
	

	 � volume 18, no. 24
� december 2018

How to Explain 

Miscomputation

Chris Tucker
College of William & Mary

©  2018  Chris Tucker
This work is licensed under a Creative Commons 

Attribution-NonCommercial-NoDerivatives 3.0 License. 
<www.philosophersimprint.org/018024/>

Introduction

Just as a theory of representation is deficient if it can’t explain how 
misrepresentation is possible, a theory of computation is deficient if it 
can’t explain how miscomputation is possible. You might expect, then, 
that philosophers of computation have well-worked-out theories of 
miscomputation. But you’d be wrong. They have generally ignored 
miscomputation.1 

My primary goal in this paper is to clarify both what miscompu-
tation is and what needs to be accomplished in order to adequately 
explain it. Miscomputation is a special kind of malfunction. If the bat-
tery breaks, a system may fail to compute what it is supposed to com-
pute. But it’s not miscomputing, because it’s not computing at all. Just 
as something doesn’t misrepresent unless it represents, something 
doesn’t miscompute unless it computes. To miscompute is to com-
pute in a way that violates a computational norm. Consequently, an 
adequate account of miscomputation requires an account of what the 
system is computing when the system is violating the relevant compu-
tational norms. 

A secondary goal is to defend an individualist approach to miscom-
putation. The advantage of this account is that it provides a simple and 
straightforward explanation of miscomputation. Piccinini contends 
that, by appealing to teleological functions, his externalist account 
also enjoys this advantage. It does not. Not yet, anyway. Following just 
about every discussion of functional individuation, Piccinini focuses 
on how to individuate proper function.2 I focus instead on how to indi-
viduate actual function. This distinctive focus reveals that Piccinini-in-
spired approaches struggle to account for the computational structure 
of malfunctioning systems.3

1.	 This apparent fact is bemoaned by Dewhurst (2014), Fresco and Primiero 
(2013: 254), and Piccinini (2015: 14, 48). 

2.	 Allen’s SEP entry on “Teleological Notions in Biology” does not even raise 
the question of how to individuate a biological system’s behavior when the 
behavior fails to fulfill its (proper or teleological) function.

3.	 Thanks to Gualtiero Piccinini for pointing out that my approach was 
distinctive.



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  2  –	 vol. 18, no. 24 (december 2018)

of electrical charges. A system computes when the formal properties 
of the input string “lead” the system to produce a certain output string, 
e.g., a different series of electrical charges. In the abstract, a computa-
tional structure is a complete mapping from the possible input strings 
to the possible output strings. A system has or implements a certain 
computational structure when the structure, or mapping, is a correct 
description of the system’s (actual and counterfactual) behavior. That 
much is relatively uncontroversial. 

A simple mapping account of computation imposes no restrictions 
on which mappings from inputs to outputs capture the computational 
structure of the system. Such views trivialize computation by being 
committed to unlimited pancomputationalism, i.e., the idea that 
every physical system computes every computation. To do better, we 
must impose restrictions on which mappings capture the computa-
tional structure of a system. 

The first restriction is to endorse what we can call a functional 
theory. Such views hold that a system’s computational structure is de-
termined by (a specific kind of) dispositional or functional structure.4 
On this view, to say that a system implements a certain computational 
structure is not merely to describe the system: it is to explain, at a 
certain level of abstraction, why the system is doing what it’s doing 
(or would do were it given a certain input). The relevant type of expla-
nation is dispositional explanation. We explain what the salt is doing 
while submerged, in part, by pointing out that it is soluble, that it has 
a certain dispositional structure. When we explain a system’s behavior 
by appealing to a dispositional structure that counts as computational, 
we provide a computational explanation of the system’s behavior. 

The functionalist theory — independently of any commitment to 
individualism or externalism — grounds a response to familiar worries 
about individuating digits. We could treat any voltage up to five volts 
as a single digit. Alternatively, we could treat any voltage less than 2.5v 
as single digit and any voltage from 2.5 to 5v as a distinct digit. The 

4.	 I clarify the relation between dispositions and functions in §2.3.

The strict individualist account that I favor may allow solar systems 
to compute. For those who are bothered by this drawback, I briefly in-
troduce quasi-individualism at the end of the paper. It seems to get the 
advantages of my individualist approach to explaining miscomputa-
tion while nonetheless avoiding its drawback.

I assume that a mechanistic (functional) theory of computational 
individuation is true and that content is not needed to individuate 
computational structure. Proponents of this framework tend to be 
externalists, so in §1, I explain why we should take an individualist 
version of the mechanistic theory seriously. In §2, I show that this in-
dividualist, mechanistic theory easily accounts for miscomputation. In 
§3, I criticize an externalist approach to explaining miscomputation 
inspired by Piccinini’s work. In §4, I briefly introduce the quasi-indi-
vidualist theory that may get the advantages of both my account and 
Piccinini’s without any of the disadvantages. 

1.  Computational Structures and Functional Structures

In this section, I explain why an individualist mechanistic theory is 
worth taking seriously. In §1.1, I’ll rehearse a mostly familiar rationale 
for the mechanistic theory, while highlighting its neutrality between 
externalism and individualism. In §1.2, I introduce an individualist 
mechanistic theory that is modeled on Piccinini’s externalist version. 
The near identity between the two views will make it easier to under-
stand, in §1.3, a certain advantage of going externalist and why it is a 
small one.

1.1. Mechanistic Theories of Computational Structure
I focus on digital computation. Oversimplifying, a digital computing 
system is an input-output device in which the relevant inputs and out-
puts are strings of digits. A digit is a state of the system. In simple sys-
tems, digits are often just electrical charges, where charges of different 
voltages can count as different digits. A string of digits is an ordered 
list of digits. For example, a string of digits in a system might be a series 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  3  –	 vol. 18, no. 24 (december 2018)

restricted to the functional structure of the system that is grounded in 
the integration of its parts.7 All mechanistic theories, therefore, deny 
that non-mechanisms compute. This denial provides even the crudest 
mechanistic theories with some protection against limited pancom-
putationalism. To be a mechanism requires both parts and integra-
tion among those parts. Mereological simples and mere mereological 
composites lack parts and integration, respectively.8 Thus, they don’t 
compute. 

One way to make further progress against limited pancomputation-
alism is to provide conditions on which sorts of integration are neces-
sary for the existence of a mechanism. Yet I will assume that it takes 
very little integration to count as a mechanism. For example, I assume 
that solar systems (and rocks and many other objects that intuitively 
do not compute) do have the narrowly individuated integration nec-
essary to count as mechanisms. This assumption makes it harder to 
show that individualism is worth taking seriously. 

Another way to get further distance from limited pancomputational-
ism is not to impose further restrictions on what it takes to have mech-
anistic structure, but to impose further restrictions on which mecha-
nistic structures are computational. Digestive organs are mechanisms, 
but digestive processes intuitively do not implement computation. 
Following Piccinini, I require that computationally relevant functional 
structure be medium-independent. To count as a computing system, 
a system’s behavior must be explicable at a level of abstraction that 
makes no reference to the media in which the behavior is carried out. 

Medium-independence is stronger than multiple realizability. 
There is more than one way to realize removing corks from wine bottles, 
but this behavior is necessarily performed on certain kind of media, 

7.	 See Coelho Mollo (2018) for the ways in which mechanistic theories of 
computation are related to functional and mechanistic explanation more 
generally.

8.	 I take it that the mereological composite of my nose and computer doesn’t 
compute simply because it has a part that computes. It is commonly assumed, 
for example, that the solar system doesn’t compute even though it contains 
computers.

functionalist theory claims that digits are individuated according to 
their functional significance in the system. If a system’s outputs aren’t 
differentially sensitive to input voltages of ≤5v, then the computation-
al structure of a system treats those voltages as a single digit rather 
than two. The functionalist picture, so construed, determines neither a 
unique binary syntax (e.g., assignment of 0s and 1s to voltage ranges) 
nor a unique logical function (e.g., and-gate vs or-gate). I take this to 
be a feature, not a bug. A natural corollary of the functionalist theory 
is that computational individuation is explanatorily prior to both the 
semantics and the binary syntax of the system.5 (We can still follow the 
convention of stating computations in terms of 0s and 1s, as long as 
we keep in mind that this way of talking is partly mere convention.6)

While the simple functionalist view is an improvement over the 
simple mapping account, it is still too liberal. Since systems imple-
ment only those computations that track their functional structure, it 
avoids unlimited pancomputationalism (cf. Dewhurst 2018: 115). Yet it 
doesn’t avoid limited pancomputationalism, the idea that everything 
computes at least one computation (cf. Chalmers 2011: 331). It also 
seems committed to the idea that digestive processes implement some 
computation or another (cf. 332). 

We can make a little more progress by endorsing a mechanistic 
(functionalist) theory of computation. To be a mechanism is, among 
other things, to have parts whose integrated operation explains its 
overall behavior. Mechanistic theories hold that only mechanisms 
compute and that the computationally relevant functional structure is 

5.	 See Dewhurst 2018 (especially 110–1) for clarification and further defense 
of this functionalist response to Shagrir’s and Sprevak’s individuation wor-
ries. My one caveat is that Dewhurst incorrectly (or misleadingly) claims that 
computational individuation occurs at the physical level. Coelho Mollo (2018, 
sec 7) correctly notes that Dewhurt’s response can be improved by holding 
that computational individuation occurs at the functional level.

6.	 Relatedly, many find it useful to state computations using the normal con-
ventions even though they explicitly acknowledge that it is computationally 
irrelevant whether we, e.g., assign ‘0’ or ‘1’ to the lower of two functionally 
relevant voltage ranges (Fresco 2015: 1050–1; Piccinini 2015: 142; and Shagrir 
2001: 373). For an alternative point of view, see Sprevak 2010: 268–9.



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  4  –	 vol. 18, no. 24 (december 2018)

restrictions on which sorts of functional structure are computational 
(whether there is computation at all) and restrictions on which differ-
ences in functional structure make a computational difference (which 
computation is implemented). Let the definitive list be the complete 
list specifying which properties are necessary and sufficient for a dis-
positional structure to be computational and which properties further 
individuate a system’s computational structure. The definitive list, 
then, is the correct and complete account of which functional struc-
tures count as computational and which differences between func-
tional structures make a computational difference. I’ll pretend that 
Piccinini has given us the definitive list, but even he admits that his 
list is incomplete (2015: 120).9 

My individualist account is identical to that of Piccinini (2007; 
2008; 2015), save two differences. This near identity means that my 
account inherits the incompleteness of Piccinini’s. The first difference 
concerns the scope of computational individuation. He claims that it is 
individuated widely: the environment of a system, including any larger 
system of which it is a part, can make a difference to what compu-
tational structure the system has. I claim it is individuated narrowly: 
the environment (broadly construed) cannot affect the computational 
individuation of a system. He’s a computational externalist, and I’m 
an individualist. The second difference concerns whether the compu-
tationally relevant functional structure involves normatively loaded 
teleology, i.e., whether the computationally relevant functional struc-
ture determines what the system should be doing. He says yes; I say no. 

We won’t be able to fully appreciate these differences, especially 
the second one, until the end of §2. In the meantime, I’ll assume that 
you have at least a crude idea of what the differences amount to. In the 
rest of this sub-section, I’ll consider a worry about my individualist ac-
count that arises because of the first difference. In the next sub-section, 
I’ll consider a worry about the individualist theory that arises because 
of the second difference. 

9.	 For his working list, see, e.g., 2007: 508–14, 2015b: 120–34.

namely wine bottles and corks. This behavior is multiply realizable 
but not medium-independent (Piccinini 2015: 122–3). Medium- inde-
pendence imposes a significant constraint on which functional struc-
tures are computational. The behavior of the digestive system is, for 
example, “quintessentially medium-dependent” (147). Its processes are 
defined in terms of “specific chemical changes to specific families of 
molecules” (147). 

Computational structures, then, are medium-independent func-
tional structures. These structures individuate digits. What individu-
ates a digit is not that it plays some functional role in the system at 
some level of abstraction, as long as there is some (perhaps distinct) 
level of abstraction in which the system has medium-independent 
functional structure. Rather:

Medium-Independent Individuation: to be a digit is to 
play a certain kind of role in the medium-independent 
functional structure of the system, and distinct digits are 
further typed according to their more specific roles in that 
structure (cf. Piccinini 2015: 122; cf. 127–8). 

As we’ll see in §3.2, respecting Medium-Independent Individuation in 
the context of malfunction is easier said than done.

All progress so far is neutral between individualism and external-
ism. We’ve seen that a specific kind of mechanistic theory of compu-
tation — one that appeals to medium-independent, mechanistic func-
tional structure — avoids three vices: trivializing computation, unlim-
ited pancomputationalism, and allowing digestive processes to be 
computational. Technically, the account also avoids limited pancom-
putationalism insofar as it denies that non-mechanisms compute. But 
this may seem a mere technicality. We still lack the resources to deny 
that solar systems compute. 

1.2. An Individualist Mechanistic Theory
The most promising mechanistic theories will impose further restric-
tions beyond those mentioned in the previous sub-section — both 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  5  –	 vol. 18, no. 24 (december 2018)

voltage ranges.11 If you think that computational structures track func-
tional significance, as Piccinini and I do, then you have some reason 
to treat the larger device as computing over fewer digits than one of 
its parts.

My concerns about Digital Perseverance are hardly decisive, but 
my goal is not to prove that my individualistic mechanistic theory is 
true. The goal is just to show that the theory is worth taking seriously 
enough to explore how, if true, it might contribute to an adequate ex-
planation of miscomputation.

1.3. Solar Systems: A Comparison
Piccinini’s externalist mechanist account does not allow solar systems 
to compute. That’s because solar systems “are not collections of com-
ponents functionally organized to fulfill specific teleological functions” 
(145).12 There is no teleological function of solar systems, because 
there is nothing they should be doing, and there is certainly no func-
tion that they should be computing. I allow there to be computation 
without teleological function, and Piccinini doesn’t.13 He is, therefore, 
better positioned than I am to deny that solar systems compute. That’s 
an advantage of going externalist. But it’s a small one.

Piccinini allows that something can have a teleological function 
to compute function F because it is used to compute F or a designer 
intends it to compute F (2015: 148–9). But there are limits. Usage or 

11.	 You’ll save yourself some time if you take my word for it. For the most scrupu-
lous readers, I describe such a device. Let S3 be the composition of S1 and S2. 
Suppose S1 is differentially sensitive to three voltage ranges: <2.5v, 2.5v–5v, 
and >5v. Let S1’s outputs be S2’s inputs, where S2 is only bi-stable, and thus 
only differentially sensitive to two voltage ranges, 0–5v and >5v. Whenever 
S2’s input is 0–5v, it outputs 0–5v. Whenever its input is >5v, it outputs >5v. 
In such a case, a system S3, which is solely composed of S1 and S2, will be dif-
ferentially sensitive to only two ranges, 0–5v and >5v. Assuming that Digital 
Perseverance is false, S3 is an and-gate. 

12.	 Piccinini also points out that arbitrary inputs into a solar system do not play 
the relevant functional role within a system to count as digits; however, this 
additional point is neutral between individualism and externalism.

13.	 My individualist account appeals to functional structure that is not teleologi-
cal. I clarify this sort of structure in §2.3.

Suppose that S is a computing component of some larger system 
S*. Piccinini assumes Digital Perseverance: necessarily, feature F 
counts as a distinct digit for S only if F counts as a distinct digit for S*. 
The computational structure of the whole constrains how digits are 
individuated for the part (2008: 229, 2015: 41; cf. Bontly 1998: 570 and 
Segal 1991: 492–3). Let S be Shagrir’s (2001) tri-stable system, which 
is differentially sensitive to three different voltage ranges: (i) ≤2.5v, (ii) 
between 2.5v and 5v, and (iii) >5v. Suppose S* computes over two dig-
its, ≤5v (0) and >5v (1). Digital Perseverance says that S can’t operate 
over three digits, <2.5v (0), 2.5v up to 5v (½), and ≤5v (1). If Digital 
Perseverance is true, then so is computational externalism. For, given 
Digital Perseverance, the computational structure of a part can’t su-
pervene on its physical structure, though it might supervene on the 
physical structure of the whole mechanism of which it is a part (cf. 
Segal 1991: 492–3). 

I reject Digital Perseverance. Where Piccinini sees the computa-
tional structure of the larger mechanism imposing constraints on the 
computational structure of the component part, I see computational 
significance getting lost in composition. First, it is uncontroversial that 
a complete and correct computational description of a whole device 
and each of its parts is compatible with the parts performing different, 
usually simpler,10 computations than the whole mechanism (cf. Egan 
1995: 192). If the part and whole can perform different computations, 
why can’t the part perform computations on more digits than the 
whole? Why must the whole mechanism care about everything each 
of its parts cares about? Without an answer to these questions, there is 
no reason to deny that parts can compute over more digits than their 
wholes. 

Second, it’s possible to have a computing device, such that one of 
its computing parts is differentially sensitive to three voltage ranges 
when the device as a whole is differentially sensitive only to two 

10.	 Parts tend to perform simpler computations, because systems are generally 
constructed so that their computing operations are somewhat efficient. It’s 
possible for the parts to perform more complex computations than the whole.



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  6  –	 vol. 18, no. 24 (december 2018)

problems are equally bad. A theory has a qualitative overcounting 
problem iff: the theory claims that a system computes function F when 
the system is not even eligible to compute F. A theory has a (merely) 
quantitative overcounting problem iff: the theory claims that a sys-
tem is computing function F when it isn’t, where the system is at least 
eligible to compute F. Qualitative overcounting problems are the more 
serious problem. They are category mistakes. It is a category mistake 
to call a rock a person. The rock’s internal structure prevents it from 
being a person, and so there is no possible environment in which the 
rock is a person. Likewise, it is a category mistake to say that the rock 
implements the computations necessary to run Minecraft. Its internal 
structure prevents it from implementing those computations, and so 
there is no possible environment in which it does.

A primary reason why my overcounting problems are, at most, a 
small advantage for Piccinini is that there is no way for Piccinini to 
claim that I have a qualitative overcounting problem that he doesn’t 
have.14 For my theory never allows a system to be eligible that isn’t 
also eligible under Piccinini’s theory. My alleged problems are merely 
quantitative. In §3.1, we’ll see that Piccinini’s overcounting problems 
are worse: he has qualitative overcounting problems that arise in the 
context of malfunction. 

2.  Miscomputing Individualistically 

My individualist, mechanistic account of computational individualism 
isn’t obviously correct, but it is worth taking seriously. We’ll get more 
reason to take it seriously when we see how easy it makes explaining 
miscomputation.

14.	 I’m assuming, remember, that something in the neighborhood of Piccinini’s 
mechanistic theory is true. I haven’t ruled out that a very different theory of 
computation would enjoy an advantage over mine with respect to qualitative 
overcounting.

intentions can bestow teleological function on S only if S (or at least 
properly functioning members of S’s kind) can compute the functions 
it is used or intended to compute (Piccinini 2015: 149, (iii)). In other 
words, a system’s narrowly individuated functional structure imposes 
constraints on which teleological functions it has. It can’t be a teleo-
logical function of a marvelously colored rock that it run Minecraft; 
however, since the rock can serve as a paperweight, it presumably can 
acquire the teleological function of paperweights.

Let us say that system S is eligible to compute function F iff S has 
narrowly individuated functional structure compatible with comput-
ing F. In other words, S is eligible to compute F iff there is some pos-
sible environment in which S computes F. 

Anything that is eligible to compute on my account is also eligible 
to compute on Piccinini’s. Assume that a system is eligible to compute 
on my account. Then it has medium-independent, narrowly individu-
ated functional structure that satisfies the definitive list. This is suf-
ficient for computation on my account (my individualist view entails 
that systems compute every function that they are eligible to com-
pute). For Piccinini, this medium-independent, narrowly individuated 
functional structure doesn’t suffice for computation. Yet it does suffice 
to be eligible for computation. In such a case, to get computation, on 
his view, the environment need only supply the system with a telos to 
compute a function that its medium-independent functional structure 
can compute. And such a telos can be provided by usage or intention. 

I’m committed to saying that solar systems compute whether any-
one bothers to use or intend them to compute. Piccinini denies that 
solar systems compute, but he’s committed to saying that they would 
compute if anyone (e.g., a god or supersmart alien) bothered to intend 
or use them to compute. This difference does not strike me as a sound 
basis for preferring one account of computational individuation over 
another. At any rate, any advantage here is a small one.

My account seems to have an overcounting problem. In other words, 
my account sometimes says that a system computes (a given function) 
when, intuitively, the system doesn’t do so. Yet not all overcounting 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  7  –	 vol. 18, no. 24 (december 2018)

identify what was actually communicated (I don’t like your gift) and 
what was intended to be communicated (I like the gift so much I want 
to save it for a special occasion). 

An adequate account of (the relevant sort of) miscomputation in-
volves at least three components: an account of computational be-
havior (what computation, if any, a system is performing); an account 
of computational norms (what computation[s] the system should be 
performing); and an explanation of how these two accounts together 
make it possible for a system to compute in a way it should not be 
computing. The latter explanation may be as trivial as pointing out 
that, in circumstances C, the account of computational behavior en-
tails that the system computes f1 when the account of computational 
norms says that what should be computed is a distinct function f2. 

2.2. Miscomputation Explained
To make the discussion manageable, I make two simplifying assump-
tions. First, I assume that a system always manifests its dispositions 
(and so computational structure) when triggered by the relevant input 
conditions. This allows us to ignore various complications, such as the 
possibility of masking, performance error, etc. Witches and protec-
tive Styrofoam can mask a vase’s fragility so that the vase won’t break 
when dropped. We set aside such possibilities. We assume that, when 
dropped, a vase will manifest its fragility by breaking. A computing 
system likewise performs the computations that manifest its computa-
tional structure. Second, I assume that all computation is deductive or 
non-probabilistic. When such a computing system receives a compu-
tational input and manifests its computational structure, it is guaran-
teed to produce a specific computational output. These two assump-
tions are harmless. Any adequate account of miscomputation will al-
low a computing system to miscompute when it manifests a deductive 
computational structure. These assumptions simplify our discussion 
by letting us assume that any difference in computational behavior 
must be explained by a difference in computational structure. 

2.1 Miscomputation
We can better understand miscomputation by considering some analo-
gies. To misbehave is to behave in a way that violates some relevant 
norm (e.g., the norms of rationality, morality, or etiquette). To miscom-
municate is to communicate in a way that violates some relevant norm 
(what is communicated is not what was intended to be communicated). 
To misrepresent is to represent in a way that violates some relevant 
norm (e.g., truth). You get the picture. To miscompute is to compute 
in a way that violates some relevant norm — more specifically, a norm 
for what the system should be computing. 

A miscomputation, so understood, is a special kind of malfunction. 
It is special in two ways. First, while malfunctions require normativ-
ity at some level of description, miscomputation involves normativ-
ity, more specifically, at the computational level. Where there is no 
computational behavior that the system should be performing, there 
is no miscomputation. Second, not all computational failures count as 
miscomputations. Some such failures are merely mechanical. If the 
battery breaks, the computing system won’t compute anything at all. 
And if it doesn’t compute anything at all, it’s not miscomputing, just as 
a diagram doesn’t misrepresent unless it represents. To miscompute is 
to compute. 

In this paper, I focus on a specific kind of miscomputation, the kind 
in which a system implements one computation when it should have 
implemented a distinct computation.15 The existence of such miscom-
putation should be taken seriously. There are cases of misbehavior in 
which we can identify what the child is doing (throwing his broccoli 
across the room) and what he should be doing (eating the broccoli). 
There are cases of misrepresentation in which we can identify what an 
experience represents (one horizontal line is longer than another) and 
what counts as correct representation (both horizontal lines are the 
same length). There are cases of miscommunication in which we can 

15.	 A different kind of miscomputation might occur when a system performs a 
single computation when it should have performed multiple computations in 
parallel.



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  8  –	 vol. 18, no. 24 (december 2018)

miscomputations, just pick your favorite account of the normativity 
associated with functional roles. Any of the standard accounts will 
do,17 and so will Piccinini’s (2015, ch 6). Any of them are sufficient for 
my purposes, because they individuate norms widely. Since compu-
tational behavior is individuated narrowly and computational norms 
are individuated widely, it’s easy to see that a system can compute a 
function that it isn’t supposed to compute.

Suppose, for illustration, that the normativity for a manufactured 
system can be supplied by the intentions of the designer. If so, then 
miscomputations can arise because of design error (cf. Piccinini 2015: 
149). I might intend for system S to compute function f1 but mistakenly 
construct it so that it computes function f2 instead. To compute f1, per-
haps the system needs to be differentially sensitive to three voltage 
ranges when its current construction makes it differentially sensitive 
to only two. In such a case, S would be miscomputing. 

Or suppose that S is a computing component of some larger bio-
logical system S*. In order for S to make its essential contribution to 
the biological fitness of S* (or whatever determines S’s teleological 
function), it needs to compute function f3. But a component of S is 
damaged (S has a brain lesion, perhaps), so it computes f4 instead. S is 
miscomputing. f4 is the computation that actually explains the behav-
ior of S, when it should have behaved so as to be correctly explained 
by f3. Again, given my account of computational structure and any 
standard account of computational norms, S would be miscomputing.18

17.	 See Allen (2003) for a survey of the standard accounts for biological 
organisms.

18.	 For simplicity, I assume that only one set of computational norms will apply 
to a given device. If it is possible for a device to be subject to conflicting com-
putational norms (e.g., I intend that a device compute a certain function and 
you intend it to compute a distinct function), then a device may miscompute 
relative to one set of norms without miscomputing relative to all norms that 
apply to it. 

Recall from §1 that, in the abstract, a computational structure is a 
complete mapping of computational inputs to computational outputs. 
A physical system has a certain computational structure iff the struc-
ture/mapping counts as a correct description of the system’s actual 
and counterfactual behavior. The computational structure of a system 
tells us what the system would do were it to receive a given compu-
tational input. Perhaps when given string 0,1 as an input, it outputs 1. 
When you know the actual inputs to the system (and you assume that 
a deductive computational structure is manifested), the computational 
structure tells you the actual computational behavior of the system. In 
other words, computational structure + computational inputs = com-
putational behavior. 

Any account of computational behavior will have this same ba-
sic structure. The main difference between rival accounts of compu-
tational behavior will be their respective accounts of computational 
structure.16 When circumstances remain fixed, a difference in compu-
tational behavior requires a difference in computational structure.

My account of a system’s computational behavior begins, naturally 
enough, with my account of computational structures. Recall that, on 
my view, a system’s computational structure is determined by its nar-
rowly individuated, medium-independent functional structure (that 
satisfies the definitive list). To determine what computations are being 
performed by the system, just plug in the computational inputs (i.e., 
those states of the system that play the relevant kind of functional role 
in the behavior of the system). 

I deny, however, that narrowly individuated, medium-independent 
functional structure determines the computational norms for the sys-
tem. The norms that guide a system’s computational behavior are 
given, at least in part, by something external to the system itself, e.g., 
the evolutionary history of the system, the intentions of a designer, 
the role that system plays in some larger system, etc. To account for 

16.	 Rival accounts of computation can disagree about what counts as the compu-
tational input to the system, i.e., what counts as a digit, but these differences 
will reduce to disagreements over the computational structure of the system



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  9  –	 vol. 18, no. 24 (december 2018)

proper function come apart — the purely descriptive notion tracks ac-
tual function.

There is also a normatively loaded sense of function and functional 
structure. To say that the function of the heart is to pump blood, in this 
sense, is to say that the heart is supposed to pump blood. This sense of 
function tracks not how things actually work but how they should work. 
The normatively loaded sense of functional structure represents, at a 
certain level of abstraction, the dispositions the components should 
have and how those dispositions should work together to underwrite 
the dispositions the system should have. 

The purely descriptive and normatively loaded senses come to-
gether in properly functioning systems. If a system is functioning prop-
erly, a system’s purely descriptive and normatively loaded functional 
structures are identical.19

In contrast, the purely descriptive and normatively loaded senses 
come apart in malfunctioning systems. If a system malfunctions, one 
functional structure will describe the actual organization and opera-
tion of the system and a distinct structure will describe how the system 
should be organized and how it should operate. Malfunction is pos-
sible only when actual (purely descriptive) functioning deviates from 
proper (normatively loaded) functioning.

The purely descriptive/normatively loaded distinction is not the 
narrow/wide distinction. The latter distinction concerns whether, at 
a certain level of abstraction, a system’s environment can affect the 
individuation of its current structure and behavior. The former con-
cerns whether, at a certain level of abstraction, a certain structure and 
behavior are (pure) descriptions of or norms for a given system. It is 
ordinarily assumed that norms must be individuated widely, but, in 
principle, purely descriptive functional structure could be wide or nar-
row. My view of computational structures is that the purely descriptive 

19.	 For simplicity, I assume that computational norms require a single, specific 
normatively loaded structure. If proper function is compatible with a range of 
functional structures (as is typical in actual cases), then there will be a set of 
normatively loaded functional structures and the actual functional structure 
of properly functioning systems will be identical with one member of that set.

2.3. Two Senses of Functional Structure
To better understand how my account of miscomputation works, we 
need to disambiguate two senses of function and functional structure. 
Functions are special kinds of dispositions. Roughly, a component has 
a disposition to X in circumstances C iff it tends to X in C. Hearts are 
disposed to pump blood when they receive the relevant sort of electri-
cal charges and are connected to blood vessels in the relevant sort of 
way and so on. Hearts are also disposed to make noise in those same 
circumstances. Yet not all dispositions have the same sort of explana-
tory significance within a larger system. A component’s disposition is 
a function of that component iff the disposition is needed, at a certain 
level of abstraction, to account for the dispositions and behavior of the 
overall system (cf. Cummins 1983: 28–9). At the biological level of ab-
straction, we need to appeal to the heart’s pumping blood — but not its 
making noise — in order to account for the dispositions and behavior 
of the circulatory system. Hence, all functions are dispositions, but not 
all dispositions are functions. To be a function is to be a disposition 
that plays an explanatory role in a larger system.

A functional structure of a system represents, at a certain level of 
abstraction, how the dispositions of each component underwrite the 
dispositions of the overall system. When the dispositions of the vari-
ous components are manifested, they work together to explain the be-
havior of the overall system. The functional structure of the circulatory 
system would not only represent the heart’s contribution, but also the 
contributions of blood and blood vessels, to the dispositions and op-
eration of the circulatory system. Functional structures track how the 
functions of the components work together to account for the disposi-
tions and behavior of the overall system. 

Functional structures, so understood, are purely descriptive. They 
describe, at a certain level of abstraction, how the dispositions of the 
components actually work together to explain the system’s disposi-
tions and behaviors. There is no further claim that this is how the 
various components should work (together). Perhaps it is and per-
haps it isn’t. When a system functions improperly — when actual and 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  10  –	 vol. 18, no. 24 (december 2018)

properly functioning computing systems, the system’s actual compu-
tational structure will be identical to the computational structure that 
it should have. Since (actual) computational structures are narrowly 
individuated, the computational structure that a system should have 
must be specifiable in narrowly individuated terms. 

Contrast the following two norms for a given system S:

Norm specified in wide terms: When the input voltage is >5v, 
output the voltage that will allow the larger system to op-
erate as an and-gate.

Norm specified in narrow terms: When the input voltage is 
>5v, output >5v.

The first norm is specified in wide terms, because it references the 
larger system of which S is actually a component. The second norm is 
specified in narrow terms, because it mentions behavior that can be 
individuated internally to the system. There is no reference, explic-
itly or implicitly, to things beyond the system itself. Essentially, the 
internally individuated structure a system should have is whatever in-
ternally individuated structure properly functioning versions of that 
system do have. I say computational norms are widely individuated 
not because they are specified in terms that reference things beyond 
the internally individuated states and structure of the system; rather, 
computational norms are widely individuated because what makes 
something the proper internal structure for a system is determined by 
things beyond the internally individuated states and structure of the 
system (e.g., what it takes for the system to survive in its environment, 
the goal of some designer, etc.).

3.  Miscomputing Externalistically: Parasitic Strategies

You have just seen how easily computational individualists can accom-
modate miscomputation. Since they can endorse internally individu-
ated computational behavior while holding onto externally individu-
ated computational norms, it is no mystery how a system can compute 

structure is narrow and the normatively loaded is wide. In other words, 
I think computational behavior is narrow and computational norms 
are wide. At other levels of abstraction, both behavior and norms may 
be wide. One externally individuated functional structure might pro-
vide the norms for our mental structure and behaviors (e.g., the norms 
of rationality), and — given content externalism — a distinct widely in-
dividuated functional structure would specify our actual mental struc-
tures and behavior.

We now have a deeper understanding of the only two differences, 
especially the second, between my account of computational behavior 
and that of Piccinini. The first difference is that my version appeals to 
narrow functional structure and his appeals to wide functional struc-
ture. The second difference is that my version appeals to purely de-
scriptive structures and his to normatively loaded ones (cf., e.g., Pic-
cinini 2015: 113–4, 151). When we get to the next section, we’ll see that 
the second difference largely explains why Piccinini’s account has a 
hard time identifying the computational behavior of malfunctioning 
systems.

Narrowly individuated functional structure is, of course, not a good 
candidate to account for normatively loaded functional structure or, 
more specifically, the computational norms of a computing system. 
That is why, when I discuss the norms for a device — computational 
or otherwise — I follow just about everyone else in asserting that the 
norms are individuated widely. Miscomputation is made possible on 
my account, precisely because there is a gap between the narrow in-
dividuation of (purely descriptive) computational structure and the 
wide individuation of (normatively loaded) computational norms. A 
system miscomputes when its behavior manifests a narrow computa-
tional structure that the widely individuated norms say that it should 
not have.

My account of computational structure does impose one constraint 
on computational norms that I should mention. Recall that, in prop-
erly functioning systems, a system’s purely descriptive functional 
structure is identical to its normatively loaded functional structure. In 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  11  –	 vol. 18, no. 24 (december 2018)

teleological in nature: to be a function is to make a stable contribution 
to attaining certain goals. Roughly, for organisms, the goal would be 
survival, and for artifacts, the goal would be some goal of a designer/
user. This kind of functional structure is wide, because these goals are 
determined, in part, by something beyond the system itself. 

Teleology is generally designed to play a normative role, so it’s 
plausible that the computational structure that a system should have 
just is the computational structure, if any, that fulfills the system’s te-
leological function. Externalists also sometimes insist that teleology 
has a significant role to play in determining (actual) computational 
structure.20 Whatever this role amounts to, we must allow that the 
computational structure of a malfunctioning system can vary at least 
somewhat independently of a system’s teleology. 

Suppose that S1 and S2 and S3 are all computing systems of kind 
K, and their teleological function requires them to perform a certain 
computation. In particular, they are required to output 0 (any positive 
voltage ≤5v) when they receive input 0,0. While S1 fulfills its teleo-
logical function, S2 and S3 do not (they’re broken). When given 0,0 as 
an input, S1 outputs 0, S2 outputs a distinct output (9v), and S3 is so 
broken that it doesn’t output anything at all. S1 and S2 seem to be com-
puting distinct functions, and S3 doesn’t seem to be computing at all.21 
Damage can change the computational structure of a system without 
changing its teleology. Any appeal to teleology must respect this point.

Piccinini (2015: 109–10) claims, as is typical of those who appeal to 
teleology, that properly functioning systems have a kind of metaphysi-
cal priority over malfunctioning systems. He doesn’t cash out this pri-
ority or its relevance for miscomputation. One way to cash it out is in 
terms of digit individuation: what counts as a digit for a malfunction-
ing system depends on what counts as a digit for properly functioning 

20.	See, e.g., Bontly (1998: 569–70) and Piccinini (2015: 43).

21.	 Why think that S3 does doesn’t compute at all? Computation is a certain kind 
of transition between inputs and outputs: no outputs, no computation. S3 
makes as if to compute but fails to compute. Just as throwing the ball requires 
the ball to leave my hand, computing requires the system to output a (com-
plete) string of digits. 

a function that it shouldn’t. In this section, we see that Piccinini’s ex-
ternalism makes it more difficult to explain how such miscomputation 
is possible. 

3.1. Teleology and Actual Computational Structure
We are focused on the sort of miscomputation in which a system com-
putes a function when it should have computed a distinct function. 
Piccinini (2015b: 149, (ii)) agrees that such miscomputations exist. To 
adequately explain such miscomputations, our account of computa-
tional behavior must individuate the computational behavior of mal-
functioning systems — not just properly functioning ones. When a 
system malfunctions, we need an account to determine whether the 
system is nonetheless computing and, if so, which function it is com-
puting. Piccinini never explicitly provides such an account. 

The heart of the problem is Piccinini’s characterization of miscom-
putation: “if the [computing] mechanism malfunctions, a miscomputa-
tion occurs” (Piccinini 2015b: 122; cf. 14 and 2015a, sec 2.5). Fresco and 
Primiero make a similar mistake: “When a [computing] system fails 
to accomplish the purpose for which it was designed, a miscomputa-
tion can be identified” (2013: 257; cf. Coelho Mollo forthcoming, sec 
4). When you think about miscomputation in this way, it is tempting to 
conclude that you’ve explained how miscomputation is possible when 
all you’ve shown is that it is possible for a computing system to issue 
the wrong output (2015: 148–50 and especially 24 and 148) or when 
all you’ve shown is that it’s possible for a computing system to fail to 
follow every step of a given computational procedure (2015: 14). But to 
explain miscomputation, we need to explain more: we need to explain 
why the particular malfunctions at issue still count as computation. To 
miscompute is to compute.

With that said, let’s see whether we can develop a workable ac-
count of miscomputation from the resources Piccinini provides. What 
is clear is that teleology should play an important role. In chapter 
6, Piccinini provides an account of wide functional structure that is 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  12  –	 vol. 18, no. 24 (december 2018)

transitions between inputs and outputs count as computations. A 
mapping from inputs to outputs does not count as a computation if:

a. As the system is currently composed, variations in the 
inputs are causally irrelevant to variations in the outputs;23

b. As the system is currently composed, inputs cause out-
puts (e.g., no input charge, no output charge), but it is 
entirely random which output is matched with a given 
input.24

A malfunctioning computing device counts as computing, according 
to Parasitic Individuation, as long as the inputs and outputs are com-
putational states in properly functioning systems. In the imagined case 
above, the damaged system receives input states (2v, 7v) and outputs 
states (2v), which are computational states in properly functioning sys-
tems. That was all it took to show, given Parasitic Individuation, that 
the imagined system was performing the computation af(0,1) = 0. Yet 
if the system is damaged so that the input states are causally irrelevant 
to the output states or the inputs only randomly cause the outputs, it is 
implausible that the damaged system is genuinely computing. For ex-
ample, suppose that the mechanism that controls the outputs is stuck 
on 2v, so that the input charges (0,1) do not explain why it outputs 
what it does (0). The system’s behavior isn’t computational. While the 
system malfunctions, it isn’t computing, and so it isn’t miscomputing 
either. To endorse Parasitic Individuation is to overcount both compu-
tations and miscomputations in malfunctioning systems.

Yes, I remember that my individualist account is subject to over-
counting problems, but Parasitic Individuation’s overcounting prob-
lems are worse. Recall that there are two kinds of overcounting prob-
lems: quantitative and qualitative. A theory has the former problem 
when it says that a system computes some function F when it, while 

23.	 See, e.g., Chalmers 2011: 326 and Piccinini 2015: ch 7.

24.	 See, e.g., Church 1940 and Piccinini 2015: 126–7.

systems of its type. If a malfunctioning system takes voltages as inputs 
and outputs, then whether those voltages count as digits and which 
digits they are is determined by how, if at all, voltages are grouped in 
properly functioning systems of the same kind. If those voltages are 
digits in properly functioning systems, then they are digits in malfunc-
tioning systems. If certain voltages count as distinct digits in properly 
functioning systems, then they remain distinct digits in malfunction-
ing systems of the same type. 

In other words, we might endorse something like:

Parasitic Individuation: The system’s microstates (e.g., 
electrical charges) must be grouped together into mac-
rostates, or digits, as demanded by proper function. If, ac-
cording to these groupings, the system’s current behavior 
involves inputs and outputs that count as digits, then the 
system’s actual computation is given by the digits actually 
inputted and outputted.22 

To see the appeal of Parasitic Individuation, consider an illustration. 
Let ‘pf(m) = n’ represent the computation that system S should per-
form. Let ‘af(m) = n’ represent the computation actually performed by 
S. Suppose that, in the current circumstances, pf(0,1) = 1, where proper 
function individuates microstates into two digits, 0 (≤3v) and 1 (>5v). 
If S functions properly, then af(0,1) will likewise equal 1. Yet suppose 
that S is damaged in a way such that S receives the inputs 2v and 7v 
and outputs 2v. Parasitic Individuation tells us that the computation 
performed by S is af(0,1) = 0. Due to malfunction, we get one value 
for pf(0,1) and a distinct value for af(0,1). Thus, Parasitic Individua-
tion accounts for the kind of miscomputation we are after, the kind 
in which a system implements one computation when it should have 
implemented a distinct computation. But there’s baggage.

Parasitic Individuation overcounts computations and miscomputa-
tions. Individualists and externalists generally agree that only certain 

22.	 In personal correspondence, Piccinini suggested this account to me and said 
that it was behind what he did say in the book.



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  13  –	 vol. 18, no. 24 (december 2018)

after you dropped it on the floor). In the case of computing organisms, 
ancestry may also play a role in explaining why certain categories and 
norms apply to a given system even though the system isn’t fulfilling 
the relevant norms.

Those forms of priority do not commit us to any sort of computa-
tional externalism. For the individualist can accept those forms of pri-
ority and coherently deny that there is also individuative priority. She 
can coherently deny, in other words, that the computational structure 
of properly functioning systems partly individuates the computational 
structure of malfunctioning systems. The individualist can insist that a 
system’s actual computational behavior is given solely by its narrowly 
individuated structure while also holding that you must look outside 
the system to tell which norms and whether certain categories apply 
to it. 

I treat the computational structure of all systems in exactly the same 
way: whether a system is functioning properly or improperly, a sys-
tem’s computational structure is its internally individuated functional 
structure (that satisfies the definitive list). That’s simple. By further de-
manding individuative priority — by demanding that proper function 
partly individuates the actual computational behavior of malfunction-
ing systems — Parasitic Individuation individuates the computational 
structure of properly functioning systems one way and the computa-
tional structure of malfunctioning systems another. It pays the price 
of complication just to get the qualitative overcounting problem in 
return. Perhaps a refined version of Parasitic Individuation will fare 
better.

3.2. Parasitic Individuation Plus
Miscomputation is a special kind of computing malfunction. No 
computation, then no miscomputation either. Parasitic Individua-
tion doesn’t respect this point, as it allows malfunctioning computing 
systems to miscompute when they don’t even have an internal struc-
ture compatible with computation. To address this problem, Parasitic 
Individuation must be constrained so that it types the microstates of 

eligible to compute F, is not actually computing F. A theory has the 
latter problem when it allows a system to compute F when the sys-
tem is not even eligible to compute F, i.e., the intrinsic structure of the 
system is incompatible with computing F. The latter sort of problem 
seems to be worse. It is tantamount to a category mistake. My indi-
vidualist account suffered from only quantitative overcounting — at 
least, there’s no way for Piccinini to push a qualitative overcounting 
problem against me without facing one himself (§1.3). My contention 
is that Parasitic Individuation suffers from qualitative overcounting. 

If a system’s inputs do not cause its outputs, then there is no pos-
sible environment in which it is computing. We are working within a 
mechanistic theory which holds that a computational description of a 
system’s behavior is a certain kind of explanatory description. To at-
tribute a computation to a system is to say that the particular pattern 
of inputs causally explains the particular pattern of outputs. But Para-
sitic Individuation allows malfunctioning mechanisms to compute in 
the absence of such causal explanation. That’s qualitative overcount-
ing. In the next section, we’ll try to fix this problem with Parasitic 
Individuation. 

For now, I want to explain how, if I endorse a teleological account 
of computational norms, my individualist account can retain the popu-
lar idea that properly functioning systems have metaphysical priority 
over malfunctioning systems. I can do this in at least two ways. I can al-
low for classificatory and normative priority. Suppose we are looking at 
a certain device, D1, which is a properly functioning calculator of kind 
K. We now look at another device, D2. We might think that D2 should 
count as a calculator of kind K even though it fails to compute in the 
way demanded by the norms of K. Such a possibility raises two related 
questions, one normative — Why do the norms of K apply to D2? — and 
one classificatory — Why does D2 count as a K in those circumstances? A 
natural answer to these questions is that D2 bears some special rela-
tion to properly functioning members of kind K. In the case of calcula-
tors, the relation will likely involve some sort of physical similarities, 
similar causal histories, or even identity (imagine that D2 just is D1… 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  14  –	 vol. 18, no. 24 (december 2018)

as a distinct digit (1). SPF is functioning properly, and its medium-in-
dependent functional structure treats voltages in the way that proper 
function requires. When it receives inputs 6v, 6v and outputs 3v, its 
behavior will be described by af(1,1) = 0. 

In contrast, SMF is malfunctioning. While it has medium-indepen-
dent functional structure, it doesn’t treat voltages in the way that prop-
er function requires. It treats all voltages ≤6v the same way and all 
voltages >8v in a distinct way. Suppose SMF receives inputs 6v, 6v and 
it outputs 3v. PIP individuates SMF’s macrostates according to proper 
function — recall that the parasitic approach makes the individua-
tion of macrostates in malfunctioning systems parasitic on the indi-
viduation of macrostates in properly functioning systems — and so PIP 
holds that SMF’s behavior is also given by af(1,1) = 0. This description 
of SMF’s behavior seems mistaken. It is true that SPF and SMF’s actual 
behavior is given by the same function, even though only the latter is 
miscomputing. That, by itself, is not a problem (cf. Fresco 2013, ch 2; 
Piccinini 2015: 13). What’s problematic is that this description of SMF’s 
computational behavior mistakenly implies that it treats 6v differently 
than 3v. Indeed, SMF counts as malfunction precisely because it does 
not treat 6v differently than 3v. The underlying problem is that PIP 
(and the simpler Parasitic Individuation) doesn’t respect Medium-In-
dependent Individuation. When a malfunctioning system is genuinely 
computing, PIP groups microstates together, not in the way the mal-
functioning system does it, but in the way that its properly functioning 
counterparts do it. 

My individualist account fares better precisely because it respects 
Medium-Independent Individuation. SMF treats all voltages ≤6v in the 
same way, and so my individualist account groups those voltages to-
gether as a single digit. When SMF receives inputs 6v, 6v and outputs 
3v, my account holds that SMF’s behavior is given by af(0,0) = 0. This 
computational description captures the intuitive verdict that SMF is 

malfunctioning systems into digits only when the malfunctioning sys-
tem is eligible to compute.

Consider Parasitic Individuation Plus, i.e., Parasitic Individuation 
plus this constraint: a malfunctioning system computes (and so has 
digits) only if it has medium-independent functional structure. Para-
sitic Individuation Plus (PIP) is a step forward. Like Parasitic Individu-
ation, PIP makes room for the kind of miscomputation in which a sys-
tem computes one function when it should have computed a distinct 
function. Unlike Parasitic Individuation, it is apparently not subject to 
qualitative overcounting problems. Parasitic Individuation individu-
ates the microstates of malfunctioning computing systems into dig-
its as demanded by proper function regardless of the system’s actual 
functional structure. PIP individuates the microstates of malfunction-
ing computing systems into digits (as demanded by proper function) 
only when the malfunctioning system has medium-independent func-
tional structure. It consequently doesn’t say that a system miscom-
putes when its inputs fail to be causally relevant to the outputs or only 
randomly cause the outputs. This is genuine progress.

The problem with PIP (and an additional problem with Parasitic 
Individuation) is that it fails to respect Medium-Independent Individu-
ation (roughly, a system’s medium-independent functional structure 
is what individuates its digits). For a given system, suppose that ≤3v 
gives us one digit (0) and >5v gives us a distinct digit (1). Given Medi-
um-Independent Individuation, this assignment of digits tells us three 
things about how the system treats different voltages: it treats all volt-
ages ≤3v the same way, it treats all voltages >5v the same way, and it 
treats voltages ≤3v differently than it treats voltages >5v (cf. Piccinini 
127–8). Here “the same treatment” is essentially the absence of differ-
ential sensitivity. At a medium-independent level of abstraction, the 
system is differentially sensitive to the difference between 2v and 7v 
but not to the difference between 2v and 3v. 

Now consider two systems, SPF and SMF. The two systems are of the 
same type and are subject to the same computational norms. These 
norms demand that pf(1,1) = 0, ≤3v count as one digit (0), and >5v 



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  15  –	 vol. 18, no. 24 (december 2018)

claim that a system’s environment (construed broadly enough to in-
clude designer intentions, any larger systems of which the system is 
a component, etc.) can affect neither whether a system computes nor 
which particular function it computes if it computes at all. My account 
of computational individualism is a strict individualist account in this 
sense. In contrast, typical externalisms allow the environment to affect 
both whether a system computes and which particular function the sys-
tem computes. Piccinini’s account is a typical externalism. Externally 
individuated teleological function is required for something to com-
pute, and it helps determine which function is computed. 

There is an intermediate position between strict individualism 
and typical externalism that we can call quasi-individualism. Quasi-
individualism (A) allows the environment to affect whether a sys-
tem computes at all but (B) doesn’t allow it to affect which function 
the system computes, assuming the system computes at all.26 Strictly 
speaking, quasi-individualism is an externalism, because it allows the 
environment to affect whether a system has computational structure 
in the first place. Yet its implications for computational individuation 
are probably closer to stereotypical individualist accounts than stereo-
typical externalist ones.

(A) enables the quasi-individualist to endorse Piccinini’s explana-
tion of why solar systems don’t compute. Piccinini holds that solar sys-
tems don’t compute because computation isn’t one of their teleologi-
cal functions. Let the quasi-individualist, then, endorse this first-pass 
condition: a system computes only if it has computation as a teleologi-
cal function.27 The problem with strict individualism is thus avoided.

26.	Coelho Mollo (2018) may endorse something in the neighborhood of 
quasi-individualism.

27.	 Suppose a system has narrowly individuated, medium-independent function-
al structure in both voltage and temperature ranges. If the quasi-individualist 
wants to allow that the system computes over, say, voltage ranges without 
computing over temperature ranges too, then she can tweak the first pass: a 
system computes over a given kind of input only if the system has a teleological 
function to compute over that kind of input. 

miscomputing precisely because it mistypes microstates, i.e., it groups 
microstates into macrostates in ways that it shouldn’t.25

4.  Quasi-Individualism: The Best of Both Approaches?

My individualist account of computational behavior made explaining 
miscomputation a breeze. Since computational norms are individu-
ated widely and computational behavior is individuated narrowly, it is 
no mystery how a system could compute one function when it should 
have computed a distinct function. On the downside, it avoids limited 
pancomputationalism only by the hair of its chinny-chin-chin. While 
mereological simples won’t compute any function at all, solar systems 
will compute some function or another. 

Piccinini-inspired parasitic approaches decisively avoid limited 
pancomputationalism. Yet Parasitic Individuation incorrectly entails 
that some malfunctioning systems compute when their internal struc-
ture makes it impossible for them to compute. Parasitic Individuation 
(Plus) incorrectly individuates which miscomputation is implemented 
by malfunctioning systems. Wouldn’t it be great if we had a theory that 
got both advantages without any of the vices?

I will briefly outline such a theory for interested parties, but keep in 
mind that I’m happy with the individualist theory. Strict individualists 

25.	 One may wonder whether computational externalists should find Medium-
Independent Individuation plausible after all. A certain tri-stable system is 
differentially sensitive to three different voltage ranges: (i) ≤2.5v, (ii) between 
2.5v and 5v, and (iii) >5v (cf. Shagrir 2001). If this system is a properly func-
tioning component of some larger system that groups (i) and (ii) together, it 
doesn’t seem silly to treat (i) and (ii) as composing a single digit for the com-
ponent system either (cf. Piccinini 2008: 229, 2015: 41). At first glance, this 
may seem to violate Medium-Independent Individuation, but I don’t think 
it does. It is certainly true that the system treats (i) and (ii) differently than 
(iii), and the system is arguably treating (i) and (ii) in the same way at some 
appropriate level of generality — the level of generality at which the larger 
system is operating. Arguably, then, Medium-Independent Individuation is 
being respected. What would violate it is if we typed this tri-stable system’s 
microstates such that ≤3v is one digit (0) and >4v is a distinct digit (1). We 
get the violation because the computational joints are cut where there are no 
medium-independent functional joints (at any level of medium-independent 
generality).



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  16  –	 vol. 18, no. 24 (december 2018)

made the individuation of improper computation parasitic on the in-
dividuation of proper computation. The two versions of this approach 
we considered had problematic implications for what systems were 
computing when they were malfunctioning (§3). 

Fourth, for those who are bothered by individualism’s flirtation 
with limited pancomputationalism, I introduced quasi-individualism 
(§4). This view requires teleological function for a system to compute 
but otherwise is identical to my individualist account. Perhaps it pro-
vides the most promising approach to explaining miscomputation, but 
for now I’ll stick with plain ol’ individualism.29

References

Allen, Collin. 2003. “Teleological Notions in Biology.” Stanford Encyclo-
pedia of Philosophy, Edward N. Zalta (ed.). Stable URL: http://plato.
stanford.edu/entries/teleology-biology/. 

Bontly, Thomas. 1998. “Individualism and the Nature of Syntactic 
States.” The British Journal for Philosophy of Science 49(4): 557–74.

Chalmers, David. 2011. “A Computational Foundation for the Study of 
Cognition.” Journal of Cognitive Science 12(4): 323–57.

Church, Alonzo. (1940). “On the Concept of a Random Sequence.” Bul-
letin of the American Mathematical Society 46(2): 130–5. 

Coelho Mollo, Dimitri. Forthcoming. “Are There Teleological Func-
tions to Compute?” Philosophy of Science. 

_____. 2018. “Functional Individuation, Mechanistic Implementation: 
The Proper Way of Seeing the Mechanistic View of Concrete Com-
putation.” Synthese 195(8): 3477–97.

_____. 1983. The Nature of Psychological Explanation. Cambridge (MA): 
The MIT Press.

29.	Helpful comments on earlier drafts were provided by Paul Davies, Josh Gert, 
Matt Haug, Jonathan McKeown-Green, Marcin Miłkowski, Kevin Sharpe, 
multiple anonymous referees, and the audiences at Minds Online and the 
2015 APA Central. Gualtiero Piccinini deserves special mention, as he pro-
vided detailed, helpful comments on multiple versions of this paper. Those 
earlier drafts were written thanks to a Marsden Fund Fast-Start Grant and a 
William & Mary Summer Research Grant. I owe these people and institutions 
my gratitude.

(B) allows the quasi-individualist to individuate which computation 
is being performed in exactly the same way as the individualist. The 
computation is determined by the narrowly individuated functional 
structure (that satisfies the definitive list) — and this applies to both 
properly functioning and malfunctioning systems. A system miscom-
putes when its behavior manifests a narrow computational structure 
that its widely individuated computational norms say it should not 
have. Quasi-individualism may thus offer hope to explain miscompu-
tation as easily and straightforwardly as the individualist while deci-
sively avoiding limited pancomputationalism.28

Conclusion

This paper tries to better understand miscomputation (from within a 
mechanistic framework). First, it clarifies what miscomputation is and 
what it takes to adequately account for it (§2.1). A system miscom-
putes when it computes in a way that it should not compute. Thus, 
a complete theory of miscomputation will involve three component 
accounts: accounts of a system’s computational behavior, its computa-
tional norms, and how a system’s actual computational behavior can 
violate those norms. 

Second, this paper develops an individualist theory of miscompu-
tation. It defends a mechanistic account that individuates computa-
tional behavior narrowly (§1 and §2.3). All standard accounts of com-
putational norms individuate norms widely, and any of them will do. 
Together these two component accounts give us the third: a system’s 
computational behavior can violate its computational norms precisely 
because the former is individuated narrowly and the latter are indi-
viduated widely (§2.2). 

Third, I criticized Piccinini’s approach to miscomputation, which 

28.	Suppose that a device is eligible to compute but lacks a teleological function 
(and anything else that might determine what the device should be comput-
ing). In these circumstances, the device can compute but it can’t miscompute. 
If you find this result odd (I don’t), then you’ll have an additional reason to 
prefer quasi-individualism over my strict individualism. For only quasi-indi-
vidualism prevents computation in the absence of teleological function.



	 chris tucker	 How to Explain Miscomputation

philosophers’ imprint	 –  17  –	 vol. 18, no. 24 (december 2018)

Dewhurst, Joe. 2018. “Individuation without Representation.” The Brit-
ish Journal for the Philosophy of Science 69(1): 103–16.

_____. 2014. “Mechanistic Miscomputation: A Reply to Fresco and 
Primiero.” Philosophy & Technology 27(3): 495–8.

Egan, Frances. 1995. “Computation and Content.” The Philosophical Re-
view 104(2): 181–203.

Fresco, Nir. 2015. “Objective Computation Versus Subjective Compu-
tation.” Erkenntnis 80(5): 1031–53.

_____. 2013. Physical Computation and Cognitive Science. Dordrecht: 
Springer.

Fresco, Nir and Giuseppe Primiero. 2013. “Miscomputation.” Philoso-
phy & Technology 26(3): 253–72.

Piccinini, Gualtiero. 2015a. “Computation in Physical Systems.” Stan-
ford Encyclopedia of Philosophy, Edward N. Zalta (ed.). Stable URL: 
https://plato.stanford.edu/entries/computation-physicalsystems/

_____. 2015b. Physical Computation: A Mechanistic Account. Oxford: Ox-
ford University Pres.

_____. 2008. “Computation without Representation.” Philosophical 
Studies 137(2): 205–41.

_____. 2007. “Computing Mechanisms.” Philosophy of Science 74(4): 
501–26.

Segal, Gabriel. 1991. “Defence of a Reasonable Individualism.” Mind 
100(4): 485–94.

Shagrir, Oron. 2001. “Content, Computation, and Externalism.” Mind 
110(438): 369–400.

Sprevak, Mark. 2010. “Computation, Individuation, and the Received 
View on Representation.” Studies in the History and Philosophy of Sci-
ence 41(3): 260–70.


