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Abstract. Although there have been efforts to integrate Semantic Web technologies and artificial agents related Al research
approaches, they remain relatively isolated from each other. Herein, we introduce a new ontology framework designed to sup-
port the knowledge representation of artificial agents’ actions within the context of the actions of other autonomous agents and
inspired by standard cognitive architectures. The framework consists of four parts: 1) an event ontology for information pertain-
ing to actions and events; 2) an epistemic ontology containing facts about knowledge, beliefs, perceptions and communication;
3) an ontology concerning future intentions, desires, and aversions; and, finally, 4) a deontic ontology for modeling obligations
and prohibitions which limit agents’ actions. The architecture of the ontology framework is inspired by deontic cognitive event
calculus as well as epistemic and deontic logic. We also describe a case study in which the proposed DCEO ontology supports
autonomous vehicle navigation.
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1. Introduction

Modeling the activity of artificial agents in the context of actions by other autonomous agents is one
of the more difficult problems in artificial intelligence. Most implemented or projected systems use a
single-agent scenario and differ only in the way in which the agent approaches its environment (Asprino
etal., 2016). In real conditions artificial agents often interact with other artificial agents or with humans,
rendering single-agent scenarios unusable. An artificial agent may be an autonomous vehicle on the road
that must interact with other vehicles that are either also autonomous or controlled by a human driver
or it may be an industrial transportation robot that must maneuver an environment it shares with other
more or less sophisticated robots and/or human workers.

An autonomous vehicle on the road should be able to receive information from other autonomous
vehicles (or human drivers), to model their intentions, and to compare such information with its own in-
tended actions framed by obligations based on laws and other traffic regulations. Notably, these features
are at once part of the vehicle’s modeling of planned actions that advance it towards the desired final
destination.

In this paper, we abstract some of the features of the complex environment in which an agent’s behav-
ior takes place and focus on modeling the information context and the actions of other agents that may
influence the agent’s own reasoning and actions. Effective control of the agent’s activity in the context
of the actions of other agents requires some understanding of the “inner context” of these actions — each
action on the part of any agent is based on information that a) the agent considers to be true (e.g., that
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a traffic light is green) and b) involves a purpose or motive, i.e., what the agent intends to accomplish
with such an action. The purpose of the action may be viewed as the state that the agent “desires” to
realize (e.g., reach the destination, move cargo to a designated location). Accordingly, the state may be
described by a statement and the agent “desires” the statement to be true. For sure, the actions of an
agent cannot be understood (or predicted) without taking such context into account.

One of the possible approaches to address the problem of understanding other agents’ actions is to
model their mental states. To model the mental states of agents, one can utilize mentalistic models of
human behavior based on Hobbesian or common-sense psychology (Gert, 1996). Mentalistic language
is a language which includes terms describing mental phenomena, such as “beliefs”, “aversions” or
“desires” (Spiker, 1989). Knowledge representation models are called mentalistic if they are related to
such mental notions (Pohl, 1997). Mentalistic models have been used to provide a stable framework for
knowledge representation systems which can be combined with other content using machine learning
techniques (Pohl and Achim, 1999).

In contrast, the use of mentalistic models has been very limited in the Semantic Web context. A rudi-
mentary mentalistic language, consisting of the “belief” concept, was used to model changing knowl-
edge (Kang and Lau, 2004). While Semantic Web technologies have their drawbacks, they excel when
used as highly flexible knowledge representation techniques and tools for extracting meaning from large
amounts of unstructured web content, doing so through the use of standards with high interoperability,
such as XML, RDF, and OWL. Integration of traditional Al techniques with Semantic Web technologies
should therefore open up a wealth of semantically structured information on, e.g., Linked Data sources
for the artificial agents.

The rest of the paper is organized as follows: the second section of the paper describes the method-
ology and requirements for an ontological model for the artificial agent’s actions. Section 3 provides a
general overview of the architecture of the proposed framework. The next section describes deontic cog-
nitive event calculus briefly. Section 5 describes the proposed ontology framework DCEO itself along
with the description of state of the art of modeling in respective areas. Section 6 provides evaluation
of the ontology and compares the presented formalism with previously defined requirements. Section 7
describes a case study — enhancing autonomous vehicle navigation. Then Section 8 discusses possible
future extensions of the framework. Finally, the last section provides the conclusions.

2. The methodology used for DCEQO development

To develop a sound ontology one needs to use a formal methodology that provides structured guide-
lines and well-defined ontology life cycle management. We base the development of the DCEO ontology
on the On-To-Knowledge methodology developed by Sure et al. (2009) and Staab et al. (2001). We also
take into account some methodological principles introduced by the METHONTOLOGY methodology
by Ferndndez-Lépez et al. (1997) (see also the work by Gomez-Pérez et al. (2003)) and NeOn Method-
ology by Sudrez-Figueroa (2012).

The development of our ontology began with a feasibility study that sought to identify the problem
and opportunity areas of a proposed ontology as well as the potential solutions it might provide. It was
found that descriptions of the interactions between artificial agents and some aspects of their behavior
planning could benefit from the application of Semantic Web technologies. Existing research in this field
was limited and thus there was an opportunity to improve existing solutions used in Al communities by
situating them as a starting point and integrating them with Semantic Web approaches.
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The second phase of the DCEO ontology development was the kickoff phase, the phase in which the
development of ontology actually began. In this phase the requirements for the ontology were gathered.
The outcomes of this phase were the ontology requirements specification document (ORSD) and a semi-
formal description of our ontology. The overview of gathered requirements is informally presented in
Section 2.1, and the first semi-formal description of the DCEO ontology was presented in (Vacura and
Svitek, 2016).

In the refinement phase we fully formalized our ontology. This phase was cyclical and required several
iterations of enhancing and fine-tuning the ontology based on feedback from domain (AI) experts and
comparisons with initial requirements. The outcome of this phase was v. 1.0 of the DCEO ontology.

In the evaluation phase we first performed a technology-focused evaluation that judged language
conformity (syntax) and that involved consistency (semantics) tests and expert evaluations of interop-
erability, scalability, and other important characteristics. The user-focused evaluation was performed in
cooperation with domain experts and we collected their recommendations and comments. These evalua-
tions were followed by more iterations of the refinement phase. After two iterations, the outcome of this
phase was an evaluated ontology — v. 1.2 of the DCEO ontology. Evaluation is discussed in more detail
in Section 6.

The application and evolution phases followed, consisting of several new updates to the DCEO ontol-
ogy, followed by refinement-evaluation cycles that produced v. 2.0 (2018) and v. 2.1 (2019) of DCEO.
Several implementation and integration projects using the DCEO ontology were started; one case study
is briefly described in Section 7.

2.1. Requirements for the ontological modeling of an artificial agent’s actions

An elementary set of requirements can be devised based on current and prospective usage scenarios
for the ontology such as those involving an interaction between autonomous vehicles on the road or
an interaction between robots in an industrial environment. Experiences with similar systems based on
calculus paradigms have also been helpful in formulating the set of design requirements presented below.
However, this paper does not specify any requirements with reference to specific applications.

When an artificial agent operates in the context of other agents’ actions, it must communicate with or
even influence the behavior of these other artificial or human agents. Thus, an elementary requirement is
the ability to model the acquisition and provision of information by means of communication with other
agents.

The artificial agent has to communicate and interact with other agents, and it can also receive publicly
available information, but this information cannot be taken at face value because it only represents the
belief of another agent, and such a belief can be wrong. In the case of some real world scenarios an agent
can even intentionally provide misleading information. Pieces of information received from different
agents (or perceived) may also be mutually inconsistent (a human driver may signal intention to turn
right, however, he/she may start to turn left). Such an account of communication requires epistemic
mentalistic models in order to distinguish belief from knowledge, as argued by Arkoudas and Bringsjord
(2009).

An artificial agent also needs to reason about the context of its own intended actions, i.e., their back-
ground, motivation, and predicted consequences, and those of all other agents presenting the external
context which is important for planning of his own actions. In other words, models enabling such rea-
soning must deal with past, current, and future actions and generally with events, so flexible handling of
time 1s necessary.
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Dealing with future events caused by the actions of other agents requires mentalistic models for their
internal mental representations of the evaluated future — their desires and aversions — from Hobbesian
psychology (Gert, 1996). T. Hobbes considered desires and aversions to be fundamental emotions which
provide background for any agent’s actions. Mental representations of these emotions then enable de-
riving the intentions of an agent. However, it is worth noting that the Hobbesian theory of desires and
aversions as being future oriented can be criticized as limited, if one understands desires and aversions
as something that can also relate to present or past events.

These future-involving mental states can be called protential, based on the term “protention”, meaning
the consciousness of future, which was coined by the philosopher E. Husserl (Mclnerney, 1988). These
internal mental states influence directly the external behavior of agents, i.e., intended actions materialize
and became real actions performed in an external environment.

Another component of the mentalistic model is the inner representation of the context of the agent’s
actions which consists of the external norms of his behavior, which can be called obligations, permis-
sions and prohibitions. Different agents may accept different obligations and different prohibitions. An
obligation is a requirement on the part of the agent to act when some defined condition of his inner
context is present. Prohibition is the requirement to suspend an action or abstain from it. Knowledge of
these limitations in behavior on the part of other agents can be used to predict their actions. A model
involving obligations and prohibitions is referred to as deontic, which is based on a similar use of the
term in the context of deontic logic (Gabbay et al., 2013).

Note that even if we use mentalistic models and discuss an agent’s behavior in mentalist terms, this
does not imply that such an agent would be required to have genuine mental states; accepting a thor-
oughly instrumentalist view of mental states of artificial agents is sufficient for our purposes.

We can now summarize the requirements for (or, directly, components of) a minimal model enabling
artificial agents’ reasoning in the contexts defined above:

(1) A comprehensive model of artificial agents’ interactions and communications requires:

(1a) a model of events and actions,
(1b) an epistemic mentalistic model,
(1c) a protential mentalistic model, and
(1d) a deontic mentalistic model.

There are also other requirements for an ontology to be able to handle all of the necessary aspects
for modeling the actions of autonomous agents. It is not enough to model that an agent believes or
desires something. Phenomenological philosophy (F. Brentano, E. Husserl) asserts that intentionality is
a fundamental feature of any mental act (Smith and Mclntyre, 1982). Intentionality means that every
mental act has content, i.e., it is “about” something (Smith and Ceusters, 2015; Barton et al., 2018). The
ontology has to provide a way to model the contents of mental states.

The contents of epistemic states, i.e., descriptions of what an agent believes or desires, may be com-
plex. They are possible states of affairs in the sense similar to the one described by the philosopher
Wittgenstein (1922). However, the discussion of states of affairs and their relation to facts is a complex
issue in contemporary philosophy — see e.g. Texor’s work (2016) for an introduction.

Different agents may believe different statements and these beliefs may be inconsistent. An ontology
enabling the representation of the epistemic states of these agents should be able to include such mutually
inconsistent beliefs and still enable reasoning at some level.

We can now summarize additional requirements for an ontology to be able to handle all these aspects
of modeling the actions of autonomous agents:
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(2) The ontology should be able to model:

(2a) the content of mental states,
(2b) complex epistemic states,
(2c) epistemic inconsistency.

Artificial agents can be differentiated into several classes, and these classes influence the character
of their interactions. The necessity of modeling different types of artificial agents’ interactions will be
discussed in detail in the following subsection.

2.2. Different types of artificial agent interaction scenarios

Another requirement is related to the multiplicity of possible scenarios that involve artificial agents.
While we have already highlighted scenarios involving autonomous vehicles and autonomous industrial
transport robots, there are, for sure, as many other scenarios as there are different types of artificial agent
interactions. There are different types of artificial agent interactions and it would be beneficial to be able
to model all of them. As a first step, we propose several distinctions that can be used to classify different
scenarios.

First, artificial agents can be either cooperative or non-cooperative. We note above a situation in
which agents are non-cooperative, even to the extent that they provide misleading information. These
agents are usually controlled by different parties and may sometimes demonstrate competitive attitudes
toward each other. Meanwhile, cooperative agents are usually controlled or deployed by a single party
and work toward a single goal. However, even agents who are not working toward a single goal may
exhibit cooperative behavior depending on the context. In some contexts, an agent’s individual goal may
require it to cooperate with other agents. If the context changes cooperative behavior may be diminished
or replaced by non-cooperative behavior. We therefore term a group of agents “cooperative” only when
they continuously work toward a single given goal.

Artificial agents can be either heterogeneous or homogenous when related to other agents. Homoge-
nous agents are agents which are similar in terms of what types of information they accept, process, and
provide. Homogenous agents may, however, use different internal architecture and seek different goals.
They may sometimes also produce different “behavior”. Heterogeneous agents produce different kinds
of information or process information in different domains. Heterogeneous characteristics of agents may
be used to clearly differentiate agents into a few classes or groups.

Cooperative agent interactions are more commonly used and implemented. An example of a coopera-
tive model is the well-known pandemonium architecture for object recognition (Selfridge, 1959; Lindsay
and Norman, 1977). This architecture consists of a group of feature agents, a group of cognitive agents
and one lone decision agent. In this architecture, all these agents (demons) work together toward the
common goal of the recognition of an object — that’s why we consider these agents and overall architec-
ture cooperative.

Each agent is specialized: feature agents excel in the detection of individual features. Each of them
may detect different feature, however, they are the same with regard to types of information they accept,
process, and provide — that’s why we describe them as homogenous group of agents. Similarly, cognitive
agents use information provided by feature agents and recognize individual patterns or objects, and,
finally, a decision agent decides which object was recognized utilizing the information provided by the
cognitive agents. In this architecture, group of feature agents is homogenous, group of cognitive agents
is also homogenous, and the lone decision agent is heterogeneous in relation to the others.
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We can now summarize requirements for the proposed ontology architecture related to modeling dif-
ferent types of artificial agent interaction scenarios. It would be beneficial for the ontology to enable the
user to model different types of scenarios for artificial agent interactions:

(3) cooperative and non-cooperative,
(4) heterogeneous, and homogenous.

The most challenging are usually scenarios involving non-cooperative, heterogeneous agents because
they require the most complex modeling of the epistemic states described above.

2.3. Other general requirements of ontology design

The proposed ontology is aimed partially at the Al community and this audience necessitates some ad-
ditional requirements for our design. Most notably, the designed ontology should use paradigms known
to the Al community — using completely new terminology and conceptual structures alien to commu-
nity experts makes a proposed ontology difficult to use and less likely to be adopted. To the contrary, if
ontology designers align the proposed design of an ontology with a well-known existing technique or
approach that is widely understood in the community, then accessibility and usability increas. This ap-
proach can be also understood as, in a sense, “reusing” existing knowledge and as such is recommended
by a number of methodologies (Sudrez-Figueroa, 2012).

The purpose of our work is not to create an abstract academic model which would be perfect in theory
but not usable by anyone but its author because of its steep learning curve. It is worthy, of course, to
provide a firm theoretical background justifying the design choices made in developing the ontology;
however, this theoretical complexity should not stand in the way of the average user of the ontology,
who may be an expert in a different area. The complexity of ontology should be adequate for its pur-
pose. The resulting ontology may be complex in some aspects if the domain it describes is also complex.
The possible complexity of the ontology can be alleviated by providing examples, case-studies and doc-
umentation that let users understand the model. The resulting ontology may be also relatively simple
and not consider all intricate complexities of notions it formalizes if it can fulfill some important ap-
plied purpose. Also well-defined focus of the ontology and clearly described internal structure based on
separation of concerns principle may help to keep the complexity of the ontology manageable.

We can now summarize other general requirements of ontology design:

(5) The ontology should reuse existing knowledge where it is possible and meaningful.
(6) The complexity of ontology should be adequate for its purpose.
(7) The internal structure of the ontology should be based on the separation of concerns principle.

There are other methodological ontology design requirements which should be taken into account by
any ontology developer, as summarized by Sure et al. (2009). Others, such as Oberle et al. (2006), de-
scribe the characteristics of badly modeled ontologies. We have tried to follow the suggestions provided
in these works during the course of the development of our ontology.

3. Architecture of the deontic cognitive event ontology

To facilitate the representation of an artificial agent’s knowledge in the context of activity of other
agents, we developed the architecture depicted on Fig. 1, inspired by the Soar cognitive architecture
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Fig. 1. Application architecture based on the DCEO.

(Laird et al., 1987) and the classical concept of the Model Human Processor (Newell et al., 1998; Card
et al., 1983), which is, in turn, based on the Standard Model of human cognition (Simon and Kaplan,
1998; Klahr and MacWhinney, 1998). The central part of the architecture is the Deontic Cognitive Event
Ontology (DCEQ), inspired by DCEC* (Bringsjord and Govindarajulu, 2013; Bringsjord et al., 2014a),
that will be described in the next section.

The core of our architecture consists of the Tbox of an OWL ontology grayed in Fig. 1. The axioms
of this Tbox represent stable knowledge about the ontological structure of the world. The content of the
agent’s own mental states, the mental states of other agents, and the context of the agent’s actions are
represented by axioms of the Abox of the ontology. Different agents may have mutually inconsistent
mental states, and these may be complex and consist of several axioms. We decided to use named graphs
(Carroll et al., 2005a) to model these mental states. The Abox is, therefore, split into a main graph that
describes agents’ mental states, events, and actions, and other named graphs that represent the content
of these entities. These named graphs are identified by a unique URL.

There are several services that update the content of the Abox. Information obtained about the external
context of the agent’s actions (its environment) is processed by a component that is traditionally called
the Perception processor (Newell et al., 1998; Card et al., 1983). It produces facts that are inserted into
the Abox of the ontology classified as perceptions or communications from other agents.

Another service traditionally called the Motoric Processor (Newell et al., 1998; Card et al., 1983)
monitors the current time and retrieves the statements representing actions that are to be performed
at the given time point, facilitating the actual performance of these actions. Action can also include
communication of content to other agents, sending a data message or starting a process in a virtual
environment.

Temporal Maintenance is another service that carries out auxiliary operations such as removing old
Abox axioms from the data store thus enabling the whole system to function efficiently. Namely, the
growth of the number of axioms caused by the continuous addition of new statements to the Abox com-
bined with axiom production by the SWRL (Semantic Web Rule Language) engine could be enormous;
clearing of old data representing no-longer-useful knowledge could thus be necessary. The use of this
service depends on the implementation; in some cases, such maintenance may not be necessary, or the
complete history of operations may be valuable. Maintenance service may not delete old axioms, but in-
stead move them to an archive KR where the complete history is stored, and that may set up an artificial
agent as a kind of “long-term memory” that is queried only when specifically required.
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There are also some stable axioms of the Abox that, in some scenarios, change rarely, for example,
axioms about agent’s obligations and prohibitions. A finite set of an agent’s final goals (desires) that do
not change may also exist. However, agent’s representations of obligations, prohibitions, and desires of
the other agents are susceptible to change because agents may change, or the agent recognizes that the
original assumption about other agents’ desires might have been mistaken.

The overall architecture is inspired by the standard Model Human Processor, and the internal structure
of the ontology is based on the Deontic Cognitive Event Calculus (DCEC*), which has been successfully
used in a number of real-world scenarios such as reasoning over a scene description (Marton et al.,
2015), control of robot behavior (Bringsjord et al., 2014b), or even simulation of some features of human
consciousness (Bringsjord et al., 2015). Following section introduces basic features of DCEC*.

4. Deontic cognitive event calculus (DCEC*)

Deontic Cognitive Event Calculus (DCEC*) is a multi-sorted quantified modal logic developed at
Rensselaer Polytechnic Institute, which has a well-defined syntax and a proof calculus. Detailed infor-
mation about multi-sorted first order logic (MSL) can be found in a book by Manzano (1996). DCEC*
syntax includes a system of sorts S, a signature f, a grammar for terms ¢, and a grammar for sentences
¢; these are shown in Fig. 2. An overview of the whole formal syntax of DCEC* can be found in the
original works (Bringsjord and Govindarajulu, 2013; Bringsjord et al., 2014a).

The proof calculus is based on natural deduction (Jaskowski, 1934) and includes all the introduction
and elimination rules of first-order logic as well as rules for modal operators. In this paper we use the

.._ Object | Agent | Self — Agent | ActionType | Action C Event |
"7 Moment | Boolean | Fluent | Numeric

action : Agent x ActionType — Action

initially : Fluent — Boolean

holds : Fluent x Moment — Boolean

happens : Event x Moment — Boolean

clipped : Moment x Fluent x Moment — Boolean
f = initiates : Event x Fluent x Moment — Boolean

terminates : Event x Fluent x Moment — Boolean

prior : Moment x Moment — Boolean

interval : Moment x Boolean

* : Agent — Self

payoff : Agent x ActionType x Moment — Numeric

tu=x:8|c: S| ftr,....tn)

p:Boolean | —¢ | G AV [V | — U | < |Vx:S¢|Ix: S|
._Pa,t,9) | K(a,t,9)| C(t,9) | S(a,b,t,¢) | S(a,t, ) |
"7 B(a,t,¢) | D(a, t, holds(f, 1)) | I(a, t, happens(action(a*, @), 1)) |

O(a, t, ¢, happens(action(a*, a), t"))

¢

Fig. 2. DCEC* syntax.
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syntax of DCEC™ as a starting point for development of the ontology to describe artificial agents’ inter-
action. The calculus uses also a number of inferential rules described by Bringsjord and Govindarajulu
(2013). However, to keep the ontology lightweight we consider these rules as optional. They may be
included (after transformation to SWRL) if an application requires them. In this section we provide a
brief overview of DCEC™ calculus to provide a background for the task of modeling artificial agents’
action and preliminary introduction to reasons behind the design decision made during development of
the ontology.

DCEC* is based on the Event Calculus (EC), which was first introduced by Kowalski and Sergot
(1986) as a logic programming formalism for representing events and their effects, and later also pre-
sented in a simplified version (Kowalski, 1992). A detailed presentation of EC can be found in the work
of Shanahan (2001).

DCEC* adapts three sorts from EC: Event, Moment and Fluent. The sort Boolean is only used to
capture truth values. The following elements of the signature f of the syntax of DCEC* are adapted
from EC.: initially, holds, happens, clipped, initiates, terminates and prior. For the relation prior, which
introduces an order over time points, EC sometimes uses the simple symbol <.

We will now briefly describe the components of DCEC*. A Fluent is anything the value of which can
change over time. Typically it is a truth value of a proposition (e.g., “Peter is student”). A fluent can be
also a numerical value of a property that is subject to variation, e.g., temperature, but such a value can
be easily transformed into a proposition (e.g., “The temperature is between 5 and 10 degrees Celsius.”)
so EC usually confines its focus to propositional fluents.

A Moment is a point in time. Points in time are ordered by the relation prior. The expression
prior(ty, ;) means that the time point #; precedes the time point #, (e.g., #; = 01/01/2015 precedes
t, = 01/01/2016). The term holds( f, t) says that fluent f holds at a given time ¢ (e.g., f = “Peter is
student” holds at + = 01/01/2016). The expression initially( f) indicates that the fluent f is true unless
it was made false at some previous point in time.

Several signature members describe relations between events and fluents. The general idea of EC
is that events cause changes of truth values of fluents. The expression happens(e, t) thus informs that
event e happened in time ¢ (e.g., e = “Peter concluded his studies” at + = 05/03/2016). The expression
terminates(e, f,t) states that following the event e, the fluent f ceased to hold at the time ¢ (e.g., after
e = “Peter concluded his studies” at + = 05/03/2016, proposition f = “Peter is a student” was no longer
true). Similarly, the expression initiates(e, f, t) states that after the event e, the fluent f started to hold
at the time ¢ (e.g., after e = “Peter was inaugurated” at ¢+ = 02/03/2011, proposition f = “Peter is
a student” started to be true). That also means that both terminates(e, f,t) and initiates(e, f,t) imply
happens(e, t).

The expression clipped(t;, f, t;) says that fluent f is terminated between time #; and time 1, (e.g., f =
“Peter is a student” is terminated between ¢t; = 01/01/2016 and t, = 01/01/2017).

DCEC* introduces a mechanism to deal with epistemic information on the top of the event concep-
tualization of EC. DCEC™ has a classical monotonic view of the agents’ knowledge of the world. The
knowledge possessed by agents is considered to be unchanging, so if an agent knows ¢ at some time
t, then the agent will continue to know ¢ for all time after # during which the agent is operational. On
the other hand, an agents’ beliefs can change as time passes. This marks a fundamental difference in
understanding knowledge vs. belief in DCEC*.

The epistemic predicate C(z, ¢) indicates common knowledge (possessed by all agents) of ¢ at time 7.
The predicate K(a, ¢, ¢) says that agent a knows ¢ at time t. The predicate B(a, ¢, ¢) says that agent a
believes in ¢ at time ¢. Finally, the predicate P(a, ¢, ¢) says that agent a perceives ¢ at time ¢.
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DCEC* also introduces tools for capturing the communication of agents. The predicate S(a, b, t, ¢)
describes the communication of information ¢ from agent a to agent b at time ¢. A public communication
of information ¢ at time ¢ by agent a is denoted as S(a, t, ¢).

There is another set of predicates, which we may call behavioral: the predicate D(a, ¢, holds(f, "))
says that agent a desires that fluent f would hold at time #'. Similarly, to say that agent a at time ¢
intends to perform an action of type « at time #’, we use the predicate I(a, t, happens(action(a, o), t')).
These predicates are based on works by Goble (2003) and McNamara (2010).

Finally, the deontic predicate O(a, t, ¢, happens(action(a, @), t')) should be interpreted according to
authors of DCEC™ as: “If it is the case that a at time 7 believes ¢, then that « is obligatory for a and this
[obligation] is known by a.” The semantics of this predicate is based on a study by Castafieda (1999).

These predicates also require the introduction of the sort ActionType covering the general types of
action, and of the function action(a, @) = b, expressing that for a given agent a, an action type «
produces a specific action b. The operator  is used to point out the reasoning agent himself among other
agents in the universe of discourse. The operator payoff (a, «, t) is used to evaluate an action of type «
performed by agent a at time ¢; the result of such an evaluation is of the Numerical sort.

There are some differences between DCEO ontology introduced in following sections and DCEC*
calculus. To name few of them: alongside the desire we formalize also aversion as its opposite. The
modeling of desire and aversion is based on Hobbesian psychology. Hobbes considered desire and aver-
sion to be fundamental emotions — all other emotions are based on these two. These two emotions are
also opposites — desire means an inclination to move in some direction, to reach for some object, to
acquire some object etc. Aversion means an inclination to move away from some object, to avoid any
contact with some objects etc.

Alongside the obligation we define also prohibition and permission. We introduce operator
results(a, o, t) that links a fluent with an action that produced it. Expressions initiates, terminates,
clipped, initially and happens are modeled indirectly so they are not explicitly present in the ontology
(details in the following sections). Chosen modeling approach enables modeling of epistemic meta-
knowledge (x knows that y believes that f holds) in the ontology. There are also many other differences
in the design of the ontology that were required because an ontology models reality in a very different
way than a calculus. We will discuss details of the ontology design in the next section.

However, it is obvious that due to differences between approach utilizing a calculus and Semantic web
techniques the alignment between these two is a bit vague. Still it is beneficial to use the DCEC* calculus
as a starting point for development of the ontology, as it provides a verified vocabulary and reasoning
structures familiar to Al community.

5. Deontic cognitive event ontology

The proposed Deontic Cognitive Event Ontology (DCEO) is designed to satisfy the requirements
defined in Sections 2.1, 2.2, 2.3 and utilizes some principles derived from the DCEC* calculus. The
development of DCEO was initiated in 2015, and a preliminary version was developed in 2016 (Vacura
and Svatek, 2016). The first version was closer to DCEC*; however, during testing of the ontology on
several scenarios, some design concepts had to be changed to make the ontology more understandable
for practical use. The resulting ontology is presented in this paper; all necessary conceptual changes
that may be important for the user acquainted with DCEC* are mentioned in the following subsections.
Figure 3 depicts the general overview of the DCEO ontology (plain arrows mark relations, arrows with
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Fig. 3. Deontic cognitive event ontology (DCEO).

full arrowhead mark subsumptions). Specific axioms for each part of the ontology will be listed at the
end of each respective section of the following text. All classes of the ontology are disjoint, and we
omitted disjunction axioms for brevity. The exceptions are that we consider the class action to be a
subclass of the class event: Event O Action, and with some reservations (see Section 5.2), the class
knowledge is a subclass of class belief: Belief O Knowledge. The ontology can be downloaded
from our website.'

5.1. The event section of the ontology

The ontology engineering community has been discussing the problem of modeling events for some
time and has proposed several different ways of handling events (Hanzal et al., 2016). Most of these

Uhttps://name.vse.cz/vacuram/ontologies/dceo/
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approaches have been developed strictly within the context of the Semantic Web and were not related
to any research based on different techniques or paradigms. One exception is the effort to provide an
ontologic representation of the Discrete Event Calculus (DEC; Mepham and Gardner, 2009; Mepham,
2010), an alternative to Event Calculus (EC) (see Section 4). The Discrete Event Ontology (DEO) con-
sisted of OWL ontology, several SWRL rules, and a resolver. This ontology only partially covered DEC;
the resulting ontology was comprised of three classes (Events, Fluents, Timepoints) and a couple of
rules.

The design of the event section of our ontology was influenced by DEC, which is closely related to
DCEC*. While we also learned some lessons from the observations provided by the authors of DEO and
DEO aimed to yield as precise as possible a reconstruction of the inferential rules of DEC using SWRL,
we were primarily concerned with developing more effective knowledge representation in the ontology
design as well as with its general usability and practicality (as stated in the overview of the requirements
in Section 2.1).

The core of the event section of DCEO constitutes of classes Event, Holds, Fluent and
Instant. The class Fluent represents any state of affairs, the truth-value of which can change over
time. These states of affairs can be the result of actions, such as actual states of the world, or they may
be the contents of mental states of agents. Because these mental states (e.g. what an agent believes or
desires) may be complex, they could not be represented by a single RDF triplet. A description of these
complex states of affairs may require a complex RDF graph, which is why there is the object property
refersTo that links Fluent to a URI of the named graph that describes such state of affairs in its
entirety, using the concepts from the appropriate domain ontology and/or from DCEO in the case of
more complex mentalistic models.

The events are understood in this ontology in an abstract way that may differ from the way in which
foundational ontologies understand events. For example Descriptive Ontology for Linguistic and Cog-
nitive Engineering (DOLCE) by Masolo et al. (2002, 2003) distinguishes between endurants and per-
durants (eventive occurrences) that actually correspond to continuants and occurrents as defined, for
example, in the KR Ontology theorized by Sowa (2000). Different kinds of perdurants are in DOLCE
distinguished by notions of homeomericity and cumulativity. A detailed discussion of these terms can be
found in (Jarrar and Ceusters, 2017). Meanwhile, a perdurant is either stative or eventive (it is an event)
according to whether or not it is cumulative. In stative occurrences, DOLCE distinguishes between states
and processes according to homeomericity. Events are called achievements if they are atomic, otherwise
they are termed accomplishments (Masolo et al., 2003, 24). Time locations are in DOLCE considered
individual qualities such as colors, weights, etc. Their corresponding qualia are called temporal regions —
the temporal location of an occurrence is its quality and this corresponds to a quale that is a region in the
temporal space (Masolo et al., 2003, 18).

There are also foundational ontologies such as Unified Foundational Ontology (UFO), which, be-
cause it focuses on structural (as opposed to dynamic) aspects of the world and accepts a descriptive
commonsensical view of reality, was originally conceived as an ontology of endurants rather than one
of perdurants (Guizzardi, 2005, 211). And yet even this ontology was later extended to handle temporal
entities, ultimately yielding the foundational ontology of UFO-B (Guizzardi et al., 2013) which uses
the term event for all perduring entities. Notably, events may be composed of other events and may be
complex or atomic (having no proper parts). Moreover, events are constituted by transformations from
one portion of reality (situation/fact) to another. While the notion of the situation is similar to the philo-
sophical notion of the state of affairs, situations are notably bound to specific time points. Event calculus
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provides a foundation for our model: we model our events similarly, i.e., as entities bound to specific
time points and that refer to changes in the world.

In our ontology, we locate events primarily only in time. Other approaches, like the Core Pattern for
Events by Krisnadhi and Hitzler (2016) and the Simple Event Model Ontology,” assign a spatiotemporal
location to each event. Many ontologies and vocabularies define events only with regard to their specific
domains, such as music-oriented Event Ontology® or LODE (Linking Open Descriptions of Events)*
that explicitly aim at historical events (for more information, please see the discussion on this topic in
Hanzal et al. (2016)).

The events that are members of the class Event (or its subclass Action) happen at some time
Instant (property when). The event results in some change in the world, such as that some
Fluent Holds from some time Instant to another.

To specify time, we utilize W3C OWL Time ontology® and use class time: Instant (in DCECH, it
is Moment). Instants are point-like time entities that have no interior points. They can be identified with
intervals with zero length, where the beginning and end are the same. For simplicity, we usually use only
the dateTime property of this class.

At the base level, we prefer not to work with intervals. The class Holds enables us to specify the
starting and ending instant. To represent intervals OWL Time class time: ProperInterval can
be used, with properties hasBeginning and hasEnd referring to instants that define limits of an
interval. However, according to our experience, this makes using the ontology a bit more cumbersome.

The following code is an example of the action al and its result: fluent £1 that holds from instant 11
to the instant 12 (in code we use dceo: as the prefix associated with DCEO concepts).

ex:al rdfitype dceo:Action ; ex:i1 rdf:itype time:Instant .
dceo:when ex:it ; ex:i2 rdf:type time:Instant .
dceo:results ex:h1. ex:f1 rdf:type dceo:Fluent .

ex:h1 rdf:type dceo:Holds ;
dceo:holdsFrom ex:it ;
dceo:holdsTo ex:i2 ;
dceo:whatFluent  ex:f1.

The class Action can be linked to the class Agent by the relation who to describe the acting agent.
We used a relatively straightforward modeling approach; however, we are aware of the fact that modeling
actions is a controversial issue (Seddig-Raufie et al., 2018). We use the same relation to link an agent
to such ontologically different entities as actions or epistemic states, however this relation may be later
differentiated to more specific subrelations if needed.

Along with the object property who, we also introduced two other general object properties: what and
when. These reflect various properties of DCEC* calculus with common ranges. The range of property
who is the class Agent, and it is used to link not only actions, but also mental states like beliefs or
desires to their subject. The range of property when is class Instant and is similarly used to localize
not only actions but also mental states in time. The range of property what is class Holds and is used

Zhttp://semanticweb.cs.vu.nl/2009/1 1/sem/
3http://purl.org/NET/c4dm/event.owl
“http://linkedevents.org/ontology/
Shttps://www.w3.org/TR/owl-time/
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to refer to changes in the world (Fluent) resulting from an event, but also states of affairs that describe
the content of mental states.

Other approaches, such as Affordance Ontology Design Pattern (Asprino et al., 2016), prefer to utilize
the concept of the “task” as something that is executed by Action and performed by an Agent.
Such a model is useful when it is necessary to model affordances (a concept introduced by cognitive
psychologist Gibson (1977)), that is opportunities or possible actions offered by the environment in
which the agent operates. Tasks are then provided by these affordances, framed by situations dependent
on spatio-temporal location of the agent (Toyoshima and Barton, 2018).

The class Agent has one specific Boolean data property: self. This corresponds to the function *
and the sort Self of DCEC*. The ontology may model a large number of different agents — only one of
which is the reasoning agent, and this property is used to represent this knowledge. Usually this property
can hold the value true for only one agent.

There are also several additional classes that have auxiliary functions. The class ActionType rep-
resents types of actions and provides an elementary classification for individual actions of the class
Action, which is also used in conjunction with descriptions of future actions. Obligations, permis-
sions, prohibitions and intentions are generally characterized with regards to Action classified by some
ActionType, which makes it possible to evaluate, for instance, whether the real action performed by
the agent is in accordance with his obligation.

The class Payoff is an auxiliary class that explicitly represents the payoff (using a numeric data
property payoffvalue) of an Action of the type represented by the class ActionType at given
time Instant. It can be used to represent knowledge about the evaluation of the profitability of al-
ternative actions by an agent. The payoff of action may fluctuate in time; the same action performed
at different times may have different payoffs. Likewise, a similar action done at the same moment
but performed by a different agent may also have a different payoff value. Explicitly defining payoff
values is an alternative to defining desires (see Section 5.3). These techniques may be used indepen-
dently.

The axioms of the event section of the ontology are the following:

Instant C (dbefore.Instant) (D)

Holds C (FwhatFluent.Fluent) N (3Jtruthvalue.T)

M (FholdsFrom.Instant L dholdsTo.Instant) )
Payoff C (3who.Agent) M (JofAction.Action) M (Iwhen.Instant) 3)
Event C (3when.Instant) M (results.Holds) (@)
Action C (3who.Agent) 5)

Note that class Holds requires only one of the object time specifying properties — either holdsFrom
or holdsTo. This enables, for example, action to result in initiating (or terminating) a state of affairs
without specifying how long such a state will hold.

We integrated some concepts of DCEC* calculus into the design of the ontology so they are not ex-
pressed explicitly as concepts or properties but implicitly using its different features. Concepts Initiation
and Termination that can be associated with fluents in DCEC* calculus are in the ontology represented
by relating concept Action (or generally Event) to concept Fluent by property results. Soif an
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action or event initiates a fluent, then in the ontology the result of the Event is that Fluent Holds,
while not specifying the time limit (holdsTo) of this state of affairs (see the code on page 505).

We also do not use the property Initially to define whether a fluent holds at time 0. We concluded that
there is no epistemic justification for its use in the ontology. If it is generally known that a fluent has held
from the beginning of the time interval that we are interested in modeling, then it should be represented
using the CommonKnowledge concept. Otherwise, it is a knowledge available only to some agents,
and it should be represented using the Knowledge concept. Both of these concepts are described in the
next section.

5.2. The epistemic section of the ontology

The epistemic section of the ontology is based on DCEC* calculus and epistemic logic (Ditmarsch
et al., 2015; Rescher, 2005; Hintikka, 2005). We use standard notation of epistemic logic and interpret
K xp as “x knows that p” (similarly, Bxp in the case of belief). In most cases, knowledge and belief have
the same formal structure (therefore, we abstain from repeating the discussion). There is one exception:
common knowledge does not have its doxastic (i.e. related to belief) counterpart. The question whether
knowledge entails belief, i.e. Kxp — Bxp, is a philosophical problem — it is normal to define knowledge
as a kind of belief (e.g. justified belief); however, some authors consider the problem more complex, such
as Armstrong (1969). The discussion gets more complicated when we consider non-human agents: does
the fact that the bear knows that water is to the north imply that he believes that? We decided to go with
the prevailing view that knowledge entails belief, but we will provide an alternative version of ontology
(DCEOkb ) that lacks these axioms in future.

The epistemic section of the ontology consists of several classes that describe the epistemic aspects of
an artificial agent, starting with the acquisition of new knowledge. Classes Perception and Commu-
nication describe how an agent obtains new information: either directly from the environment or by
communication from other agents.

There may also be public information available to an agent, described by the class CommonKnowl -
edge. Epistemic logic (Ditmarsch et al., 2015) also uses the term common knowledge; however, Rescher
(2005), for one, speaks about obvious knowledge. In both cases, the meaning is the same; p is common
knowledge iff (Vx)Kxp. We decided not to use the concept of “patent knowledge” described by the
same author; that would require including a specific individual called, for example, s (as for “system”)
and asserting that p is obvious knowledge iff K sp. For practical reasons, we preferred to model common
knowledge as a class.

Information received by communication with other agents or by perception from the environment
may produce belief or knowledge, discussed, for example, by Millar (2015). In the case of sim-
ple artificial agents, perceiving may even be something as elementary as measuring the tempera-
ture of the environment. Two classes form the epistemic core of the ontology: Knowledge and
Belief, whichrepresent two fundamental epistemic attitudes. These classes are connected to the know-
ing/believing/perceiving/communicating Agent using the property who. The epistemic content of the
agent’s attitude is determined by the object property what connected to the classes Holds. The time
when it happens is determined by the property when connected to class Instant. The class Commu-
nication has one more property communicationTo that connects the reified communication with
the information receiving agent.

The following code is an example of the agent al believing at time instant i1 that in the interval from
12 to 13, the fluent £1 will hold.
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ex:b1 rdf:type dceo:Belief ; ex:al rdfitype dceo:Agent .
dceo:who ex:al; ex:i1 rdf:itype time:Instant .
dceo:when ex:il ; ex:i2 rdf:type time:lnstant .
dceo:what ex:h1 . ex:i3 rdf:itype time:Instant .

ex:h1 rdf:type dceo:Holds ; ex:f1 rdf:type dceo:Fluent .

dceo:holdsFrom ex:i2 ;
dceo:holdsTo ex:i3 ;
dceo:whatFluent ex:f1.

The class CommonKnowledge represents knowledge, defined by the property what, available at a
given time, specified by the property when to all agents and considered to be true. It is similar to the
epistemic states described above, but it lacks the object property who, because it is known by all agents.

We have considered an intuitive modeling approach where CommonKnowledge is formally a kind of
Knowledge. All members of this class then have to be known by all agents. This could be achieved by
following SWRL rule. The antecedent of this rule is the conjunction of two atoms, variables are treated
as universally quantified, with their scope limited to a given rule.

CommonKnowledge(?cl) A Agent(?al) — Knowledge(?cl) Awho(?cl, 7al) (6)

In some application scenarios, there may be no difference between perception and belief or even
knowledge; i.e. everything that is perceived is believed by the agent or is considered to be a known fact.
However, as described above, although everything that is perceived by the agent may be believed, it does
not imply that everything that is believed may have its origin in perception. Some statements believed
by the agent may originate in communication with other agents (Dretske, 1981).

The class Communication represents the cases of information transfer between agents. It describes
the communication of some content given by the property what at some time defined by the property
when by an Agent described by the property who to another Agent — specified by the object property
communicationTo.

We consider it to be a matter of the application to handle incoming communication similarly, as we
do not prescribe the processing of data in the case of perception. Whether perceived (or communicated)
data are believed automatically by an agent® depends on, from our point of view, the epistemic approach
chosen by the application (it can be handled by adding the appropriate SWRL rules).

Note that our approach enables the expression of some more advanced constructs available in epis-
temic logic. It is possible to express metaknowledge: K x (K yp) — “x knows that y knows that p”. In this
case an agent x knows that the fluent f holds and this fluent refers to a named graph expressing that
an agent y knows that the fluent p holds. Usually, a model uses only “depth-two” knowledge, although
it is also possible to model deeper levels. Ditmarsch et al. (2015) assumes that common knowledge is
characterized by general metaknowledge. If p is commonly known, it not only means that (Vx)Kxp
but also that (Vx)(Vy) Kx Kyp — “everybody knows that everybody knows that p”’. While our approach
enables us to model such general metaknowledge, it is rarely needed by real applications, so we consider
it optional.’

Dretske (1969) disagrees with this, because perceived data may be product of e.g., optical illusion.
71t is also possible to express what Rescher (2005) calls secret: Kxp A K x(—K yp) — “x knows that p and also knows that y
does not know that p”.



M. Vacura / Modeling artificial agents’ actions in context — a deontic cognitive event ontology 509

The axioms of the epistemic section of the ontology are as follows:

Communication E (JcommunicationTo.Agent) N (Iwho.Agent)

M (Iwhen.Instant) N (Gwhat.Holds) @)
Belief C (Iwho.Agent) M (Iwhen.Instant) N (3what.Holds) (8)
Perception C (3who.Agent) N (3when.Instant) N (3what.Holds) 9
CommonKnowledge C (3when.Instant) M (3what.Holds) (10)

5.3. The protential section of the ontology

The protential section of the ontology focuses on modeling the future. The protential model is based
on a DCEC™ extended in accordance with Hobbesian psychology, a theory that understands all motives
of actions, including emotions, as reducible to desires and aversions. If there is no desire or aversion,
there is no reason for any action (Gert, 1996).

These concepts are modeled by classes Desire and Aversion, representing more general future-
oriented stances of an agent. Objects of desires and aversions are states of affairs. An agent may desire
or have aversion to some state of affairs that may occur in the future (e.g. the temperature in the room
will be higher than 40°C). The concept of aversion may be considered a syntactic sugar; it depends on
whether the statement having aversion towards ¢ means desiring —¢ and vice versa are accepted.

There is also the class Intention that represents a more specific concept of intending an action in
the future. The object of the intention is an Action that is to be done in some foreseeable future. There
can be a connection between desires and aversions on the one hand and intentions on the other. If an
agent desires some state of affairs to be obtained at time t 2, it may be meaningful to intend to make some
type of action before that, at the time t1 (e.g. executing some process). Our ontology, however, only
provides a means to represent such knowledge; its content has to be created and reflected by the agent.

The class Intention represents an intention of an Agent (connected by the property who) to per-
form an Action (connected by property toAction) of the type determined by the class Action-
Type. There are two time specifications related to the intention: the object property when determines
the time when the intention itself takes place, and the object property intendsWhen that determines
the time when the intended action should take place. We do not currently allow modeling cases when an
agent intends to do something without intending to do it at a specific time. Modeling such cases can be
allowed by modifying axiom (11) — removing its last section and thus the requirement to state the time
when the intended action should take place by specifying property intendsWhen.

While classes Desire and Aversion are in some sense similar to Intention, they do not directly
comprise any action of the agent. They relate to an agent who desires or has aversion. They also relate
to some state of affairs that is desired or aversed through the object property what and class Holds.
There is again time specification related to these mental states: the object property when determines the
time when they themselves take place. Some states of affairs may be aversed at specific times, while
at other times they may be desirable (e.g. sun shades should be extended during day but not during the
night). This is described by the temporal localization of the class Holds.

The axioms of the protential section of the ontology are as following:

Intention C (3toAction.Action) N (Iwho.Agent) M (Iwhen.Instant)

M (dintendsWhen.Instant) (1D
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Desire C (3what.Holds) n (3who.Agent) N (Iwhen.Instant) (12)

Aversion C (3what.Holds) N (3who.Agent) M (Iwhen.Instant) (13)
5.4. The deontic section of the ontology

The deontic section of the ontology aims to model the deontic normative knowledge of an agent and
therefore deals with an agent’s knowledge of his obligations and prohibitions. A few other studies have
tried to model similar conceptual contexts. For example, the Document Acts Ontology (d-acts) is an
OWL ontology by Almeida et al. (2012) and Brochhausen et al. (2013) that represents social acts that
create new entities relevant to social life. D-acts ontology uses the term declaration to signify a social
act that creates rights and obligations. Declarations that use documents that are signed or stamped are
called document acts. The ontology is based on Documents Acts Theory by Smith (2012) and inspired by
the philosophical work of Reinach (2013) that captures long-lasting responsibilities within an institution.
D-acts ontology is linked to Basic Formal Ontology (BFO) by Arp et al. (2015) and reuses some concepts
from Information Artefact Ontology (IAO). For our purposes, what is important to note here is that
the d-acts ontology represents those acts that document acts theory delineates as Social Generically
Dependent Continuants (SGDCs). Accordingly, deontic entities are modeled as socio-legal SGDCs (see
also Almeida and Brochhausen (2017); Almeida et al. (2018)).

Ontology developed by Donohue (2017) focuses on formally representing deontic entities and their
relationships in the biomedical context such as a health-care professional’s obligations to her patients,
a patient’s claim to information requisite for consent, etc. However, it is argued that such an ontology
would also be useful in other domains of interest (e.g., legal knowledge bases or military doctrines and
intelligence). Donohue’s work is based on the above-mentioned work by Almeida et al. (2012) and his
ontology is also based on BFO foundational ontology. Deontic concepts like obligation are categorized
as a species of the class Directive Information Entity of BFO-based IAO.

Another related BFO-aligned ontology — Informed Consent Ontology (ICO) by Lin et al. (2014) —
also originates in the biomedical context and also reuses some concepts from IAO and describes doc-
ument acts. However, this ontology is very specific and focuses only on concepts related to informed
consent. Rudimentary Requirement Ontology® was developed by Nowara as part of Decision Ontology
(see Blomgqvist et al. (2012) for more information). While there were efforts to integrate it with the BFO
foundational ontology, this project was not completed. All these works, however, focus primarily on
modeling deontic concepts as legal constructs, usually in the biomedical context.

The deontic model in DCEO is based on DCEC* extended in accordance with deontic logic (Gabbay
et al., 2013). We use O for obligatory and / for impermissible/prohibited and interpret Oxp as “p is
obligatory for x” (similarly for 7). In some deontic systems, obligations are linked only to propositions,
not to subjects, because they are considered to be universal: Op as “p is obligatory”. However, we
consider scenarios with heterogeneous agents that may have different obligations and prohibitions so we
understand these deontic operators as binary.

Deontic logic also defines the relation between obligation, permission and prohibition. Prohibition
is equivalent to an obligation to abstain from an action and may be formally defined using obligation:
Ixp < Ox—p. However, modeling obligation to abstain from an action directly would be difficult
because the obligation is linked to class Action and it would be necessary to create some auxiliary

8https://code.google.com/archive/p/requirement-ontology/
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passive ActionType, e.g. “waiting”, to achieve such goal. One can abstain from an action also by
doing something else, so such solution would not be proper. Similarly a permission may be also defined
as not having an obligation to not perform the action. A permission may be therefore formally defined
using an obligation: Pxp <> —Ox—p. These concepts may be considered a syntactic sugar, but due to
the nature of the ontology, we will see that modeling all these constructs directly is useful.

The obligation is modeled by the class Obligation, prohibition using the class Prohibition
and permission using the class Permission. These classes are similar to class Intention since
we consider obligations, prohibitions and permissions structurally similar to intentions. The difference
is that in the case of intention, the reason for an action is the internal motive of the agent, while in
the case of obligation and prohibition, the restrictions are usually based on some given deontic limits
external to the agent or inherent to the cognitive makeup of the agent. However, it is worth noting that
there are other differences between intention and deontic concepts (an intention does not need a social
context, whereas deontic entities usually do; intentions have a different relation to beliefs and desires
than deontic concepts, etc.) that are not captured by this ontology and may require a different modeling
approach and a complex discussion. The modeling approach presented was chosen because it is adequate
for the intended use of the ontology, as it facilitates the process for applications to check whether the
agent’s intended actions are under the obligations and prohibitions of the agent.

Formally these classes — Obligation, Prohibition and Permission — relate, at some point
of time (when), to an individual (who) is obliged/prohibited to do some Action of an ActionType
in a current or future time point (ocbligedWhen, permittedWhen, prohibitedWhen). These
deontic concepts may be alternatively related to some (obligatory, prohibited, permitted) state of affairs
by relation what.

The deontic concepts (e.g., obligations) can be modelled in different ways. One way of modeling
obligations is to suppose that we know all relevant obligations. Then we can represent agents’ actions and
monitor whether they are in compliance with their obligations. We make no assumptions whether agents
know or do not know their obligations. The other way of modeling obligations is to model them with
reference to an individual agent, who is mentally aware of them as specific behavioral limits, applicable
to his actions — (Vx)Oxp — KxOxp). The obligation is always an obligation to act somehow. The
presented approach enables modeling obligations in both ways.

Axioms of the deontic section of the ontology follow:

Obligation C (Iwho.Agent) M (dwhen.Instant) N (JobligedWhen.Instant) (14)
Obligation C ((EItoAction.Action) U (EIwhat.Holds)) (15)
Prohibition C (3who.Agent) M (Iwhen.Instant)
M (3prohibitedWhen.Instant) (16)
Prohibition C ((EltoAction.Action) L (EIwhat.Holds)) (17)
Permission C (3who.Agent) N (3when.Instant)
M (dpermittedWhen.Instant) (18)

Permission C ((EItoAction.Action) ] (Elwhat.Holds)) (19)
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6. Evaluation of the ontology

Formally-defined ontology evaluation that uses proper methodology is an important topic — ontology
designers need a way to guide the evaluation phase of the process of ontology development and to
evaluate the resulting ontology. Different ontology evaluation techniques are summarized by Brank et al.
(2005). We base our evaluation of the ontology on the On-To-Knowledge methodology developed by
Sure et al. (2009) and Staab et al. (2001) that we discussed in Section 2.

It is important to note that the DCEO ontology is not meant to describe some large thematic area using
hundreds of concepts. Therefore, it is not possible to evaluate the ontology at a lexical or vocabulary
level by measuring its similarity to a collection of similar ontologies or to some gold standard ontology
(Maedche and Staab, 2002) Moreover, in our case, it was also impossible to use a body of natural-
language text or those techniques proposed by Velardi et al. (2005) (on a lexical level) or by Brewser
et al. (2004) (on a taxonomic level) to measure the degree of some kind of fit between an ontology and
a corpus of documents.

Evaluation at the taxonomic level using a formal technique anchored in philosophically-important
notions (e.g., essentiality, rigidity, or unity) such as OntoClean (Guarino and Welty, 2009) is also impos-
sible because it primarily evaluates hierarchical structures of concept subsumptions, a feature that our
ontology lacks. The lack of taxonomical structure can be considered a limitation of the ontology because
a hierarchical taxonomy is frequently considered to be the backbone of an ontology.

In accordance with On-To-Knowledge methodology we started with a technology-focused evaluation
that checked syntax and semantics. More specifically, we validated the ontology’s language conformity
(syntax) to ensure that the ontology was fully compliant with the OWL standard (the standard OWL syn-
tax validator’ was therefore used to evaluate the validity of the syntax). We also performed consistency
(semantics) tests using Hermit and Pellet reasoner plug-ins in Protegé editor (Musen, 2015).'°

The next stage of our evaluation consisted of checking whether or not the ontology satisfied the on-
tology requirement specifications and whether or not the ontology supported the solving of problems
analyzed in the kickoff phase of the project (we discuss this in detail in the following Sections 6.1-6.3).
In this stage we also tested the ontology in the environment of the case-study (discussed in detail in the
Section 7). We then used the results of this testing as well as feedback from involved domain experts to
refine our ontology. The outcome of this phase (after two iterations) was an evaluated ontology — v. 1.2
of the DCEO ontology.

The ontology was further refined when it was used (i.e., during the application and evolution phase)
and these refinements were followed with similarly-structured evaluations. These refinement-evaluation
cycles produced updated versions of the ontology — v. 2.0 (2018) and v. 2.1 (described in this paper). As
part of evaluation a case study described in Section 7 was performed.

6.1. Comparison with requirements for the modeling of an artificial agents

We discuss now whether the requirements stated in Section 2.1 are satisfied with our proposed mod-
eling of the artificial agent action.

The core of the ontology provides a representation of events, agents’ actions and time instants. The
design, based on named graphs, permits complex descriptions of the content of these events and agents’

https://www.w3.0rg/2001/sw/wiki/OWL,_Validator
10https://protege.stanford.edu/
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actions using a chosen domain ontology. By providing these features the ontology satisfies Require-
ment 1a, defined in Section 2.1.

The proposed ontology enables modeling of communication between agents, such as sending or re-
ceiving data messages. It is also possible to model common knowledge available to all agents and con-
sidered to be generally trustworthy. Another way of acquiring information that can be represented using
concepts available in the ontology is the perception of the environment by the agent, e.g., using his own
sensory equipment.

The ontology also enables distinguishing between information that can be trusted and that has a lower
level of epistemic value. Employing an epistemic mentalistic model together with some ideas based on
epistemic logic produced a flexible representation of concepts of knowledge and belief understood as
mental states of the agent. An alternative model for specific scenarios where knowledge does not entail
belief is available. By providing an epistemic mentalistic model the ontology satisfies Requirement 1b,
defined in Section 2.1. The ontology also makes it possible to represent the content of mental states of
agents and thus satisfies Requirement 2a, defined in the same section. Because the content of mental
states is represented in the form of named graphs, the content described may be very complex, so it
satisfies also Requirement 2b. The proposed ontology also enables modeling of different agents believing
different statements, satisfying Requirement 2c.

DCEO ontology makes it possible to represent knowledge related to future actions: the knowledge
about desired states of affairs that are preferred by the artificial agent, but also of aversions related to
states of affairs that are to be avoided. Agent’s intentions represent actions that the agent plans to perform
in the future. Desires and aversions are understood as mental states and complex representation of their
content is possible. Intention on the contrary simply refers to an action that is planned for the future. By
providing a protential model the ontology satisfies Requirement 1c, defined in Section 2.1.

Limitations of agents’ interactions are captured by the deontic part of the ontology consisting of
classes representing obligations, permissions and prohibitions. It is, therefore, also possible to model that
the agent intends (or desires) to do something, however it is prohibited. Resolving these contradictions
has to be done by the application. Obligations, permissions and prohibitions refer to types of actions to be
performed in the future. By providing a deontic mentalistic model the ontology satisfies Requirement 1d,
defined in Section 2.1.

6.2. Comparison with requirements for the modeling different types of agent interaction scenarios

An abundance of possible scenarios exist that include artificial agents, such as those involving au-
tonomous vehicles (see Section 7), autonomous industrial transport robots and many others. These dif-
ferent scenarios involving different types of artificial agent interactions, can be formally classified using
distinctions introduced in Section 2.2, alongside corresponding requirements. We discuss now whether
our proposed modeling of the artificial agent action satisfies these ontology requirements.

The first distinction that was introduced divided agents’ interactions into cooperative and non-
cooperative. Cooperative agents work continuously toward a single given goal and are usually controlled
or deployed by a single party. However, agents who are not controlled by a single party may also exhibit
cooperative behavior, depending on the context. In other scenarios agents classified as non-cooperative
have different and sometimes inconsistent goals. Some agents may be non-cooperative even to the ex-
tent that they provide intentionally misleading information or intentionally prevent other agents from
attaining their goals. The epistemic mentalistic model used in the proposed ontology makes it possi-
ble to represent both cooperative and non-cooperative agents’ interactions and satisfies Requirement 3,
defined in Section 2.2.
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The second distinction that was introduced, divided agents into heterogeneous or homogenous. Ho-
mogenous agents are agents which are similar in terms of which types of information they accept, pro-
cess and provide. They may still use different internal architectures, be controlled by different parties
and seek different goals. Heterogeneous agents process different kinds of information and while they
may not be able to communicate directly, they may, e.g., perceive each other’s behavior. The proposed
model makes it possible to model scenarios involving both homogenous and heterogeneous agents and
satisfies Requirement 4, defined in Section 2.2.

6.3. Comparison with general requirements of ontology design

We discuss now whether the general requirements of ontology design, stated in Section 2.3 correlate
with our proposed ontology.

The designed ontology uses paradigms known to the AI community. The architecture of the ontology
framework is inspired by the Soar cognitive architecture (Laird et al., 1987) and the classical concept
of the Model Human Processor (Newell et al., 1998; Card et al., 1983), which, in turn, is based on the
Standard Model of Human Cognition (Simon and Kaplan, 1998; Klahr and MacWhinney, 1998). The
ontology itself was inspired by Deontic Cognitive Event Calculus — DCEC* (Bringsjord and Govindara-
julu, 2013; Bringsjord et al., 2014a) as well as epistemic and deontic logic. The proposed model reuses
existing knowledge approaches of the Al community and therefore, satisfies Requirement 5, defined in
Section 2.3.

While designing the model, we tried to abstain from using unnecessary complex constructs by leverag-
ing common-sense intuition and scholarly discussions about epistemic and deontic logic. Using DCEC*
calculus as a starting point, should further reduce the steepness of the learning curve for some users in
the Al community. Still, the ontology is very expressive and its architecture enables its use as a model for
many different scenarios involving artificial agents, who occupy different roles. Formally, the current ex-
pressiveness of the ontology is ALFC(D)*. The proposed ontology, therefore, satisfies Requirement 6,
defined in Section 2.3.

The focus of the ontology is well-defined and the internal structure of the ontology is clearly described.
The separation of concerns principle helps keep the complexity of the ontology manageable and the
structure of the ontology understandable. The event, epistemic, protential and deontic sections of the
ontology are clearly separated and their relations defined. The proposed ontology, therefore, satisfies
Requirement 7, defined in Section 2.3.

7. A case study — enhancing autonomous vehicle navigation

It has been argued that autonomous vehicles must have an internal representation of entities, events
and situations in the world, as well as a mechanism for computing values and priorities that enable
them to determine their next action (Albus et al., 2002, 196). There have already been some efforts to
use Semantic Web technologies to enhance the performance of autonomous vehicles. Schlenoff et al.
(2003) explored the possibility of using ontologies to improve route planning in autonomous vehicles
in the context of the 4D/RCS system architecture developed at NIST. Follow-up research by Provine
et al. (2004) used an ontology to support reasoning in relation to obstacles as well as to improve route
planning.

It is generally recognized that, “in its full generality, the problem of automated vehicle navigation
is extremely challenging” (Schlenoff et al., 2003). This makes it necessary to split the problem into
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different sub-problems and related components that may be researched independently. Architecture that
deals with the problem of automated vehicle navigation using Semantic Web technologies must at least
include the following components (Russell and Norvig, 2016, 1004):

(1) Sensor interface: captures the environment surrounding the autonomous vehicle.

(2) Perception: a low-level media analysis provides a base analysis, transformation, and description of
the captured audio-visual data; object recognition provides information about objects surrounding
the autonomous vehicle and produces a 3D world model of the current state of affairs.

(3) Traffic environment ontology: semantically describes the states of affairs (world models) in the 3D
world model and the necessary services that produce and maintain this ontology based on the 3D
world model.

(4) Agent Ontology (DCEQ): describes agents, their actions, and events as well as communication
between agents, agents’ mental states, and the deontic status of the states of affairs.

(5) Future possible states of affairs generator: generates possible future states of affairs from the cur-
rent state of affairs using its knowledge of physics and of the characteristics of involved entities
(e.g., people, vehicles, roads, etc.)

(6) Value judgment component: evaluates different states of affairs and assigns them deontic evalua-
tions.

(7) Decision component: judges available information to determine the next course of action.

(8) Vehicle interface: transfers control commands back to the vehicle.

(9) User interface: handles communication with the human user or operator.

Low level media analysis (1, 2) is out of the scope of this research and, moreover, several research
communities are already dealing with these problem areas (Rosique et al., 2019; Leonard et al., 2008).
Similarly, we do not discuss the vehicle interface (8) or the user interface (9) layers (Russell and Norvig,
2016, 1004).

Meanwhile, at the level of semantic description (3, 4) it is possible to distinguish between ontology
that describes the states of affairs in a traffic environment (3) and ontology that describes agents, agents’
mental states, communication, events, and actions as well as the deontic status of these events (4).

It is necessary to use a specialized ontology to describe the state of affairs in a traffic environment. For
our purposes, it is important to note here that because autonomous vehicles usually move continuously,
the situation on the road that the ontology must evaluate continuously changes. To semantically describe
the state of affairs we must fix descriptions of the separate snapshots captured during the vehicle’s con-
tinuous stream. These snapshots must meet at an adequate level of granularity. Similarly, descriptions of
future possible states of affairs (5) should be produced at the same level of granularity. Traffic ontologies
already exist that describe traffic environments at such required levels of detail and granularity such as
that developed by Bagschik et al. (2018) or that preliminary version of ontology developed by Zhao et al.
(2015). These ontologies, however, only focus on describing the scene.

It is therefore useful to complement traffic ontologies with the DCEO ontology this paper presents.
Agents (both artificial and human) participating in traffic have various intentions (e.g., an agent intends
to turn right) and beliefs (e.g., one agent believes another agent will not turn right) and communicate with
each other (e.g., one agent signals to another that they intend to turn right). The autonomous vehicles that
are likely to be produced in accordance with common standards in the future will probably communicate
with each other about their intentions using specialized protocols. However, this communication may
be mistaken (especially in the case of human agent) or intentionally misleading (as in the case of the
scenario described by Bello et al. (2015), in which an evil cyber-hacker infects an autonomous robot with
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a virus). Notably, separating the model into two ontologies allows for the separation of concerns: while
traffic environment ontologies are purely descriptive, DCEO can model the normative characteristics of
states of affairs.

The whole architecture must include some more sophisticated functions in addition to low-level ser-
vices: it should also generate and describe possible future states of affairs (5). Such a capability requires
a description of the current state of affairs as well as knowledge about physics and about the charac-
teristics of entities involved in the decision (e.g., people, vehicles, roads, etc.). The component of value
judgment (6) evaluates the given description of the state of affairs with regard to laws, traffic rules, eth-
ical principles, etc. by categorizing these items into the deontic classes of “prohibited,” “permitted,” or
“obligatory.” Finally, there must be a decision component (7) that reasons using available information
and decides the next course of action. Components 3 to 7 constitute what is usually called the “planning
and control layer.”

The following section zooms in on the details involved in integrating DCEOQ into the architecture of
autonomous vehicles.

7.1. An example: A cross-road incident

Figure 4 depicts an agent/autonomous vehicle al in a decision situation. Scene s0 describes the cur-
rent state of affairs provided by sensory arrays and associated services (in terms of a traffic environment
ontology) to which the fluent £0 refers. This scene is described in the concepts of traffic ontology in
the named graph, referred to by its URI sO-uri. The vehicle al arriving (previous action act0) at
the crossroad intends to continue straight forward to reach its goal marked by star. However, the vehicle
identified the presence of a pedestrian on the road ahead of it (agent a2).
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Fig. 4. An example of autonomous vehicle route planning.
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ex:actO rdf:type dceo:Action ;

dceo:results ex:h0 ;
dceo:when ex:it ;
dceo:who ex:al .

ex:hO rdf:type dceo:Holds ;
dceo:holdsFrom ex:i2 ;
dceo:holdsTo ex:i3 ;
dceo:whatFluent  ex:fO.

ex:f0 rdf:type dceo:Fluent ;
dceo:refersTo ex:s0-uri .

ex:al rdfitype dceo:Agent .
ex:a2 rdfitype dceo:Agent .
ex:i1l rdf:type time:Instant .
ex:i2 rdf:type time:Instant .
ex:i3 rdf:itype time:Instant .

In this scene s0 there are three possible actions (actl, act2, act3) and three possible resulting
scenes (s1, s2, s3) determined by the Future possible states of affairs generator using its knowl-
edge of physics and of the characteristics of involved the vehicle, road, etc. The vehicle could go straight
ahead, turn right, or stop and wait.

7.1.1. Action 1

The first possible action actl of ActionType goStraight involves the vehicle continuing
straight ahead without stopping or turning. This action has the highest Payof f value (100) because
it is the shortest route to destination, i.e., to the final scene sF desired by the vehicle (represented in
the traffic ontology named graph referred to by its URI sF-uri). However, because a pedestrian (agent
a2) is standing in the middle of the road, this action would result in the vehicle hitting the pedestrian.
Evaluated together with the resulting scene s1, this action was determined as prohibited by the Value
Jjudgment component. The resulting scene is represented in the traffic ontology named graph referred to
by its URI s1-uri.

ex:act1 rdfitype dceo:Action ; ex:d1 rdfitype dceo:Desire ;

dceo:results ex:h1; dceo:when ex:il ;

dceo:when ex:i4 ; dceo:what ex:hF ;

dceo:who ex:al . dceo:who ex:al.
ex:h1 rdf:type dceo:Holds ; ex:hF rdf:type dceo:Holds ;

dceo:holdsFrom ex:i5 ; dceo:holdsFrom  ex:if1 ;

dceo:holdsTo ex:i6 ; dceo:holdsTo ex:if2 ;

dceo:whatFluent  ex:f1. dceo:whatFluent  ex:fF .
ex:f1 rdf:type dceo:Fluent ; ex:fF rdf:itype dceo:Fluent ;

dceo:refersTo ex:s1-uri. dceo:refersTo ex:sF-uri .
ex:p1 rdf:type dceo:Payoff ; ex:i4 rdf:type time:Instant .

dceo:ofAction ex:act1 ; ex:i5 rdf:itype time:Instant .

dceo:payoffValue int:100 . ex:i6 rdf:type time:Instant .
ex:proh1 rdf:type dceo:Prohibition ;

dceo:toAction ex:acti ;

dceo:when ex:i4 ;

dceo:prohibitedWhen ex:i4 ;

dceo:what ex:h1;

dceo:who ex:al .
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7.1.2. Action 2

The second possible action act2 of ActionType turnRight involves the vehicle turning right.
This action has a lower Payof £ value (60) because this route to the destination is a bit longer than going
straight. Because there are no known problems with taking this route, this action and its resulting scene
s2 were evaluated as permitted by the Value judgment component. The resulting scene is represented in
the traffic ontology named graph referred to by its URI s2-uri.

ex:act2 rdf:type dceo:Action ; ex:p2 rdfitype dceo:Payoff ;
dceo:results ex:h2 ; dceo:ofAction ex:act2 ;
dceo:when ex:i4 ; dceo:payoffValue int:60 .
dceo:who exat . ex:perm1 rdf:type dceo:Permission ;

ex:h2 rdf:type dceo:Holds ; dceo:toAction ex:act2 ;
dceo:holdsFrom ex:i5 ; dceo:when ex:i4 ;
dceo:holdsTo ex:i6 ; dceo:permittedWhen ex:i4 ;
dceo:whatFluent ex:f2. dceo:what ex:h2 ;

ex:f2 rdf:type dceo:Fluent; dceo:who exat .

dceo:refersTo ex:s2-uri .

7.1.3. Action 3

The third possible action act3 of ActionType stop involves the vehicle stopping. This action
has a lower Payoff value (40) because it causes some delay. Because there are no known problems
with stopping, this action and its resulting scene s3 were evaluated as permitted by the Value judgment
component. The resulting scene is represented in the traffic ontology named graph referred to by its URI

s3-uri.

ex:act3 rdf:type dceo:Action ; ex:p3 rdfitype dceo:Payoff ;
dceo:results ex:h3 ; dceo:ofAction ex:act3d ;
dceo:when ex:i4 ; dceo:payoffValue int:40 .
dceo:who exal . ex:perm2 rdfitype dceo:Permission ;

ex:h3 rdf:type dceo:Holds ; dceo:toAction ex:act3 ;
dceo:holdsFrom ex:i5 ; dceo:when ex:i4 ;
dceo:holdsTo ex:i6 ; dceo:permittedWhen ex:i4 ;
dceo:whatFluent ex:f3. dceo:what ex:h3;

dceo:who ex:al .

ex:f3 rdf:type dceo:Fluent ;
dceo:refersTo ex:s3-uri .

The payoff value of stopping is, in this example, lower than that of turning right, because if the vehicle
turns right it will reach the destination with some estimated (short) delay, while if it stops, the delay
cannot be estimated precisely, so this is considered a worse option. In a real-world situation, the payoff
values may be different.

7.1.4. Mentalistic considerations related to planning an action
What vehicle al will do may depend on what it believes (i.e., predicts) the pedestrian a2 will do.
The pedestrian is likely to perform one of two actions: they can either move away from the road (action
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Fig. 5. Considerations related to planning an action.

actd, scene s4) or stay in middle of the road (action act5, scene s5, code is omitted) — see Fig. 5.
Let’s say that vehicle al believes that pedestrian a2 intends to move and therefore perform action act4
and yield scene s4 described by the named graph refered to by URI s4-uri:

ex:b1 rdf:type dceo:Belief ; ex:h4 rdf:type dceo:Holds ;
dceo:what ex:h4 ; dceo:holdsFrom  ex:i8 ;
dceo:when ex:i7 ; dceo:holdsTo ex:ig ;
dceo:who ex:al . dceo:whatFluent ex:f4.

ex:f4 rdf:type dceo:Fluent ;
dceo:refersTo ex:s4-uri .

Similarly, we can model that vehicle a1l believes that pedestrian a2 intends to stay in the middle of the
road and therefore perform action act5 and yield scene s5 described by the named graph referred to
by s5-uri (we omit the code here because it is similar to the previous one). In this situation where the
pedestrian is not moving, the vehicle may identify them as a possibly injured person, potentially mak-
ing the action of callAmbulance obligatory. These cases can also be modeled using the presented
formalism.

7.1.5. Modeling communication between agents
Pedestrian a2 may communicate (c1) to vehicle al to make clear what his/her intentions are. The
content of the communication is in the named graph referred to by URI s6-uri.

ex:c1 rdf:type dceo:Communication ; ex:f6 rdf:type dceo:Fluent;
dceo:what ex:h6 ; dceo:refersTo ex:s6-uri .
dceo:when ex:i9 ;

ex:i9 rdf:type time:Instant .
ex:i10 rdf:type time:Instant .
ex:i11 rdf:type time:Instant .

dceo:who ex:a2 ;
dceo:communicationTo ex:at .

ex:h6 rdf:type dceo:Holds ;
dceo:holdsFrom ex:i10;
dceo:holdsTo ex:ill;
dceo:whatFluent  ex:f6 .

The content of the named graph s6-ur1i situates pedestrian a2 as intending to move away from road,
that is to enact act4 and yield scene s4 described by the named graph referred to by URI s4-uri.
More specifically, the content of the named graph s6-uri:
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ex:in1 rdf:type dceo:Intention ; ex:h4 rdfitype dceo:Holds ;
dceo:what ex:h4 ; dceo:holdsFrom ex:i8 ;
dceo:toAction ex:act4 ; dceo:holdsTo ex:ig ;
dceo:when ex:i7 ; dceo:whatFluent ex:f4 .
dceo:who ex:a2 .

ex:f4 rdf:type dceo:Fluent ;
dceo:refersTo ex:s4-uri .

More complex mentalistic models may be modeled using similar constructs. For example, we could
model that the autonomous vehicle al believes that pedestrian a2 believes that the autonomous vehicle
al will turn right. Because this model is similar to those presented above, we omit it for sake of brevity.

This approach to modeling has some similarities to reification. Using named graphs has some ad-
vantages over simple reification, as described by Carroll et al. (2005b). There are, on the other hand,
more complex approaches to reification, based on work by Davidson (1967), the advantages of which
are demonstrated, e.g., by Robaldo and Sun (2017).

7.2. Other applications of presented formalism

DCEQO is applicable in a number of different scenarios that involve interactions between artificial and
human agents. Existing literature details a number of scenarios that might use DCEC™, similar scenarios
might as well make use of DCEO as a modeling tool with the advantage of being integrated with Se-
mantic Web technologies. For example, Bringsjord et al. (2014b) analyzes interactions between soldier
robots in relation to more general ethical problems such as akrasia (lack of will) or vengefulness. More-
over, Bringsjord et al. (2014a) also discusses the use of DCEC* in modeling agents’ beliefs in a nuclear
deterrence scenario.

We have already noted that DCEO can be used to model both artificial and human agents. We are
currently investigating the possibility of using the presented formalism in a case study based on another
project in real conditions to explore its useful features. The testing environment is provided by follow-up
research based on a project that focused on the extraction of a structured knowledge from large amounts
of multimedia content recorded over networks of cameras and microphones deployed in real sites such as
the surveillance networks of the subways in Rome and Turin (Carincotte et al., 2008; Smrz et al., 2006).
This case study is based on a task related to subway station monitoring: four cameras are installed in
the station — two in the corridor and one on each platform. The system also involves a microphone array
that records the primary level of ambient noise in different areas. The purpose of the project was to
ease end-user missions (subway monitoring by safety/security operators). We believe that DCEO could
be used to describe the actions and intentions of human agents in such a subway environment and to
produce descriptions of their mental models. Such a use may help to identify non-standard behaviors by
agents such as vandalism, theft, etc.

8. Possible future extensions

The presented ontology models obligations, permissions and prohibitions only as related to individual
agents. Every obligation is an obligation of concrete individual artificial agent and it is not relevant to
any other agent. Replication of obligations and prohibitions between agents is currently possible using
a simple SWRL rule. However, we intend to investigate possible extension of the ontology involving
general obligations and general prohibitions valid for all agents: Op — (Y)xOxp.
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Another possible research direction involves the relation between obligations, permissions, prohibi-
tions and time. As Ajani et al. (2017) observes, many kinds of norms constantly evolve (e.g., legal
norms) — the previous versions of the norms continue to be valid in the specific, previous time period,
even if these old norms are currently no longer valid. Therefore an agent that guides his current actions
generally with regard to his past actions and their results, should not take these old actions into account
(or take them into account only with appropriate corrections), because old norms that limited past ac-
tions are no longer valid. For instance, in the past, the fastest way for an autonomous vehicle to go from
point A to point B was to pass through street S. However, since a new prohibition (a strict speed limit in
street S) has been introduced, it may now be quicker to use a different route.

The current version of the ontology also lacks a time-dependent representation of cooperativeness (it
is not possible to represent agents being cooperative at time t1 and non-cooperative at time t2). This is a
limit of the ontology and the future versions may provide a way to represent changes in cooperativeness
of agents.

Other future research opportunities are linked to laws and other legally binding norms that involve a
common range of prohibitions and obligations. Although modeling complex legal norms is a challenging
task (Griffo et al., 2018), there are already legal knowledge management systems that use Semantic Web
technologies, such as Eunomos (Boella et al., 2016). These systems, however, are only informative and
the knowledge they provide has been prepared by human experts, who indexed the legal documents.
Also, users of these systems are human lawyers, who consume this information in enriched hypertext
form. We may imagine the evolution of systems like Eunomos that would contain formal representations
of legal regulations in machine readable form. An artificial lawyer agent using the DCEO ontology could
then check if the state of affairs (e.g., of his company) is compliant with these regulations. The user
interface in this case can be realized in the form of a chatbot, enabling the artificial agent to interact
with the human lawyer (Kluwer, 2011; MacTear et al., 2016). The human lawyer can address issues
in his/her native language, the chatbot automatically formalizes these responses in DCEO items and
may go back to the lawyer if the information is insufficient, until he obtains a consistent and complete
DCEO representation, that can be checked against the formal representation of legal constraints. This
scenario, however, requires further development and integration of natural language processing tools,
such as those integrated in the Eunomos system (Boella et al., 2012, 2013).

There are also plans for releasing modules consisting of different sets of SWRL rules for different
kinds of scenarios. These modules will, at first, be built manually and will be available to users of
DCEO as starting points for developing an ontology-based infrastructure that suits their needs. Taking
one of these modules, we plan to transform a set of SWRL rules from DEO that performs sophisticated
event-related reasoning (Mepham, 2010). Another set of rules for applications involving legal agents
may be based on LegalRuleML, a specific standard for representing content of legal text, that is built on
RuleML and is fully compatible with SWRL (Athan et al., 2013, 2015).

Another planned extension concerns contents of mental states of agents. Currently, we model them
independently and our ontology does not capture relations between them. That is sufficient for many
typical applications because the content of mental states is usually handled by the internal logic of the
application itself. However, in some cases, it may be useful to be able to represent some basic relations
between these mental states: they may be mutually exclusive, one may be a subset of another, etc.

A related research opportunity concerns the question of how to achieve a high-level communication
among agents and systems, that includes semantically meaningful content. Ferrario and Prévot (2007)
identify several steps to fulfill this objective. It would require a closer look at agent communication
languages, which understand speech acts as operators with preconditions and effects, discussed by Boella
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et al. (2007), who proposed an ontology of communication primitives, based on public mental attitudes,
attributed to role instances. This ontology allows for the construction of artificial agents participating
in a range of dialogues, without having to redefine existing communication protocols. An especially
challenging scenario involves the communication of agents in heterogeneous multi-agent systems as
described by Van Diggelen et al. (2007).

There is also an optional extension involving deontic and epistemic categories. Accordingly, it may
be useful for some applications to introduce a level of fuzziness or specificity into these categories —
different obligations may be obligatory in different ways or to different degrees. In legal contexts, there
may be different legal interpretations — it is common that norms in legislation may be interpreted in
different ways, some of them with inconsistencies. Interpretations from some authoritative sources (such
as high courts) may clarify any contradictions, however, that may take time (Bartolini et al., 2016). To
handle interpretative uncertainty a pattern-based approach can be used (Vacura et al., 2008).

The related question is also how to encompass defeasibility in the DCEO ontology. A framework
supporting defeasible reasoning should be able to represent defeasible (non-strict) facts, i.e., facts that
allow exceptions. This, however, introduces the problem of non-monotonicity, which is not encompassed
in OWL-DL (Casini et al., 2015). To deal with defeasibility in legislation, reified Input/Output logic has
been introduced by Robaldo and Sun (2017). For instance, a legal ontology for modeling GDPR concepts
and norms, ascertained by Palmirani et al. (2018), was used to build a knowledge base described by
Bartolini et al. (2016), that uses reified 1/O logic and LegalRuleML.

We also plan to include a specific relation to capture the reasons behind intentions and actions. We
usually say that an agent “performed” an action or that an agent “intends to perform” an action because
of a particular belief, perception, desire, aversion, permission, obligation, or prohibition. Modeling this
relation would make it possible to describe the reasons why an action was chosen and realized.

At last, it is also necessary to note that it is not only important to design ontology well, but also
its performance has an impact on its adoption. In the real-world applications that need to perform in
real time, the speed of reasoning is of prime importance. The current expressiveness of the ontology
is ALFC(D)*. 1t is sufficiently fast for most of the reasoning tasks performed. However, in our tests
the most of scenarios did not require any complex reasoning. The complexity of the ontology may rise,
especially after adding proposed extensions. Such an increase in complexity could lead to significant
reasoning-time overhead. For us, it is an important task to watch the performance of the ontology and
keep it at a usable level.

9. Conclusions

Solving the problem of an autonomous action of artificial agents is indispensable to progress in many
areas of artificial intelligence. The research dealing with this issue, in the context of the Semantic Web is
very limited and our project presents an effort to bridge the gap between Semantic Web technologies and
Al research. While many existing systems focus on a single-agent scenario and differ only in the way
in which the agent approaches its environment, our approach makes it possible to model how artificial
agents interact with other artificial agents, or with humans. An artificial agent may be an autonomous
vehicle on the road, interacting with other vehicles, an industrial transportation robot that must maneuver
a complex environment, or a legal chatbot. All these artificial agents may interact with other artificial or
human agents, some of which may have the same goals. Others, however, may have different goals or
may even try to obstruct or harm other agents.
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We have presented Deontic Cognitive Event Ontology (DCEO) inspired by the DCEC™ calculus, epis-
temic and deontic logics. We also presented a brief overview of our cognitive architecture that is inspired
by the Soar cognitive architecture and several others and includes the proposed ontology as its core, en-
abling effective cognitive knowledge representation on top of it.

The DCEO ontology described in this paper consists of four parts: event ontology, epistemic ontology,
protential ontology and deontic ontology. Event ontology allows modeling of actions of artificial agents,
occurring at specific times or intervals. Epistemic ontology describes the mental states of these agents:
belief, knowledge and perception and their content. It also enables the modeling of communication
between agents and that of common knowledge available to all agents. The proposed protential ontology
models the agents’ attitudes to the future — their desires, aversions and intentions. This, in turn, influences
their autonomous actions. The deontic ontology aims at modeling obligations and prohibitions — the
limits of artificial agents’ actions.

We have also described a case study in which the proposed DCEO ontology supports autonomous
vehicle navigation. We have argued that the DCEO ontology enables autonomous vehicles to have an in-
ternal representation of entities, events and situations in the world, as well as representation of knowledge
and beliefs of different agents and limitations, based on various obligations and prohibitions, therefore,
it is the DCEO ontology, that makes it possible to determine their next action.

Finally, we proposed some possible enhancements and extensions of the ontology. We also noted
the number of future research opportunities. We believe that the DCEO ontology provides a model-
ing framework that can be successfully used in many different areas involving artificial agents, from
industrial robots to artificial legal advisers.
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