a  value  assigned  to  the  free  variable  is  represented  by  its  recursively  enumerable
substitute formula, as well as being organized in a relationship with other formulas. On the surface,
this  notation  doesn't  seem  very  practical,  but  it  does  have  the  advantage  of  allowing  the
representation of recursive formula chaining.

The expression in a) says that from a formula of number b, when the value k is applied in
place of its variable, we will have as a result the formula resulting from number f. It is the same as
writing b(n) as a general form, and b(k) as a specific case, generating f. Or, rewritten, is a case of k
applied to the class-sign b(n). Or it can be rewritten as a class-sign, as for example, in the form k
Gen f, and the address of that formula in the list is b. 

When a  formula  is  generalized,  becoming a  class-sign,  the  variable  that  generalizes  it
appears as a kind of index of that formula in this representation of the chained formulas, in their
cases of application. And so, in b) the formula y is the one that represents the recursive chaining of
the formulas v, j, and b, when the values n, f, and k are applied to them respectively in the places of
the variables. In variation c) the formula s is the result of the value of 17 being applied in the
formula of number-sign Z(x), that is, in the number corresponding to the formula x. In d) shows a
relationship  q  between  two  formulas,  x  and  y,  selected  by  the  numbers  of  the  corresponding
formulas, as their free variables. Cases c and d will be used in the proof, as will be seen later.

Furthermore,  there  are  statements  presented  by  the  author  that  are  important  for  the
relationship between provability and recursion, and for the notion of consistency that he intends to
present in his argument. First, let's consider a class of formulas c, and the smallest set of formulas
that are immediate consequences of the relations and axioms established in it, abbreviated by Flg(c).
And so, the author presents the notion of ω-consistency9 of this class (where v is the free variable),
which is the condition that there does not exist in c a class-sign such that 1) a recursive case of a
formula  is  a  consequence  of  c,  and  2)  the  general  form  of  this  formula  has  no  proof,  or,
symbolically:

9 As  Lourenço  (2020,  p.734)  explains:  “Gödel  makes  use  of  the  concept  initially  discovered  by  Tarski,  of  ω-
consistency, which essentially has the following meaning. A theory Z is said to be ω-inconsistent if, and only if,
there exists a well-formed formula φ(x) such that for any natural number n one has a demonstration in Z of φ(n) and
at the same time a demonstration of the formula x¬φ(x). If, on the contrary, it is not possible in Z to derive for any∃
natural number n the formula φ(x) and at the same time x¬φ(x), then Z is said to be an ω-consistent theory”.∃
Shapiro  (2021)  explains  that  a  formalized  arithmetic  theory  is  consistent  if  we  cannot  derive  a  contradictory
formula from it by means of its rules and axioms. The notion of ω-consistency in a theory is the condition that it
does not occur that a given formula is probable for different numbers, and at the same time, it is demonstrable that
it fails for a given value. In the author's words, (p.239) “Gödel showed that there is a sentence G in the language T
such that 1) if T is consistent, then G is not a theorem of T, and 2) if T has a slightly stronger property than
consistency,  the  so-called  “ω-consistency”,  then the  negation of  G is  not  a  theorem of  T.  That  is,  if  T is  ω-
consistent, then it does not “decide” G one way or the other”.
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We also have the following statements,  which mean respectively (accompanied by the
article numbering): 

x Bc y ≡ Bwc (x) & [l (x)] Gl x = y     (6)
“The  formula  x  proves  y  in  c”  is  equivalent  to  saying  that  x  is  a  development  of

logical/inferential (recursive) steps of c according to which, the end of the proof, the last step of x is
the conclusion y.

Bewc (x) ≡ (Ey) y Bc x                        (6.1)
“The formula x is provable in c” is equivalent to saying that if there is a proof of x, there is

a formula number other than x that proves it.

(x) [Bewc (x) ~ x ε Flg (c)]                  (7)
At formula number x, the proof of x does not belong to the set of consequences of the class

of formulas c. 

(x) [Bew (x) → Bewc (x)]                    (8)
If x is provable, it is recursively provable in c.

And with this, the author establishes that, whether it is a function of degree n in a recursive
relation, derived from functions of previous degrees, if all the relations up to n can be proved, then
at level n it can be decided whether the set of steps up to it can be proved or not.

Proposition V: To every recursive relation R (x1, . . . xn) there corresponds an n-place relation-sign r (with 
the free variables u1, u2, . . . un) such that for every n-tuple of numbers (x1 . . . xn) the following hold: (p. 
55)

We then have a case of the above scheme. Formula y can be tested to see whether or not it
can  be  proved  within  the  c10 formula  scheme.  The  test  of  the  provability  of  formula  y  is  the
recursive relation between it and formula x, and the one that represents this relation is q.

10 The expression says: if x proves (B) the recursive relation with y, then the formula that recursively represents the
proof relation between x and y, is or is not provable (Bew) in c.

(n) [ Sb   a           ε Flg(c)] & [Neg(v Gen a)] ε Flg (c)
Z(n)

v

Z(xn)
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And from this he arrives at the central proposition of the article, the assertion that for every
ω-consistent recursive class of formulae there is a relation r such that neither it nor its negation
belongs to the consequences of c - a formula r of which it cannot be said either that it is or that it is
not provable. 

Proposition VI: To every ω-consistent recursive class c of formulae there correspond recursive class-signs r, 
such that neither v Gen r nor Neg (v Gen r) belongs to Flg (c) (where v is the free variable of r). (p.57)

The author makes an algebraic development of the expression seen above. The formula on
the right is separated into its two component parts: the substitute formula q, at number 17, and the
relation r, which contains the recursive relation with q, isolated from the formula x.

The term y is replaced by p, to make it easier to identify in the substitutions below, but it is
the same formula y, because it is in the same number. In the formula on the left, p is replaced by the
corresponding class-sign; and the one on the right is reordered.

The same expression is isolated on both sides. It is replaced by the term r, defined above.
This term represents the components of the recursion, isolating them from the formula x, in variable
17.

The formula r is the synthesis of the formulas to be tested, y (the object of the test), and q,
which represents the very provability relation between the formulas. The formula 17 Gen r, which
seeks to establish the consistency of c, is the formal type that is undecidable.
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The above algebraic developments are reapplied in the expression that says that a formula
may or may not be proved. And so we come to the point of why neither proof nor negation of the
formula “17 Gen r” can be offered within the system.

First, however, what does this formula mean? There is a formula that represents the proof
scheme, which tests whether or not others are a consequence of the series of formulas. The relation
q summarizes the proof relation between the formulas x and y. The relation r isolates from the
formula x a) the provability relation q, and b) the formula to be proved, y. The formula r represents
a recursive structure, placed in a formula number.

Each case in which the recursion is isolated in a formula number, one has a case of r. And
thus, the general form is the generalization of the recursion itself, and of its validity. And the form
after the algebraic transformation above, says “if the general form of recursion is provable, then
there is proof in the system of a case of recursion”. And so, r is the test of a proof structure, and is
an example of a class of formulas r that evaluates the proof properties of the system itself, and
precisely whether or not they are probable in the formula scheme.

For every formula r, it must say whether recursive chaining is provable. If it is an operation
of calculable general validity, and is the result of the scheme of proofs c, it can be included in the
list as the final item of this proof scheme. And so 17 Gen r is the self-proof test itself, but it can only
be transformed into a numerable class-sign if and only if the formula r can be generalized in an ω-
consistent way.

And we have the following, according to the statements seen above:

a) The formula number of the proof shall be different from that of the formula proved.

b) A formula that proves another has no resources for self-proof in c.

c) Every proof must take place in a recursive step, in which only the previous properties
and relations of the system are inherited.

Since recursion is finite, there must be a last formula that evaluates the previous chain
without borrowing other relations (c), and to avoid infinite regression, which would make recursion
unfeasible, r must finally evaluate itself, contrary to a and b. And so, the proof scheme is included in
the recursive step that tests the probability of the previous step (so that the evaluation is complete).
The question is precisely: can the formula r itself be included in the evaluation?

Transposing the concept of ω-consistency to set logic, we can consider two examples. The
first is the one seen above, in the kind of case Russell called “illegitimate totalities”, the example of
the formulation of the law of the excluded middle as “every proposition is true or false”. If it tells a
truth about statements in general, and at the same time does not apply to itself, it has at least one
exception, failing precisely in the self-test. And so it is ω-inconsistent because it doesn't follow its
own rule.
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Let's also consider the maxim “every rule has an exception”, and we will go through the
list of rules until we reach it as the last item to be “tested”. If it has no exception, it is the exception
of itself, and therefore it is false. If it has an exception, it is an example of the rule itself and is true
in one sense, but is false in another because it is not perfectly applicable to the set of other rules. It
is  thus inconsistent  because contradictions always arise  from it.  But  it  would be based on the
criterion of being faithful to the rule itself, ω-inconsistent in the first case and ω-consistent in the
second, and regarding its content, by being correct about what it states about the other rules, ω-
consistent in the first, and ω-inconsistent in the second because it requires that, in the case of the
rule itself, there be at least some other rule without exception11.

We then have two ω-inconsistencies: of object (about the correspondence to its content)
and of prescription (about being an example of the rule itself). It goes like this:

a) regarding the object: if it has an exception, it follows the rule itself, but it is not true
about its content, because it allows there to be some other instance of rule that does not follow.
Among their cases, there is at least one contrary to the others. Instances that contradict each other
coexist - there is only an exception if there is a case without exception. And so, it has an exception
when it shouldn't have.

b) regarding the prescription: it states that every rule has an exception, but because it has
no exception, it does not follow what it prescribes, and it is not a case of the rule itself. And so
either it cannot be a case of itself, or it is an exception to its applicability. It has no exception when
it should have.

They are two types of ω-consistency, and likewise, the self-evaluation of the r-type formula
will always fall into one of them. This is the kind of problem of Gödel's Theorem. Either type r
requires a flawed case to be formula, or it does not fail and cannot be a case of itself like the other
formulas.

We have two considerations about the function of r in the proof system:

a) A formula generalizes an operation or function, and can be proved or shown to be
unprovable. 

For the system, proving a formula means showing that it is a consequence of the formula
scheme, and that it is valid as a general law without exception, and can be used in the composition
of other formulas and relations. Every formula has potentially, however, a case for which it may not
be probable, and the proof structure must be open to the possibility of offering proof or not12. 

In the evaluation of every formula, one must be open to the possibility of it failing in some
case. Its effectiveness cannot be given as a premise, which means that the evaluation of the function

11 The sentence "every sentence articulates concepts" articulates concepts, and so, as well as being right by definition
as to its objects, it follows the rule itself. And so it is ω-consistent in both senses. In the case of the statement "I
only tell  lies", from the liar's paradox, the content and the prescription are always the same case, so both are
simultaneously true and false, and the ω-inconsistencies occur together, whether he is lying or telling the truth. In
the case of the rule and the exception, there is a difference between the statement and the other rules, and so the two
types of ω-inconsistency are quite distinguishable.

12 Presumably there is always some context for formulas in general in which they are no longer perfectly applicable,
or this can only be done with the help of other theoretical resources, or an extension. And so there is, at least in
theory, some context (or type of value) for which the usual proof does not apply, or for which it can be proved that
they are not valid. And in addition, a proof system exists precisely for cases of formulas that are still candidates for
consolidation, or to revise the proofs that have been offered so far. And from this comes the need for openness as to
whether or not proof is possible.
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presupposes a kind of “suspension in the belief of its validity”, so that it can be concluded that it is
formally correct, and corresponds with generality and adequacy to the object. The formula and its
principles  cannot  be  used in  the  demonstration itself.  And from this  judgment,  in  which these
principles are objects of investigation, it is decided whether the formula meets the requirements to
be considered proven. In the existing distance between the structure that tests and its object is the
opening to the possibilities of its proof or not.

b) The formula r says whether or not any formula can be proved, that is its function, or, the
raison d'être of its generalization.

And so, when used in self-evaluation, it must also have a “suspension of belief in its own
validity”, and in its own methods - and so, being a case of itself, it can be shown to be probable or
not probable. So, if it's just another formula, and is effectively applicable to the others, applied to
itself, it must say of itself that it may not decide on provability in some case - it says it may be
wrong or incomplete. For this type of formula, to conclude non-probable means that to some extent
it will be unable to fulfill its function, that is, to decide on the provable or non-provable character of
other formulas. If r is provable, the recursive structure is valid. If it is not, the system does not
decide whether the recursion of formulas up to some formula of type q is valid. This is represented
in the figure below:

The first version of the expression with the alternatives "Bew (...)" and "Bew (neg ...)" is
the test of the probability of the formula q, resulting from the relationship between two formulas
with variables 17 and 19. The second, after the algebraic transformation, is the formula representing
the recursive structure (where q and the formula to be proved are isolated), at its given recursive
address with the respective variable. Whatever developments r represents, it must be a numbered
formula, and it must be tested as to the possibility of its generalization, that is, as to its provability.
The formula  17 gen r is  the general  formula of  the r-relations,  which summarize the previous
recursive structures of the formulas. Since r is a formula, it must be tested to assess its probability -
openness to alternatives must be applied to it as well. The solution to evaluate r, since the recursion
is finite, is a kind of self-evaluation of r – and so the generalization of r is a successful outcome of
its self-evaluation, and will not be generalizable if it is not able to decide. The test must, however,
consider that it potentially may not be probable, i.e., in its occurrences, the system must be open to
at least one case of the formula r being unprovable.

If it claims to be like the other formulas, it must at the same time potentially fail to some
extent in evaluating the properties of the other formulas. And so there must always be a possible
negative case in one of its recursive applications.

If, however, it is always self-proving, in all instances it will be able to decide (or never,
also  exclusively),  and  so  the  margin  of  alternation  between  provability  or  its  negative  is  not
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applicable to it, and it is not like the other formulas - it is not one of the cases it prescribes. If it is
complete over the other formulas, it is not a typical formula, and cannot be a case in itself.

And so, with respect to the types of ω-inconsistency of the formula r we have:

a) Of object (diagram of the figure below, left): if r is the structure that decides on the
provable character of the other formulas (about them being generalizable), being open about the
general validity of the function itself, it says of itself that there is at least one case that will not be
able to say whether it is probable or not. When its rule is applied to itself, it must consider the
possibility that  it  doesn't  meet  its  function.  And so,  that's  the condition for  it  to be valid as a
formula. Whether it should be provable or not probable, there will always be at least one contrary
case that coexists with the value of the class-sign. If it is provable it has a non-provable case; if is
non-provable it must have a provable case, and both must simultaneously have formula numbers,
making the system as a  whole at  least  ω-inconsistent.  If  it  is  a  case of  itself,  it  must  be both
unprovable and provable, and vice versa, in some r, and so it says of itself to be inconsistent in
some way.

b) Prescription (right): It is the same problem as the law of the excluded middle, which is
not “true or false”. If it is demonstrable or indemonstrable for all cases, it does not follow what it
prescribes for the rest of the testable formulas. The point is that the formula is not like the other
formulas, and does not apply to itself the rule it prescribes. If it proves everything every time, it
doesn't follow the rule that any formula must be possibly provable or not. And so, either it is not a
formula, or it does not apply to all formulas. And it can't evaluate itself as it does the others.

The diagram shows instances of the r formula evaluating themselves. The general form
“17 Gen r” is the formula r itself without being in a case, it is its “prototype”. The blue arrow
means that it has decided on the structure of the formulas it evaluates, and the red arrow means that
it has not been able to decide. On both sides there is at least one version that r cannot alternatively
evaluate the proof or the negative, and thus fails to fulfill its function as a formula. If the system
were complete and ω-consistent, it could evaluate them all, and thus be generalized.

And so, applying the ω-inconsistencies of object and content to the cases of provability or
its negative, we have:

1) Or r is provable,
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1.1) but always a non-provable instance should be possible, and so should be provable as a
class and not as a case in at least one situation. It must have a provable n, but it must potentially
have a non-provable case also with an n, simultaneously.

1.2) and applies to all formulas except itself, because it doesn't follow its own criterion,
since it always has provable instances, but it isn't open to cases in which it isn't provable.

2) Or r is non-provable,

2.1) and says that every formula can be provable or not, and so in at least one potential
case  must  be  provable,  and the  two situations  must  have  corresponding numbers  of  formulas,
making the scheme of formulas ω-inconsistent.

2.2) and does not see cases in which it is provable, and all its instances are non-provable to
it. And so, it fails in the characterization of a formula, because it has no means of encompassing a
possible provable instance, and therefore, does not follow the very prescription that is precisely the
condition for testing any formula13.

And so, if r is ω-consistent in terms of the prescription, it will be ω-inconsistent in terms of
the object. It says that every formula potentially fails, and it must fail in some case, in order to meet
what it says about formulas. For every function of type r numbered as n (added to c), there is at least
one recursive version of number m such that it contradicts its character as to demonstrability, and
so: 

∀r n m (∃ ∃ (n)  Bewc( v gen r) ↔ (m)  Bewc(neg sb [ r v z(m)]))
∀r n m∃ ∃  ((n) Bewc(neg ( v gen r)) ↔ (m) Bewc( sb [ r v z(m)]))

If it is ω-consistent as to object, it will be ω-inconsistent as to prescription. Every formula
can potentially not be generalized, except for itself, and thus does not follow what it determines,
and does not count as a case of the rule itself. For every function of type r numbered as n (added to
c), any recursive version of number m follows its character as to demonstrability, or:

∀r∀n m∀  ((n) Bewc( v gen r) ↔ (m) Bewc (sb [ r v z(m)]))
∀r∀n m∀  ((n) Bewc(neg ( v gen r)) ↔ (m) Bewc( neg sb [ r v z(m) ]))

And from this  we can see that,  for  the first  case,  if  every formula is  potentially non-
provable, or, not generalizable, being r a formula, it must be potentially non-generalizable as well. It
cannot  claim that  it  will  always  be  effective  as  a  function,  that  is,  that  it  will  always  decide
definitively on the formulas it tests. And on the other hand, it cannot say that it is not probable for
any case of r. And so, it says of itself that there is at least some case without decision, that is, that
the property r will not be recursively generalizable.

For the second case, if every formula can have proof, or proof of the negative, but r is
always probable or not without exception, it is not a typical case of formulas, and does not follow
the prescription itself. So it cannot be proved or not proved because it is not a formula, or, it is

13 Gödel's article deals in particular with points 1.1 and 2.1. In them there is a requirement for one of the recursive
potential cases of r which contrasts with the general form (with the statement) - it is only generalizable if it is not
generalizable. But in unfoldings 1.2 and 2.2 there is also a decision problem - always deciding (or never deciding)
is precisely a flawed case, only valid as a general law and as a recursive result intrinsic to the system if it is not a
case of the rules of system itself, that is, if it is a foreign object within the system.



14

precisely the exception to the rule itself, and so, in any case, it cannot be generalized as a formula of
the system.

And so, or it will say that there is a case in which it fails, and so, if it is true about the rule
itself, its content is false and not generalizable; or, on the other hand, that it never fails when it
should – the generality of the rule is overlooked in self-application. And so the formal case r, which
decides whether a series of recursive formulas up to it is probable will always be ω-inconsistent,
and this means that because it is never generalizable as a formula, neither its proof nor the negation
can be generalized14 (there is no definitive proof that there is a flawed case).

The  general  version  of  r  (the  self-consistency formula)  is  an  illegitimate  totality.  If  it
follows what it prescribes, it is inconsistent because it has (at least potentially) a flawed case and
may not be likely, if it does not follow, it will be the case that does not apply in the rule itself. And
so, for every formula of type r, there is no number of formula n with the proof or with the negative
of its general form:

r ¬ n ∀ ∃ (((n) Bewc ( v gen r)) ˅ ((n) Bewc ( neg ( v gen r)))

Furthermore, if the statement “every rule has an exception”, being a rule, is included in its
content in the form “set = statement + cases”, we have the following. If it has an exception, it will
be one more rule with an exception included in the set, but the set does not change the already
existing rule without exception, it does not change the value of the content. And it continues to
follow its own prescription. If, however, the rule without exception is included in the set, then, in
addition to the content being true, it makes the prescription true because the total set will have one
exception, which is the statement itself.  All cases have exception except it,  and it  becomes the
exception of the set of content. But this creates an inconsistency. It only has an exception if it has no
exception. It is a typical case of self-reference in which opposite values accumulate – it becomes the
Russell Paradox.

Transposing this to the formulas, we have that if the formula r can fail to decide a case, it is
a typical formula. If it always holds for all cases, then there is one case for which there is no margin
of decision, which is itself, for it cannot apply the decision of whether it is probable or not. And so,
it would be the flawed case itself, which would itself be as a formula (in the enlarged set cases +
statement). And so it is a formula if and only if it is not a formula, which is a full inconsistency, not
just a ω-inconsistency. And so, the generalization of r is not only ω-inconsistent, it is genuinely
inconsistent. The formula r has the function of evaluating the provability of other formulas, and to
decide whether or not their general form is provable, and the inclusion of any of them in an n in the
system will always be inconsistent.

14 A simplified outline of the argument is seen at the beginning of the Gödel’s article, in which he gives a brief
exposition of its structure. Consider a list of class-signs numbered and ordered by the R(n) operation. The typical
class-sign is designated by a formula, such as [a; n] where the free variable of the class-sign a is replaced by the
number n. And so we have the formula n ε K - Bew [R(n),n], which says that if the number n belongs to K, the
class-sign applicable to R(n) is provable. Consider K as the class-sign S, whose formula [S; n] says that a number n
belongs to K. The formula S has as its own index/variable q. If K lists those class-signs whose index n is provable,
and K is also a class-sign designated by S, it must also be testable. But its address in the list is q, and its counterpart
among the formulas is R(q). If there is proof of [R(q);q], then n ε K is false, but K is designated by the class-sign S,
which is in the relation n ε K, which defines the proof structure. But q does not belong to the set of values K, so
[R(q); q] cannot be proved. The proof of all formulas should be proof of itself because it is also a formula, but it is
not on the own list. But if the negation of [R(q); q] can be proved, n ε K is valid (that is, the class-sign S applied to
the values of n). And yet, if this negative is part of the values of n, S says of itself belonging to the non-probable
formulas. If there is no proof of [R(q);q], then n ε K is valid, although S needs to be valid as a formula (without
proof in the system) somehow the proposition depends on whether it is held to be valid, and true.
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And so the formula 17 Gen r is neither probable nor unlikely in the system, it is formally
undecidable. The goal is that ultimately the system proves its own consistency. And the conclusion
is clear, that this proof cannot be offered:

Proposition XI: If c be a given recursive, consistent class of formulae, then the propositional formula which 
states that c is consistent is not c-provable; in particular, the consistency of P is unprovable in P, it being 
assumed that P is consistent (if not, of course, every statement is provable). (p.70)

Recursion  is  not  able  to  gather  a  sufficiently  comprehensive  and  generic  structure  to
account for all the rules of formula formation, to the point of unambiguously deciding whether
every formula generated by the system is a legitimate mathematical formula, or, if this can only be
decided on a case-by-case basis, with different resources15.

There are two aspects of the theorem, or, two formal problems with respect to a universal
proof system. Either it will evaluate the property of an object that mirrors its characteristics, or a
separate system turns to it, and reanalyzes its relations and characteristics. And so, either an object
of analysis mirrors some of its properties, or, it will evaluate a system that has it as its object. It
would thus both be mirrored (and investigated) by systems he would come to evaluate, and would
revise theoretical schemes by the same properties as in those they would be found. And so the
problem of self-reference will always return.

If we have a system that serves as a general proof, it is not possible for its central aspects to
be taken, used, reworked by others, and yet remain as a tool of proof of those. The system does not

15 Gödel  states  (p.61)  that  the  decision  will  generate  a  new  class  of  consistent  formulas  c',  despite  being  ω-
inconsistent. The formula will consistently state something about the set of type r formulas (by failing in one case),
but this, at the same time, will be a result of it being unable to evaluate the case itself due to its dual role, although
inclusion may be a choice of the mathematician. This choice will be justified by factors and criteria external to the
system, and this  is  the point  of  the importance of  reasoning and intuition in  mathematical  understanding and
development.
There are also two problems in which the two sides of ω-inconsistency generate methodological problems when
deciding. The first occurs if we consider that r is a formula, and is a case of the rule itself, and yet we adopt a
decision about demonstrability, rejecting the ω-inconsistency of the object. In order to avoid the consequence of r
saying of itself “being possibly wrong to follow the rule itself”, it must always be open to revision, and must apply
a departure, or a “suspension of belief” to the very criteria it applies as a function, which are precisely the criteria of
proof,  which is  an impossibility  when we consider  a  recursive proof  system. Recursion only applies  to  finite
operations with well-defined steps, and cannot deal with infinities. Neither decision suspension nor continuous
iteration can be generalized to class-signs. Only by defining the terms by which it is not ω-consistent can it be made
consistent, and they would have to be incorporated as formulas. But that would be the neutral perspective, which it
cannot achieve. The second problem occurs if we proceed to a definitive decision by proof or not, by considering
that r can be decided even though it is not a case of the rule itself, rejecting the ω-inconsistency of prescription. The
formula of type r contains the principle of proof in its relations, it is the chain that brings together the recursive
steps, testing the steps progressively up to a finite limit, which is the formula itself. When proving, r needs to prove
the validity of the generality of the proof structure, and then decide on a case of the class in which it is applied. If
the logical criterion of a proof is distinct from the logic of its object, the self-proving formula nevertheless has the
same logical structure as a criterion and as an object. The formula cannot be used to evaluate a case where it is not
demonstrable without assuming the resources of proof themselves to be valid. It must always be right, and it must
presuppose that its own criteria (regarding its own structure of proof) will always be valid. The system will not be
open to revising its own principles of proof because they are already taken as true, in advance, for any test it makes
of itself. And so we have that either it is hyper-provable, and in addition to saying of itself “the consistency formula
is always consistent”, or it is unprovable and so, in addition to saying this of itself, it tests formulas in c without
ever itself being a consequence of c - it is an object foreign to the system, even though it is the result of the previous
recursive series. And yet, the fact that it doesn't see a case of non-provability when, being probable, it will always
be probable in its cases, and the opposite in the case of the negative, shows the paradoxical situation in which ω-
consistency  regarding  prescription  becomes  a  limitation,  leading  to  the  impossibility  of  demonstrating  the
principiological  integrity  of  a  system  (a  property  that  results  precisely  in  the  absence  of  contradictions,  or
consistency).
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serve to evaluate systems that mirror its properties, even if by other paths and with other theoretical
purposes.

And  yet,  is  the  universal  proof  system  definitely  finished,  or  can  it  be  improved  or
expanded? So let's imagine that a mathematical development is elaborated on some of its aspects.
Will the decision on the suitability of this new development be evaluated by the system itself? And
if a proof is offered that it cannot be extended with respect to a domain of mathematics, reaching a
definitive state, is that proof an extension or not? To decide whether or not it is an extension, the
entire corpus of the system must be submited to the system itself.

Another  consequence  of  the  theorem is  that  there  are  principles  and  relations  which,
because they are of a very general and fundamental order, cannot be proved, for they will always be
presumed and used by any candidate to prove them. It will always be the implicit premises, or only
expressed, with which one would try to obtain a proof of them. These are relationships that would
always reappear as hidden premises, no matter how hard we tried to control them.

What is  sought  by obtaining the proof of  consistency is  the attempt to encompass the
structure of reality that establishes the rational and mathematical standards that define it, but this
already uses  some of  its  manifestations.  And in these,  the background that  establishes them is
already given and assumed – it can at most be reiterated in its developments.

Final considerations

Gödel's theorem is a clear exposition of a limit of languages. It shows the paradox of proof,
in which a general system of proof must also be applicable to itself. This leads to the problem of the
limit of formalization, which is the inability to deal formally with progressive abstraction, or, with
the generalization of abstraction itself.

Every formalization of the relationship between things has an intrinsic delimitation, given
by the articulation of its concepts and notions. It restricts one relation between elements from all
others, and so if a formal system relates certain elements, it will necessarily exclude others. No
matter how many relations are included in it, it can always be completed by another aspect. Every
relation can always be included, modified or opposed by another,  indefinitely.  A reasoning can
always  be  more  complex  and  abstract,  because  another  element  can  always  be  considered  in
addition to all those already contained in a given logical universe. Any relationship at its level of
generality can be generalized by another.

For a system to be able to establish progressively more relationships between elements, it
must be able to evaluate ever more aspects and elements beyond those it relates. And it must be able
to be able to judge by what criteria it selects the elements to be considered, and for that it will need
other criteria.

A formalization, in order to have the symbolic representation of its relation to another, that
is, to extend its own limits and abstract scope (or to have systematic control of them), should be
placed in a neutral perspective between them, except that to do this it must consider itself as one of
the elements of another relationship, and so it should always be more abstract than it is, but this is a
contradiction with the definition of formalization.

The very expansion of the level of abstraction (as a property in itself) cannot be the object
of a formalization. The former is the very possibility of linking different relations, while the latter is
the  restriction  to  a  specific,  well-defined  relation.  It  is  always  possible  to  contemplate  more
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elements starting from a relation, and so there is no last level of abstraction. But this reasoning,
although it is easy for anyone to understand, is not formalizable by definition. In other words, it can
be said that the theorem has shown that the self-reference of thought and that of a formal symbolic
system have different and incommunicable natures. The proof of 17 Gen r presupposes that the
formula must have the generalization of “formula”, and its characterization as such, and as the
formula of a given system, and of what a system is, and so on. That is, self-abstraction with respect
to any logical plateau must be self-included in the formula itself.

There are basically two types of self-reference, which we can call the weak version and the
strong version. The first is found in situations and systems such as linguistic patterns with cross-
references, recurrent or symmetrical phenomena, or still others that personify by analogy entities
capable of strong self-reference. The theorem shows that we can only arrive at a weak version when
it was supposed, perhaps, the possibility of arriving at a system powerful enough to equate to strong
self-referential structures, consciousnesses.

Consciousness has an apparently antinomic relationship with reference, representation; the
relation  between  them  is  one  of  complementarity.  The  representation  is  restrictive,  it  is  a
particularization of one aspect of reality, to the exclusion of all others. Consciousness is broad and
vague, and reconciles any kind of relations by any criterion. It is the extra-logical element that
allows all creative synthesis between dispersed relationships. If a representation defines and isolates
one aspect of reality from others, the general plane where all aspects are separable and comparable
and thus seen as possible perspectives in the face of a non-aspectual reality is the consciousness of
an entity. It is the broad sense of apprehension, inexhaustible and indefinable in all its extent—it is
the apperception of the whole, from which one arrives at the parts. If representation is directed
consciousness, the totality of consciousness is not a simple merely associative or combinatorial sum
of representations.

Representations are the focus of attention of consciousness,  from objects to thought in
abstract schemes. As every focus of attention always highlights aspects, and ignores others, in this
lies its representative character. But the existence of a general plane of the possible aspects (which
rises above them as a non-aspectual plane), is a condition for every perspective to be seen as such,
and it must be included in the constitution of each one. Self-awareness, as self-representation, is not
the mere focus reflected by itself, as just another focus of directionality – it is not just another
computation  at  the  end  of  the  list.  It  manifests  itself  in  the  very  continuous  succession  of
representations, the generalized and self-inclusive reality of the succession of thoughts in aspects.

For Husserl (2015) the representativeness of the universal must be based on the universal
itself. Through collections one does not arrive at the idea of the universal as such. It is not reducible
to  cases,  it  is  the  true  essence  of  thinking,  before  which  impressions  and  images  are  only
particularizations  of  the  situations  thought  about.  If  the  generalization  of  one  case  reveals  a
property, and the same generalization is taken from several other cases, and is therefore revealed as
the  same  when  compared  with  others  arising  from  their  own  “histories”,  it  shows  itself  as
universality in itself, and as independent of the circumstances of its formation. And so, only before
the  consciousness  of  the  representation,  the  representation  seen  as  such,  has  its  character  of
universality revealed16. The general plane of abstractions is a synthetic continuum of different levels

16 Husserl (2015) differentiates mental reality from the understanding of the concept as such, from its imagistic and
psychological manifestations, emphasizing the proper right of universal objects. Representation, its purely abstract
component as an idea, is not to be confused either with the collection of experiences (empiricism) or with its
imagistic  character  (psychologism).  In  these  interpretations  there  is  no  what  he  calls  “consciousness  of
universality”, but only individual intuitions and a game of conscious and unconscious processes. Understanding and
thought have a strictly universal “pure” component, independent of their figurative form or psychological substrate.
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of universality. And it is this, when accompanying the specific representation, that precisely gives it
the character of being “this representation” and not another.

The  transition  of  representations  as  a  pure  synthesis  accompanies  each  particular
expression  of  an  abstraction,  not  only  as  a  symbol,  but  as  a  permanent  self-inclusive  passage
between levels of abstraction to accompany every particular representation17. The consciousness of
the concept, isolated from all others, exists only in the face of the continuous transition between
aspects, from which it differs, and before which it is significant. It is intrinsic to the consciousness
of the pure concept that it is one among a plane of possible perspectives and abstractions.

The ideas of number, quantity, proportion, equality, and difference are representations, they
are pure aspects of reasoning, which can be combined in the identification, formulation, and rational
description of reality. All allow a stratum of the universe to be covered, described, and formalized.
But new associations are always possible in countless possibilities of new descriptive structures.
And the definitions of aspects, occurring in parallel with continuous other changes of perspective,
allow the creative combination of new articulations of concepts. Any reasoning can be reversed and
considered in relation to any others, productive or not in relation to these.

Reality is made up of aspects of aspects endlessly, and not perfectly representable. At this
limit of what is representable, consciousness has a glimpse of the approximation between the broad
plane of perspectives and some possible definition, manifested as an intuition. Intuition lies at that
subtle boundary between the broad and diffuse perspective of the transition between abstract planes,
and the almost clear aspect to be isolated.

Repeated  geometric  patterns,  reflective  structures,  emergent  natural  patterns,  linguistic
cross-references, reiterated computational patterns, are all examples of weak self-reference. None is
able to rise as a structure capable of isolating the aspect or pattern repeated, or mirrored in the
others, from a broad panorama of possible patterns. This has no relation to the level of knowledge
of the genuinely self-referential entity, but to the way in which the possibility of knowledge itself is
established.

The universality  belonging  to  the  content  of  meaning  is  different  from psychological  universality.  There  is  a
distinction between an element A of the collection of A's, and these of the possibility of A in general - A in general
is not a collection of A's. Nominalism (which Locke adopted from the medievals) confuses the generality of the
universal with representing the specific. The logical possibility of propositions depends on universality, something
that  must  have its  existence  a priori,  in  the  sense  of  not  being confused with  occasional  psychological  acts.
Psychologism is an attempt to offer a genetic explanation of intentional content, but it is not a logical explanation.
The proposition that  representations are only collections of  particulars,  imaginal  impressions,  or  psychological
processes (or the Humean-like notion that the abstract idea is only a faint reminiscence of sense impressions) can
only be formulated by means of schemes and general definitions that cannot even be reduced to the thesis, much
less proven by it. This explains why different people, each with their own mental history, can agree on the same
general principles.

17 The reference, as a pure abstraction, must be included in reality itself as an entity. In other words, the character of
being a representation must be part  of the representation. The philosopher João Teixeira (2004) discussed this
problem when he criticized the classical idea of representation. Every symbol requires an “extra-representative”
component  that  links  it  to  the  element  of  reality  it  represents.  A map  is  a  representation  of  a  place,  but  its
interpretation requires a broader component that links it to its context of application, i.e. it requires the general
representation of what a map is to be applied to what a geographical region is, in a progressive synthesis between
the  two.  And this  extra-representativeness  is  not  simply  the  addition  of  another  representation  to  explain  the
previous one, which would require yet another in an infinite regress. There is no point in adding more maps and
territorial indications, because there is no leap beyond the compositionality of instances of symbols and partial
representations. He thus presents the self-location of an agent as a typical situation in which representations are
self-generalized.  If, for example, we walk on a terrain, even comparing it with its static representation of the map,
we will have in each new comparative observation a  representation of the succession of representations, that is,
each representation is seen in this broad perspective.
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Understanding  is  not  mediated  by  categories,  but  rather,  they  are  the  result  of  the
intellective synthesis that passes through them in a self-referential way. And so, there are no limits
to  the  conceptual  and  categorical  articulations  by  which  reality  can  be  thought.  Procedural
mechanisms  are  only  imitative  apparatuses  of  the  true  self-referential  structure,  which  is
consciousness.
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