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1. Introduction

In this paper we focus on Chellas-Segerberg (CS) semantics, a possible worlds
semantics for a two-place necessity operator� that goes back to Chellas [5] and
Segerberg [21], where a formula α� β is interpreted in terms of a conditional of
sort ‘if α then β’. CS semantics uses a three-place accessibility relation RX between
pairs of possible worlds relativized to sets of possible worlds X. In this semantics
a two-place necessity formula (or conditional) α� β is true at a world w iff β is
true at all worlds accessible from w by R‖α‖ where ‖α‖ is the set of possible worlds
at which α is true according to a valuation function V . CS semantics is a relativized
Kripke possible worlds semantics insofar as α � β can be unofficially read as
a necessity statement of the form [α �] β where [α �] represents a necessity
operator for each antecedent α (cf., [5, p. 138]; [21, p. 157]).

We present here (i) a non-trivial frame-based completeness result for a lattice
of systems described by 30 principles discussed in the conditional logic literature,
(ii) a translation procedure that gives us corresponding trivial frame conditions for
arbitrary formula schemata, and (iii) non-trivial frame conditions in CS semantics
which correspond to the 30 principles. The completeness property envisaged in (i)
is non-trivial insofar as not all conditional logics are strongly complete with respect
to (w.r.t.) some class of frames. The completeness result is based on structural,
frame-based as opposed to model-based conditions which were not established in
[5] and [21].

The reference for the paper is as follows: Unterhuber, M. & Schurz, G. (2013). Completeness and 
Correspondence in Chellas-Segerberg Semantics. Studia Logica, retrieved from http://
www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s11225-013-9504-5.

The final paper is available at http://www.springerlink.com/openurl.asp?
genre=article&id=doi:10.1007/s11225-013-9504-5.
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CS semantics resembles set-selection semantics, which can be described in
terms of an accessibility relation Rα that is relativized to formulas rather than sets
of possible worlds, and where a conditional α � β is true at a world w iff β

is true at all worlds accessible by Rα (e.g., Priest [17, p. 85]; Lewis [13, p. 60]).
Whereas set-selection semantics does not face the difficulties described in Sect. 5,
it does not allow for a characterization in terms of structural, frame-based condi-
tions, since the accessibility relations Rα eventually have to be interpreted in terms
of valuation functions.

Note that the present results extend the results described in Unterhuber [24] and
are not implied by the investigations of multi-modal extensions of Kripke frames
by Blackburn et al. [4, p. 20], Fine and Schurz [6], and Gabbay et al. [7, p. 20f].

2. Languages

We discuss CS semantics as described by the modal language LCL (‘CL’ for ‘Con-
ditional Logic’), which contains atomic propositional variables p, p0, . . .∈ AV
(AV is the set of atomic variables) and is closed under truth-functional propo-
sitional operators and the two-place modal operator � plus its dual �. We
use letters α, α0, . . . , β, β0, . . . to refer to formulas of the language LCL. The
primitive logical symbols of LCL are ¬ (“negation”), ∨ (“disjunction”) and �
(“conditional operator”) as well as the defined logical symbols ∧ (“conjunction”),
→ (“material implication”),↔ (“logical equivalence”), > (“verum”), ⊥ (“falsum”)
and� (“dual of the conditional operator”) which are defined as usual (in particu-
lar, (α� β) =df ¬(α� ¬β)). We also use the expression L to refer to the set of
all formulas of a language L.

In this paper we explicate a notion of non-trivial frame completeness which is
based on a notion of non-trivial correspondence between logical axioms α formu-
lated in the modal propositional language LCL and frame conditions Cα expressed
in a suitable predicate logic language. There are two possible ways to express these
frame conditions: (i) either in the meta-language (i.e., the same language which is
used to describe the semantics), or (ii) in a second suitably specified object lan-
guage. In this paper we use the second approach and call this second object lan-
guage LFC (“FC” or “Frame Conditions”). Inductive proofs concerning translation
functions between the two languages are easier to handle in the second approach.
(In the first approach, we would have to use quotation marks in order to allow the
meta-language to speak about itself, which is possible but unusual in philosophical
logic.)1

1Van Benthem [25] is not explicit about this choice. He chooses approach (i) but uses different
variables for possible worlds – ‘w’ for semantical usage and ‘x’ for frame conditions. Van Benthem’s
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In CS semantics – unlike in Kripke semantics – all (interesting) frame condi-
tions can only be formulated in a language (fragment) that allows for quantification
over possible worlds as well as sets of possible worlds due to the relativization of R
to subsets of possible worlds. Therefore, we describe here frame conditions formu-
lated in the two-sorted set-theoretic, predicate language LFC using the following
symbols:

1. variables w, w0, . . . of sort 1 for possible worlds (we use w, w0, . . . as
meta-language variables for worlds in W),

2. variables X, X0, . . . , Y, Y0, . . . of sort 2 for sets of possible worlds (we use
X, Xi, . . . as meta-language variables for subsets of W),

3. the constants W and ∅ representing the set of all possible worlds and the
empty set, respectively,

4. the Boolean function symbols − (τ1), ∪ (τ1, τ2), ∩ (τ1, τ2), (where τ, τ0, . . .
are meta-variables ranging over terms of sort 2) and the non-Boolean function
symbol � (τ1, τ2),

5. the three-place accessibility relation symbol R(wi,w j, τ) with three argument
places, τ as a placeholder for terms of sort 2 and the element relation ∈ (wi, τ)
with two argument places one each for variables of sort 1 and terms of sort 2
as the only non-logical symbols, and

6. the undefined logical symbols ¬ (“negation”), ∨ (“disjunction”), ∀ (“unver-
sal qantifier”), identity symbol = (with two argument places of type 1) and
the defined logical symbols ∧ (“conjunction”), → (“material implication”),
↔ (“logical equivalence”) and ∃ (“existential quantifier”).

We underline symbols of the language LFC or use Roman font in order to dis-
tinguish them from correspondig expressions of our meta-language. The logical
symbols ∧ , → and ↔ in LFC are defined in the usual way; moreover, for LFC
it holds that ∃wiα =df ¬ ∀wi¬α and ∃X jα =df ¬ ∀X j¬α, and we abbreviate
‘ ∈ (wi, τ)’, ‘− (τ)’, ‘∪ (τ1, τ2)’, ‘∩ (τ1, τ2)’ and ‘R(wi,w j, τ)’ by ‘(wi ∈ τ)’, ‘− τ’,
‘(τ1 ∪ τ2)’, ‘(τ1 ∩ τ2)’, and ‘wiRτw j’, respectively. The fragment of LFC that we
actually use contains only closed formulas of the form ∀ Xi1 . . . ∀ Xinα, where in α
no quantifier symbol w.r.t. variables of sort 2 occurs.

Logical consequence over LFC formulas is defined in the ordinary way but re-
stricted to first-order models based on first-order structures, as explained in Sect. 5.
LFC denotes the logic obtained from this consequence operation, i.e. the set of the-
orems.

conventions are sufficient for his purposes but not for ours.
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3. Basic Semantic Notions in CS Semantics

The basic semantic notions in CS semantics can be defined as follows:

Definition 3.1. FC = 〈W,R〉 is a Chellas frame iff
(a) W is a non-empty set of possible worlds and
(b) R is a relation on W ×W × Pow(W).

Definition 3.2. Let FC = 〈W,R〉 be a Chellas frame. Then, MC = 〈W,R,V〉 is
a Chellas model iff V is a valuation function from AV × W to {0, 1} and for all
formulas α, β ∈ LCL and w ∈ W it holds:

〈〈W,R,V〉,w〉 |= ¬α iff 〈〈W,R,V〉,w〉 6|= α,
〈〈W,R,V〉,w〉 |= α ∨ β iff 〈〈W,R,V〉,w〉 |= α or 〈〈W,R,V〉,w〉 |= β, and
〈〈W,R,V〉,w〉 |= α� β iff ∀w′(wR‖α‖MC w′ → 〈〈W,R,V〉,w′〉 |= β).

The expressions 〈〈W,R,V〉,w〉 |= α and 〈〈W,R,V〉,w〉 6|= α abbreviate V(α,w) = 1
and V(α,w) , 1, respectively, for a Chellas model 〈W,R,V〉 and w ∈ W, and the
expression ‖α‖M refers to the set of possible worlds at which α is true according
to a model M. (We omit reference to M where the context does not allow for
ambiguity.)

We now define Segerberg frames which are nothing but general Chellas frames:

Definition 3.3. FS = 〈W,R, P〉 is a Segerberg frame iff W is a non-empty set of
possible worlds, R is a relation on W ×W × P and P ⊆ Pow(W) defines admissible
valuations, i.e., it holds for P:
∅ ∈ P, (DefP∅)
if X ∈ P then −X ∈ P, (DefP−)
if X, Y ∈ P then X ∪ Y ∈ P, and (DefP∪)
if X, Y ∈ P then {w ∈ W | ∀w′ ∈ W(wRXw′ → w′ ∈ Y)} ∈ P. (DefPMod )

Definition 3.4. MS = 〈W,R, P,V〉 is a Segerberg model iff
(a) 〈W,R, P〉 is a Segerberg frame as described in Def. 3.3,
(b) V is a valuation function w.r.t. W and R as described in Def. 3.2, and
(c) V is admissible in FS , i.e. ‖α‖ ∈ P for all α ∈ LCL.

A Chellas model 〈W,R,V〉 is based on a Chellas frame 〈W′,R′〉 iff W = W′ and
R = R′. A Chellas model 〈W,R,V〉 is based on a Segerberg frame 〈W′,R′, P〉 iff
W = W′, R′ = R↑P, and V is admissible in FS , where R↑P is the restriction of
R to elements of P. A Segerberg model 〈W,R, P,V〉 is based on a Segerberg frame
〈W′,R′, P′〉 iff W = W′, R = R′, P = P′, and V is admissible in FS . Then, α is
valid on a Segerberg [Chellas] frame F (F |= α) iff α is true at all worlds in all
Segerberg [Chellas] modelsM based on F .
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4. The Lattice of Conditional Logics

In this section we describe a notion of completeness which is non-trivial and based
on purely structural as opposed to model-based notions. The unproblematic case is
logic CK, which is sound and complete w.r.t. the class of all Chellas frames (see [5,
Sect. 6]), where the logic CK is defined by the following set of axioms and rules
(‘CK’ stands for ‘Conditional (System) K’):2

LLE if α↔ β then (α� γ)↔ (β� γ)
RW if α→ β then (γ� α)→ (γ� β)
AND (α� β) ∧ (α� γ)→ (α� β ∧ γ)
LT α� >

LLE, RW and LT abbreviate ‘Left Logical Equivalence’, ‘Right Weakening’ and
‘Logical Truth’, respectively, and ΠCK denotes a lattice of logics L ⊆ LCL that are
extensions of system CK which are closed under propositional consequence, the
rules of CK (i.e., LLE, RW) and the rule of substitution. We write L+α1 +α2 + . . .

for a logic L ∈ ΠCK that is axiomatized by the additional schemata α1, α2, . . .
(i.e., that is the closure of CK∪{α1, α2, . . . } under the rules of propositional conse-
quence, LLE, RW and substitution). For later reference observe that the following
rule RCK is logically equivalent to RW, AND and LT:

(RCK) (α� β1) ∧ · · · ∧ (α� βn)→ (α� γ) if β1 ∧ · · · ∧ βn → γ (n ≥ 0).

A Chellas/Segerberg frame F [modelM] is a frame [model] for the logic L ∈ ΠCK
iff all L-theorems are valid on F [in M]. The problem for completeness proofs
w.r.t. classes of Chellas frames which represent extensions of system CK is that
the canonical model allows one in general only to specify RX for sets of possible
worlds X which can be represented by formulas of the languageLCL whereas a full
completeness proof requires a specification of RX for sets of possible worlds X that
cannot be represented in that way.

Segerberg [21] provided a completeness proof for a lattice of systems w.r.t.
classes of Segerberg frames which – as we saw – are nothing but general Chel-
las frames. It is, however, a well-known fact that in Kripke semantics complete-
ness w.r.t. classes of general frames is equivalent to completeness w.r.t. classes of
Kripke models, which in turn is trivial in the sense that any normal modal logic is
(strongly) complete w.r.t. some class of Kripke models (Hughes and Cresswell [9,
p. 168]). It can be seen by the following observation that an analogous result holds
for Segerberg frames: For each Chellas modelMC = 〈W,R,V〉 a Segerberg frame
F
MC

C = 〈W,R, PV〉 exists s.t. PV = {‖α‖MC |α ∈ LCL}. Since a logic L ∈ ΠCK is

2System CK is a conditional version of the weakest normal modal logic K insofar as for each
“modal operator” [α�], System CK gives us the exact same theorems as System K (cf. [5, p. 139]).
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closed under substitution, it holds for all formulas α ∈ L that α is valid inMC iff
α is valid on FMC

C and that hence completeness w.r.t. Segerberg frames is trivial in
the sense that any such logic L is (strongly) complete w.r.t. some class of Segerberg
frames.

5. Trivial and Non-Trivial Notions of Completeness for CS Semantics

In this section we explicate a notion of completeness for CS semantics which is
non-trivial and allows one to explicate logics L ∈ ΠCK in terms of purely structural
as opposed to model-based frame conditions. For this purpose we propose the
notion of completeness w.r.t. classes of standard Segerberg frames. The notion of
a “standard” Segerberg frame is in turn based on the notion of a non-trivial frame
condition which we are now going to explicate. First of all we introduce the notion
of correspondence (analogous to van Benthem’s [25] definition for normal alethic
modal logics):

Definition 5.1. (First-Order Structures for LFC Corresponding to Chellas Frames
and Models Based on them)
1. If FC =df 〈W,R〉 is a Chellas frame, then the corresponding first order structure
for LFC, abbreviated as S (FC), is defined as follows: S (FC) =df 〈W,V∗〉 where
V∗ is a valuation function over the non-logical alphabet of LFC satisfying the fol-
lowing conditions: V∗(R) = R, V∗(W) = W, V∗(∅) = ∅, and ∈ , − , ∩ , ∪ , and
� receive their standard interpretations, i.e. ∈ the set-theoretic element relation
V∗( ∈ )= ∈, the Boolean operators have their standard definitions, and � is inter-
preted as follows: V∗(X�Y) = {w ∈ W | ∀w′(wRV∗(X)w′ → w′ ∈ V∗(Y))}.
2. A first-order model 〈W,V∗〉 based on S (FC) agrees with S (FC) on LFC’s non-
logical alphabet and in addition assigns valuations V∗ to the variables of LFC ac-
cording to the following condition: V∗(wi) ∈ W and V∗(X j) ⊆ W, for all variables
wi and X j of sort 1 and sort 2 of the languageLFC, respectively. While the structure
S (FC) fixes the truth value of closed formulas (sentences) ofLFC, models based on
S (FC) are needed to define truth values for quantified sentences of LFC by assigning
truth values to open formulas, according to the usual conditions:

〈W,V∗〉 |= ∀wiα iff for all w ∈ W, 〈W,V∗[wi:w]〉 |= α

〈W,V∗〉 |= ∀X jα iff for all X ⊆ W, 〈W,V∗[X j:X]〉 |= α

where V∗[wi:w] and V∗[X j:X] are like V∗ except that they assign w to wi, and X to
X j, respectively. Which particular possible worlds and subsets of possible worlds
are assigned by V∗ to wi and X j, respectively, for the first-order model 〈W,V∗〉
depends on the valuation function V of the corresponding Chellas model 〈W,R,V〉
as defined in Lemmata 6.5 and 6.6.
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In the following we define correspondence for formula (or axiom) schemata. In
the formulation of formula schemata we use schematic letters A, A0, . . . which are
placeholders for formulas α, α0, . . .∈ LCL. An expression of the form α(A1, . . . ,

An) denotes a formula schema (e.g., an axiom schema) for LCL where A1, . . . , An

are all schematic letters that occur in α, numerically ordered according to their first
occurrence from left to right. α(α1/A1, . . . , αn/An) denotes an instance of the axiom
schema α(A1, . . . , An) in the languageLCL, i.e. a formula ofLCL which results from
replacing schematic letters Ai by formulas αi of LCL (for all 1 ≤ i ≤ n). That a
formula schema α(A1, . . . , An) is valid on a Chellas [Segerberg] frame F means by
definition that all instances of α(A1, . . . , An) are valid on F .

We can now define correspondence as follows:

Definition 5.2. (Correspondence of Axioms of Logics L ∈ ΠCK)
A formula α ∈ LCL corresponds to a frame condition Cα of LFC iff for every
Chellas frame FC it holds: FC |= α iff S (FC) |= Cα.

The crucial property of a trivial frame condition is that it contains type 2 variables
which are used to quantify over propositions but which do not occur as a relatum
place of the three-place accessibility relation. Such trivial frame conditions are no
longer structural – they make truth-assertions about propositons (in certain worlds)
which are not used to index the accessibility relation. The following definitions
intend to make this intuition precise. In order to avoid “smuggling in” superfluous
type 2 variables by logical tautologies, we first need to say when a type 2 variable
occurs essentially in an LFC formula. Throughout the following, φ(Xi1 , . . . ,Xin)
denotes a formula φ ofLFC which contains as variables of sort 2 exactly Xi1 , . . . , Xin
(ordered from left to right according to their first occurrence).

Definition 5.3. (Frame Condition)
1. A frame condition is a formula of LFC which has the form ∀Xi1 . . . ∀Xinα(Xi1 ,

. . . ,Xin) (for some n ∈ N), where α(Xi1 , . . . ,Xin) is a formula that contains no
quantifier over a variable of sort 2. We abbreviate such a frame condition by
C(Xi1 , . . . ,Xin).
2. Variable Xi j (1 ≤ j ≤ n) occurs essentially in frame condition C1(Xi1 , . . . ,Xin) ∈
LFC iff there exists no LFC-logically equivalent frame condition C2(Xi1 , . . . ,Xi j−1 ,

Xi j+1 , . . . ,Xin).
3. A formula α(Xi1 , . . . ,Xin) ∈ LFC is irreducibly formulated iff every variable Xi j

of sort 2 (1 ≤ j ≤ n) occurs essentially in α.
4. A frame condition C ∈ LFC is non-trivial iff (a) C is irreducibly formulated and
(b) in C no variable Xi occurs unless Xi occurs also in the third argument place of
some occurrence of the relation symbol R in C.

Observe that Def. 5.3(4) excludes non-trivial frame conditions which contain terms
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and subformulas, such as (X∩ (Y∪−Y)) and (X∪ (Y∩−Y)) on the one hand and
(wRYw1 ∨¬wRYw1) and (w ∈Y∨¬ (w ∈Y)) on the other, respectively. If two
terms τ1 and τ2 are logically identical in LFC then w1Rτ1w2 and w1Rτ2w2 on the
one hand and ‘(w1 ∈ τ1)’ and ‘(w1 ∈ τ2)’ on the other are logically equivalent in
LFC.

In Kripke semantics there exists a standard procedure for translating modal
formula schemata to corresponding frame conditions formulated in a language that
quantifies over sets of possible worlds (e.g., van Benthem [25, pp. 326–329]). We
define an analogous translation procedure for CS semantics in Sect. 6. To moti-
vate our Def. 5.3(4) let us for the present moment discuss the following two frame
conditions which both C-correspond to axiom schema T (i.e., (α� β)→ β):

CT ∀X ∀w(wRXw)
Ctriv ∀X∀Y∀w(∀w1(wRXw1→w1 ∈Y) →w ∈Y)

Frame condition Ctriv results from T by a standard translation for CS semantics,
while CT does not. This difference is reflected in Def. 5.3(4) insofar as Ctriv is
trivial according to Def. 5.3(4) whereas CT is not. A non-standard Segerberg frame
FS = 〈W,R, P〉 that satisfies Ctriv can be specified as follows: Define W = {w1,w2},
R = {〈w1,w2,∅〉, 〈w2,w1,∅〉, 〈w1,w2,W〉, 〈w2,w1,W〉} and P = {∅,W}. T is valid
on FS – that is T is valid in any Chellas model based on FS , whereas Ctriv and not
CT holds for any such model.

Based on all this, we can now define the notion of standard Segerberg frames:

Definition 5.4. (Standard Segerberg Frame)
A standard Segerberg frame F st

S = 〈W,R, P〉 for a logic L = CK + α1 + α2 + . . . is
a Segerberg frame that satisfies a non-trivial frame condition Ci that C-corresponds
to αi for each axiom schema αi for LCL (i = 1, 2, . . . ).

The notion of standard Segerberg frames excludes non-standard Segerberg frames
as described above.

6. A Translation Procedure for Arbitrary Formula Schemata

In this section we specify a translation procedure which produces C-correspon-
ding frame conditions based on arbitrary formulas and formula schemata for the
language LCL. We will reduce the translation of formula schemata to the trans-
lation of formulas as follows. For each formula schema α(A1, . . . , An) we define
the corresponding skeleton as α(p1, . . . , pn), i.e. the formula of LCL resulting from
α(A1, . . . , An) by a uniform substitution of schematic letters Ai by propositional
variables pi (1 ≤ i ≤ n). We say a formula schema is true at a world w of a model
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M iff the corresponding skeleton is true at w inM. We now specify three transla-
tion functions T , tw j and t for formulas of LCL where w j is a variable of sort 1 of
the languageLFC. We define the translation for formula schemata α(A1, . . . , An) by
the translation of the corresponding skeletons, i.e. T (α(A1, . . . , An)) = T (α(p1, . . . ,

pn)) (and likewise for tw j and t).
The first translation function T translates a formula α ∈ LCL into a term T (α) of

type 2 of LFC, where in the corresponding first-order model the term T (α) denotes
exactly the proposition ‖α‖, i.e., the set of worlds in this model as defined in Lemma
6.6 at which α ∈ LCL is true. The second function tw j translates a formula α ∈ LCL
which is true at the world w j of a Chellas model M, where w j is denoted by w j

(i.e., V∗(w j) = w j) into a corresponding first-order formula tw j(α) ∈ LFC which is
true of the world (individual) w j (denoted by w j) in the corresponding first-order
model 〈W,V∗〉. The third function t, finally, forms the universal closure of tw j(α);
it is used to express the correspondence between the validity of a formula of LCL
on a Chellas frame F and the truth of formula t(α) ∈ LFC in the corresponding
first-order structure for LFC.

Definition 6.1. Let α ∈ LCL and let Terms2
LFC

be the set of type 2 terms of LFC.
Then, the translation function T : LCL → Terms2

LFC
is defined the following way:

(a) if α = pi then T (α) = Xi (for every atomic propositional variable pi of LCL
and type 2 variable Xi of LFC),

(b) if α = > then T (α) = W, and if α = ⊥ then T (α) = ∅,
(c) if α = ¬β then T (α) = −T (β),
(d) if α = (β ∨ γ) then T (α) = (T (β)∪T (γ)), and
(e) if α = (β� γ) then T (α) = (T (β)�T (γ)).

Note that by definition of T , T (α) contains exactly one variable of sort 2, Xi, for
every propositional variable pi occurring in α (or the corresponding schematic letter
Ai if we translate the formula schema).

Building on this we now define our translation function tw j as follows.

Definition 6.2. Let α ∈ LCL. Then, for any w j the translation function tw j : LCL →

LFC is defined as follows:

(I) If α does not contain ‘�’ then tw j(α) = (w j ∈T (α)), and otherwise
(II.a) if α = ¬β then tw j(α) = ¬ tw j(β),
(II.b) if α = (β ∨ γ) then tw j(α) = (tw j(β)∨ tw j(γ)), and
(II.c) if α = (β� γ) then tw j(α) = ∀wk(w jRT (β)wk→ twk (γ)), where wk is a

new variable of type 1.

Note that by definition of tw j , tw j(α) contains exactly one free variable of type 1,
namely w j, and moreover, for every propositional variable pi occurring in α (or
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the corresponding schematic letter Ai if we translate the formula schema) exactly
one variable of sort 2, i.e. Xi. Since an axiom schema holds on a frame exactly
iff every instance of it holds on that frame, we define the translation function t as
the universal closure of the result of translation function tw j over tw j(α)’s type 2
variables and the type 1 variable w j as follows:

Definition 6.3. Let α(pi1 , . . . , pin) ∈ LCL and t: LCL → LFC. Then, t(α) =

∀Xi1 . . . ∀Xin ∀w j(tw j(α(pi1 , . . . , pin))).

The next theorem establishes that t determines corresponding frame conditions for
formula schemata for LCL.

Theorem 6.4. Let FC be an arbitrary Chellas frame and let α ∈ LCL. Then,
∀α∀FC(FC |= α iff S (FC) |= t(α)).

Proof. Let FC = 〈W,R〉 be a Chellas frame and let α ∈ LCL.
“⇐”: Suppose that 〈W,R〉 6|= α. Then, for some w ∈ W and some valuation

function V , s.t. 〈W,R,V〉 is a Chellas model, it holds that 〈〈W,R,V〉,w〉 6|= α. By
Lemma 6.5, there exists a first-order model 〈W,V∗〉 based on the first-order struc-
ture S (FC) which falsifies tw j(α). So by Def. 6.3, S (FC) 6|= t(α).

“⇒”: Suppose that S (〈W,R〉) 6|= t(α), where α = α(pi1 , . . . , pin). Then by
Def. 6.3, t(α) has the form ∀Xi1 . . . ∀Xin ∀w jtw j(α). Hence S (〈W,R〉) 6|= ∀Xi1 . . .

∀Xin∀w jtw j(α). So, by Lemma 6.5 there exists a model 〈W,R,V〉 and a world w ∈ W
such that 〈〈W,R,V〉,w〉 6|= α. Hence, 〈W,R〉 6|= α.

Lemma 6.5. LetMC = 〈W,R,V〉 be a Chellas model based on frame 〈W,R〉. Then,
for every formula ofLCL, φ = φ(pi1 , . . . , pin) and for every first-order model 〈W,V∗〉
based on the corresponding first-order structure S (〈W,R〉) which satisfies

V∗(Xi j) = V(pi j) =df ‖pi j‖
MC for every 1 ≤ j ≤ n

it holds for every type 1 variable wk that 〈〈W,R,V〉, V∗(wk)〉 |= φ iff 〈W,V∗〉 |=
twk (φ).

Proof. Assume V∗(wk) =df w. The proof is by induction on the construction of
formulas.
(a) If φ = pi j then V(φ,w) = 1 iff V∗((wk ∈Xi j)) = 1 by definition of the first-
order structure and assumptions on V∗, where (wk ∈Xi j) = (wk ∈T (pi j)) = twk (φ)
by Def. 6.2(I) and Def. 6.1 (1 ≤ j ≤ n).
(b) If φ = ¬β then V(φ,w) = 1 iff V(β,w) = 0 iff (by the induction hypothesis)
V∗(twk (β)) = 0 iff V∗(¬ twk (β)) = 1 iff (by Def. 6.2(II.a)) V∗(twk (φ)) = 1.
(c) If φ = (β ∨ γ) then V(φ,w) = 1 iff V(β,w) = 1 or V(γ,w) = 1 iff (by the
induction hypothesis) V∗(twk (β)) = 1 or V∗(twk (γ)) = 1 iff V∗((twk (β)∨ twk (γ))) = 1



Completeness and Correspondence in Chellas-Segerberg Semantics 11

iff (by Def. 6.2(II.b)) V∗(twk (φ)) = 1.
(d) If φ = (β � γ) then V(φ,w) = 1 iff ∀w′(wR‖β‖w′ → V(γ,w′) = 1) iff (by
Lemma 6.6) ∀w′ ∈ W(wRV∗(T (β))w′ → V(γ,w′) = 1) iff (by the induction hypoth-
esis) ∀w′ ∈ W: 〈W,V∗[wr:w′]〉 |= wkRT (β)wr → 〈W,V∗[wr:w′]〉 |= twr (γ)) where
wr is a new type 1 variable iff (by definition of 〈W,V∗〉) 〈W,V∗〉 |= ∀wr(wkRT (β)wr

→ twr (γ)) iff (by Def. 6.2(II.c)) 〈W,V∗〉 |= twk (φ).

Observe that in point (a) of the proof of Lemma 6.5 the clause I of Def. 6.2 is
applicable, since twk refers to a formula pi j ∈ LCL in which� cannot occur.

Lemma 6.6. Let MC = 〈W,R,V〉 be a Chellas model based on the frame 〈W,R〉.
Then, for every formula of LCL, φ = φ(pi1 , . . . , pin) and for every first-order model
〈W,V∗〉 based on the corresponding first-order structure S (〈W,R〉) which satisfies

V∗(Xi j) = V(pi j) =df ‖pi j‖
MC for every 1 ≤ j ≤ n

it holds that V(φ) =df ‖φ‖
MC = V∗(T (φ)).

Proof. The proof goes by induction on the construction of formulas.
(a) If φ = pi j (1 ≤ j ≤ n) then V∗(T (φ)) = V∗(Xi j) = ‖pi j‖

MC by assumption and
Def. 6.1(a).
(b) If φ = > then T (φ) = W, so V∗(T (φ)) = V∗(W) = ‖>‖MC , and if φ = ⊥ then
T (φ) = ∅, so V∗(T (φ)) = V∗(∅) = ‖⊥‖MC (both by Def. 6.1(b)).
(c) If φ = ¬γ then V∗(T (φ)) = V∗(−T (γ)) = −V∗(T (γ)) = −‖γ‖MC = ‖¬γ‖MC (by
Def. 6.1(c) and the induction hypothesis).
(d) If φ = (γ ∨ δ) then V∗(T (φ)) = V∗((T (γ)∪T (δ))) = V∗(T (γ)) ∪ V∗(T (δ)) =

‖γ‖MC ∪ ‖δ‖MC = ‖(γ ∨ δ)‖MC (by Def. 6.1(d) and the induction hypothesis).
(e) If φ = (γ� δ) then V∗(T (φ)) = V∗((T (γ)�T (δ))) = V∗(T (γ))� V∗(T (δ))
= ‖γ‖MC � ‖δ‖MC = ‖(γ� δ)‖MC (by Def. 6.1(e) and the induction hypothesis).

Most though not all corresponding frame conditions obtained by the translation
schema are trivial. This shows that finding a non-trivial frame condition that corre-
sponds to an axiom schema of a conditional logic L ∈ ΠCK is indeed a non-trivial
enterprise, and even more, proving frame completeness with respect to standard
frames, i.e., frame classes that are definable by non-trivial frame conditions. In the
next section we present a couple of correspondence and completeness results of
this sort.

7. Non-Trivial Correspondence and Completeness

In this section we focus on the lattice of conditional logic systems defined by Sys-
tem CK plus 30 principles discussed in the conditional logic literature (see Table 1)
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Table 1. Axiom Schemata for Conditional Logics

System P
α� α (Refl)
(α� γ) ∧ (α� β)→ (α ∧ β� γ) (CM)
(α ∧ β� γ) ∧ (α� β)→ (α� γ) (CC)
(α0 � α1) ∧ . . . ∧ (αk−1 � αk) ∧ (αk � α0)→ (α0 � αk) (k ≥ 2) (Loop)
(α� γ) ∧ (β� γ)→ (α ∨ β� γ) (Or)
(α ∧ β� γ)→ (α� (β→ γ)) (S)
(¬α� α)→ (β� α) (MOD)

Extensions of System P
(α� γ) ∧ (α� β)→ (α ∧ β� γ) (RM)
(α� (β→ γ)) ∧ (α� β)→ (α ∧ β� γ) (RM′)
(α� β) ∨ (α� ¬β) (CEM)

Weak Probability Logics (Threshold Logics)
¬(>� ⊥) (P-Cons)
(α ∧ β� γ) ∧ (α ∧ ¬β� γ)→ (α� γ) (WOR)

Monotonic Systems
(α ∧ β� δ) ∧ (γ� β)→ (α ∧ γ� δ) (Cut)
(α� γ)→ (α ∧ β� γ) (Mon)
(α� β) ∧ (β� γ)→ (α� γ) (Trans)
(α� β)→ (¬β� ¬α) (CP)

Bridge Principles
(α� β)→ (α→ β) (MP)
α ∧ β→ (α� β) (CS)
(¬α� α)→ α (TR)
(>� α)→ α (Det)
α→ (>� α) (Cond)

Collapse Conditions Material Implication
β→ (α� β) (VEQ)
¬α→ (α� β) (EFQ)

Traditional Extensions
(α� β)→ (α� β) (D)
(α� β)→ β (T)
α→ (α� (α� β)) (B)
(α� β)→ (α� (α� β)) (4)
(α� β)→ (α� (α� β)) (5)

Iterated Principles
(α ∧ β� γ)→ (α� (β� γ)) (Ex)
(α� (β� γ))→ (α ∧ β� γ) (Im)
For abbreviations see text.
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Table 2. Axioms and Corresponding Frame Conditions in CS Semantics

System P
Refl∗ ∀w∀w1(wRXw1→w1 ∈X)
CM ∀w(∀w1(wRXw1→w1 ∈Y)→ ∀w1(wRX∩Yw1→wRXw1))
CC ∀w(∀w1(wRXw1→w1 ∈Y)→ ∀w1(wRXw1→wRX∩Yw1))
Loop∗ ∀w(∀w1(wRX0w1→w1 ∈X1)∧ . . . ∧ ∀w1(wRXk−1w1→w1 ∈ Xk)∧

∀w1(wRXk w1→w1 ∈X0)→ ∀w1(wRX0w1→w1 ∈ Xk)) (k ≥ 2)
Or ∀w∀w1(wRX∪Yw1→wRXw1 ∨wRYw1)
S ∀w∀w1(wRXw1 ∧w1 ∈Y→wRX∩Yw1)
MOD∗ ∀w(∀w1(wR−Xw1→w1 ∈X)→ ∀w1(wRYw1→w1 ∈X))

Extensions of System P
RM ∀w(∃w1(wRXw1 ∧w1 ∈Y)→ ∀w1(wRX∩Yw1→wRXw1))
RM′ ∃w1(wRXw1 ∧w1 ∈Y)→ ∀w1(wRX∩Yw1→wRXw1 ∧w1 ∈Y)
CEM ∀w∀w1 ∀w2(wRXw1 ∧wRXw2→w2 = w1)

Weak Probability Logics (Threshold Logics)
P-Cons ∀w∃w1(wRWw1)
WOR ∀w∀w1(wRXw1→wRX∩Yw1 ∨wRX∩−Yw1)

Monotonic Systems
Cut ∀w(∀w1(wRZw1→w1 ∈Y)→ ∀w1(wRX∩Zw1→wRX∩Yw1))
Mon ∀w∀w1(wRX∩Yw1→wRXw1)
Trans ∀w(∀w1(wRXw1→w1 ∈Y)→ ∀w1(wRXw1→wRYw1))
CP∗ ∀w(∀w1(wRXw1→w1 ∈Y)→ ∀w1(wR−Yw1→w1 ∈−X))

Bridge Principles
MP ∀w(w ∈X→wRXw)
CS ∀w(w ∈X→ ∀w1(wRXw1→w1 = w))
TR∗ ∀w(∀w1(wR−Xw1→w1 ∈X)→w ∈X)
Det ∀w(wRWw)
Cond ∀w∀w1(wRWw1→w1 = w)

Collapse Conditions Material Implication
VEQ ∀w∀w1(wRXw1→w1 = w)
EFQ ∀w(w ∈−X→¬ ∃w1(wRXw1))

Traditional Extensions
D ∀w∃w1(wRXw1)
T ∀w(wRXw)
B ∀w∀w1(wRXw1→w1RXw)
4 ∀w∀w1 ∀w2(wRXw1 ∧w1RXw2→wRXw2)
5 ∀w∀w1 ∀w2(wRXw1 ∧wRXw2→w1RXw2)

Iteration Principles
Ex ∀w∀w1 ∀w2(wRXw1 ∧w1RYw2→wRX∩Yw2)
Im ∀w∀w1(wRX∩Yw1→ ∃w2(wRXw2 ∧w2RYw1))

For better readability outer universal quantifiers over variables X, X0 . . . , Y, Y0 . . . have
been omitted.
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and their C-corresponding non-trivial frame conditions in the sense of Def. 5.3(4)
(see Table 2). The frame conditions for Refl, MP, and Or on the one hand and
CM, RM, RM′, S, Det and Cond on the other are nothing but the frame conditions
identified already by [5, p. 142f] and [21, p. 163], respectively.3 It is important
to note that the frame conditions for Refl, Loop, MOD, CP and TR are actually
given by the general translation procedure specified in Def. 6.3. (We marked these
principles with an asterix.) Def. 6.3, however, does not always give one non-trivial
frame conditions in the sense of Def. 5.3(4), as we saw in the previous section.
The conditional logic axioms described in Table 1 are the following: Refl (“Reflex-
ivity”), CM (“Cautious Monotonicity”), CC (“Cautious Cut”), Loop
(“Loop of Antecedent and Consequent Formulas”), Or, S, MOD (“Modality”), RM
(“Rational Monotonicity”), RM′ (variant of RM), CEM (“Conditional Excluded
Middle”), P-Cons (“Probabilistic Consistency”), WOR (“Weak Or”), Cut, Mon
(“Monotonicity”), Trans (“Transitivity”), CP (“Contraposition”), MP (“Modus Po-
nens”), CS (“Conjunctive Sufficiency”), TR (“Total Reflexivity”), Det (“Detach-
ment”), Cond (“Conditionalization”), VEQ (“Verum Ex Quodlibet”), EFQ (“Ex
Falso Quodlibet”), D, T, B, 4, 5, Ex (“Exportation”) and Im (“Importation”). The
names of the principles follow Kraus et al. [10] and Lehmann and Magidor [12]
rather than, for example, [15]. The principles are, for instance, discussed in Adams
[1, 2], Arló-Costa [3], [10], [12], [13], [15], McGee [14], Schurz [18, 19] and
Stalnaker [22]. Note that Principles D, T, B, 4 and 5 correspond to frame condi-
tions which are generalizations from serial, reflexive, symmetrical, transitive and
Euclidian frame conditions in Kripke semantics, respectively.

We can prove the following results:

Theorem 7.1. Every formula schema α in Table 1 C-corresponds to the respective
non-trivial frame condition Cα in Table 2.

The proof of C-correspondence for Principles Refl, Loop, MOD, CP and TR is
immediately given by Theorem 6.4. In Appendix A we prove C-correspondence
for Principles CM and Im. We chose both principles, since their correspondence
proofs were among the more interesting ones (see also below). For the remaining
proofs of C-correspondence (except for Principle RM′) we refer to [24, Ch. 5].

Theorem 7.2. All logics L = CK + α1 + α2 + . . . where α1, α2, . . . are axiom
schemata from Table 1 are strongly complete w.r.t. the class of standard Segerberg
frames for which Cα1 , Cα2 , . . . in Table 2 hold.

In Appendix B we prove Theorem 7.2 for the sublattice of systems described by
System CK and Principles CM and Im. We picked both principles, since their

3[21, p. 163] also describes a frame condition for a variant of (MOD), his axioms #2.
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canonicity proofs were typical and among the more interesting ones, respectively.
For proofs of the remaining principles (except Principle RM′) we refer to [24,
Ch. 6].

8. Final Remark

By the axioms in Table 1 we can axiomatize a range of well-known conditional
logic systems, such as Lewis’ [13] Systems V and VC (see also Leahy et al. [11]),
Stalnaker’s [22] System, and also Kraus et al.’s [10] Systems C, CL, and P, Kraus
und Lehmann’s [12] System R (see also Hawthorne [8] and Pfeifer and Kleiter
[16]) and Adams’ [1, 2] P-Systems formulated in the language LCL (see [24, Ch.
7]).4
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Frames” (FOR 600).

9. Appendix A

In this appendix we prove C-correspondence for Principles CM and Im.

Axiom Schema CM. (“⇐”) Let 〈W,R〉 be a Chellas frame s.t. CCM holds. So,
for all w ∈ W and X,Y ⊆ W it is the case that (i) ∀w′(wRXw′ → w′ ∈ Y) →
∀w′(wRX∩Yw′ → wRXw′). Let 〈W,R,V〉 be a Chellas model such that 〈〈W,R,V〉,
w〉 |= (α � γ) ∧ (α � β). Then, (ii) ∀w′(wR‖α‖w′ → w′ ∈ ‖γ‖) and (iii)
∀w′(wR‖α‖w′ → w′ ∈ ‖β‖) and from (i) we can infer ∀w′(wR‖α‖w′ → w′ ∈
‖β‖) → ∀w′(wR‖α‖∩‖β‖w′ → wR‖α‖w′). The latter and (iii) imply ∀w′(wR‖α‖∩‖β‖w′

→ wR‖α‖w′) and, hence, ∀w′(wR‖α∧β‖w′ → wR‖α‖w′). Due to (ii) we get ∀w′(w
R‖α∧β‖w′ → w′ ∈ ‖γ‖) and 〈〈W,R,V〉,w〉 |= α ∧ β� γ.

(“⇒”) Let 〈W,R〉 be a Chellas frame s.t. CCM does not hold. So, there are
w,w′ ∈ W and X,Y ⊆ W such that ∀w′′(wRXw′′ → w′′ ∈ Y), wRX∩Yw′ and not
wRXw′. Let 〈W,R,V〉 be a Chellas model s.t. X = ‖α‖, Y = ‖β‖, (i) ∀w′′(wR‖α‖w′′

→ w′′ ∈ ‖γ‖) and w′ < ‖γ‖. It follows that (ii) ∀w′′(wR‖α‖w′′ → w′′ ∈ ‖β‖),
wR‖α‖∩‖β‖w′ and not wR‖α‖w′. This assignment is always possible, as by assumption

4For a comparison of System P with other conditional logic systems in terms of the accuarcy of
probabilistic interferences see Schurz and Thorn [20] and Thorn and Schurz [23].
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w′ is not among the w′′s s.t. wR‖α‖w′′. By (i) and (ii) we obtain 〈〈W,R,V〉,w〉
|= α� γ and 〈〈W,R,V〉,w〉 |= α� β. Since wR‖α‖∩‖β‖w′ and w′ < ‖γ‖, we have
wR‖α∧β‖w′ and, hence, 〈〈W,R,V〉,w〉 6|= α ∧ β� γ.

Axiom Schema Im. (“⇐”) Let 〈W,R〉 be a Chellas frame s.t. CIm holds. So, for
all w ∈ W and X,Y ⊆ W it is the case that (i) ∀w′(wRX∩Yw′ → ∃w′′(wRXw′′ ∧
w′′RYw′)). Let 〈W,R,V〉 be a Chellas model s.t. 〈〈W,R,V〉,w〉 |= α � (β �
γ). We have ∀w′(wR‖α‖w′ → ∀w′′(w′R‖β‖ w′′ → w′′ ∈ ‖γ‖)) and, hence, (ii)
∀w′∀w′′(wR‖α‖w′ ∧w′R‖β‖w′′ → w′′ ∈ ‖γ‖). By (i) we get (iii) ∀w′(wR‖α‖∩‖β‖w′ →
∃w′′(wR‖α‖w′′∧w′′R‖β‖w′)). Let wR‖α‖∩‖β‖w′ be the case. Then, by (iii) there exists
some w′′ ∈ W such that wR‖α‖w′′ and w′′R‖β‖w′. By (ii) we get w′ ∈ ‖γ‖. This
implies ∀w′(wR‖α‖∩‖β‖w′ → w′ ∈ ‖β‖) and ∀w′(wR‖α∧β‖w′ → w′ ∈ ‖β‖). So, we
obtain 〈〈W,R,V〉,w〉 |= α ∧ β� γ.

(“⇒”) Let 〈W,R〉 be a Chellas frame s.t. CIm does not hold. So, there exist
w,w′ ∈ W and X,Y ⊆ W s.t. wRX∩Yw′ and ¬∃w′′ (wRXw′′∧w′′RYw′). Let 〈W,R,V〉
be a Chellas model s.t. X = ‖α‖, Y = ‖β‖, (i) ∀w′′(wR‖α‖w′′ → ∀w′′′(w′′R‖β‖w′′′ →
w′′′ ∈ ‖γ‖)) and w′ < ‖γ‖. Then, wR‖α‖∩‖β‖w′, and (ii) ¬∃w′′(wR‖α‖w′′∧w′′R‖β‖w′).
This assignment is always possible, since by (ii) if there is some w′′ ∈ W s.t. wR‖α‖
w′′ then not w′′R‖β‖w′. By (i) 〈〈W,R,V〉,w〉 |= α � (β � γ) follows. As
wR‖α‖∩‖β‖w′ and w′ < ‖γ‖, we get wR‖α∧β‖w′ and 〈〈W,R,V〉,w〉 6|= α ∧ β� γ.

Appendix B

We prove here strong standard Segerberg frame completeness (see Theorem 7.2)
for the lattice of systems described by system CK and Principles CM and Im. We
use the canonical model technique (see [21, p. 162]) and canonicity proofs for Prin-
ciples CM and Im – i.e. proofs that show that the frame of the canonical model for
the given logic L ∈ ΠCK is a frame that satisfies the corresponding non-trivial
frame condition. For a completeness result, we also require that the frame condi-
tions are non-trivial in the sense of Def. 5.3(4) and C-correspond to the respective
axiom schemata (see Def. 5.4) in addition to canonicity.

Definition 9.1. A Segerberg model 〈Wc,Rc, Pc,Vc〉 is the canonical model for L ∈
ΠCK iff
(a) Wc is the class of all maximally L-consistent formula sets, (DefWc)
(b) Pc = {X ⊆ Wc | ∃α X = |α|}, (DefPc)
(c) ∀α∀w∀w′ ∈ Wc ∀X ∈ Pc s.t. X = |α|: wRc

Xw′ iff ∀β(α� β ∈ w →
β ∈ w′), and

(DefRc)

(d) ∀p ∈ AV,w ∈ Wc: Vc(p,w) = 1 iff p ∈ w. (DefVc)
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The expression |α| refers to the set of possible worlds which have α as an element
in a given canonical model for a logic L ∈ ΠCK.

Lemma 9.2. For a canonical modelMC = 〈Wc,Rc, Pc,Vc〉 for L ∈ ΠCK and for all
formulas α ∈ LCL and all w ∈ Wc it holds: α ∈ w iff 〈〈W,R,V〉,w〉α.

Proof. The proof is by induction on the construction of formulas. We describe
here only the modal case.

“⇒”: Suppose α � β ∈ w. By Lemma 9.3 it holds for all w′ ∈ Wc that
wRc
|α|

w′ → β ∈ w′. By the induction hypothesis we have |α| = ‖α‖ and ∀w ∈ Wc:
β ∈ w iff 〈〈Wc,Rc,Vc〉,w〉 |= β. Hence, 〈〈Wc,Rc,Vc〉,w〉 |= α� β is obtained.

“⇐”: Suppose α� β < w. Then, by Lemma 9.3 there exists a world w′ ∈ Wc

such that wRc
|α|

w′ and β < w′. By the induction hypothesis there exists a world w′ ∈
Wc such that wRc

‖α‖
w′ and 〈〈Wc,Rc,Vc〉,w′〉 6|= β and, hence, 〈〈Wc,Rc,Vc〉,w〉 6|=

α� β.

Lemma 9.3. For a canonical model 〈Wc,Rc, Pc,Vc〉 for L ∈ ΠCK and all formulas
α, β ∈ LCL and all w ∈ Wc it holds: α� β ∈ w iff ∀w′ ∈ Wc(wRc

|α|
w′ → β ∈ w′).

Proof. “⇒”: Suppose that ¬∀w′ ∈ Wc(wRc
|α|

w′ → β ∈ w′). Then, there exists a
w′ ∈ Wc s.t. wRc

|α|
w′ and β < w′ and by DefRc we obtain α� β < w.

“⇐”: Suppose that α � β < w. Since w is maximal L-consistent we have
¬(α � β) ∈ w and by the Lindenbaum Lemma and Lemma 9.4 there exists a
world w′ ∈ Wc s.t. {γ |α� γ ∈ w} ∪ {¬β} ⊆ w′. Thus, ∀γ(α� γ ∈ w→ γ ∈ w′)
and by DefRc we have wRc

|α|
w′ and β < w′.

Lemma 9.4. If Γ is L-consistent for L ∈ ΠCK and ¬(α� β) ∈ Γ then {γ |α�
γ ∈ Γ} ∪ {¬β} is L-consistent.

Proof. Suppose that {γ |α� γ ∈ Γ} ∪ {¬β} is L-inconsistent. Then, there exists
a L-inconsistent set {γ1, . . . , γn,¬β} for γ1, . . . , γn ∈ {γ |α� γ ∈ Γ}. It follows
that `L ¬(γ1 ∧ . . .∧ γn ∧ ¬β) and, thus, `L γ1 ∧ . . .∧ γn → β. Since L ∈ ΠCK, rule
RCK is derivable in L (see Sect. 5). `L (α� γ1) ∧ . . . ∧ (α� γn) → (α� β)
follows and, hence, `L ¬((α � γ1) ∧ . . . ∧ (α � γn) ∧ ¬(α � β)). So,
{α� γ1, . . . , α� γn}∪{¬(α� β)} is L-inconsistent and, thus, Γ∪{¬(α� β)}
as well.

We give here canonicity proofs for the Principles CM and Im:

Axiom Schema CM. Let 〈Wc,Rc, Pc,Vc〉 be the canonical model for L ∈ ΠCK
s.t. CM ∈ L. Assume that CM is not canonical. Then, there exist X,Y ∈ Pc and
w,w′ ∈ Wc such that ∀w′′(wRc

Xw′′ → w′′ ∈ Y), wRc
X∩Yw′, and ¬wRc

Xw′. By DefPc

there are formulas α and β s.t. X = |α| and Y = |β|. Hence, (i) ∀w′′(wRc
|α|

w′′ →
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w′′ ∈ |β|), wRc
|α|∩|β|

w′ and ¬wRc
|α|

w′ hold and, thus, wRc
|α∧β|

w′. By Lemma 9.3,
condition (i) implies that α� β ∈ w. By DefRc and ¬wRc

|α|
w′ there is a formula

γ s.t. α � γ ∈ w and γ < w′. Since wRc
|α∧β|

w′, by Lemma 9.3 it holds that
α ∧ β � γ < w. As α � β ∈ w and α � γ ∈ w, this contradicts DefWc by
Axiom Schema CM.

Axiom Schema Im. Let 〈Wc,Rc, Pc,Vc〉 be the canonical model for L ∈ ΠCK
s.t. Im ∈ L. Assume that Im is not canonical. Then, there exist X,Y ∈ Pc and
w,w′ ∈ Wc s.t. wRc

X∩Yw′ and ¬∃w′′ (wRc
Xw′′ ∧ w′′Rc

Yw′). By DefPc there are
formulas α, β s.t. X = |α| and Y = |β|. Thus, wRc

|α|∩|β|
w′ and (ii) ¬∃w′′(wRc

|α|
w′′ ∧

w′′Rc
|β|

w′) and, thus, wRc
|α∧β|

w′. By DefWc there is a formula γ s.t. γ ∈ w′ and
γ < w′′ for any other world w′′ ∈ Wc. By (ii) no world w′′ s.t. wRc

|α|
w′′ can

see w′ by Rc
|β|

. As w′ is the only world in Wc s.t. γ ∈ w′, due to Lemma 9.3
β� ¬γ ∈ w′′ holds. Since this holds for all possible worlds w′′ s.t. wRc

|α|
w′′, we

get α� (β� ¬γ) ∈ w. As wRc
|α∧β|

w′ and γ ∈ w′, it follows by Lemma 9.3 that
α ∧ β� ¬γ < w. This contradicts DefWc by Axiom Schema Im.
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