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Abstract

Safety purports to explain why cases of accidentally true belief are not
knowledge, addressing Gettier cases and cases of belief based on statistical
evidence. However, numerous problems have been raised for using safety as
a condition on knowledge: safety is not necessary for knowledge and cannot
always explain the Gettier cases and cases of statistical evidence it is meant
to address. In this paper, I argue for a new modal condition designed to
capture the non-accidental relationship between facts and evidence required
for knowledge: causal safety. I argue that possible errors in belief can be
captured by accounting for deviations in causal relationships and that there is
a natural way to characterize which causal errors are relevant in an epistemic
situation. Using this, I develop a causal analogue to safety, where one’s
belief in p is causally safe if it is true in all causally relevant worlds where
one believes p. Causal safety, I argue, can better explain the cases safety is
meant to address and can avoid the arguments raised against the necessity
of safety.

Suppose, following an example from Buchak (2014), that your phone was
stolen while you were out of the room and that the only two people in the room
are Jake and Barbara. You know that men are significantly more likely to steal
phones than women are; say, hypothetically, that 9 in 10 stolen phones are stolen
by men. On this basis, can you know that Jake stole your phone? It is widely
agreed that, even if Jake did steal the phone, you cannot know that he did based
just on this statistical evidence.1 This is because you have insufficient grounds for
ruling out the alternative: for all you know, Barbara could have stolen the phone
instead of Jake.

A popular condition aiming to capture the robustness to error required for
knowledge is the safety condition (Sosa, 1999; Williamson, 2000; Pritchard, 2005).
One’s belief in p is safe when one’s belief could not easily have been wrong, or when
p is true in all of the nearest or most similar worlds to the actual world. By taking

1Note that Buchak (2014) discusses this case in terms of rational belief rather than knowledge,
though the intuition carries over.

1

https://doi.org/10.1007/s10670-023-00678-3


safety to be a necessary condition on knowledge, one can purportedly explain
why cases where error is salient, such as Buchak’s profiling case, are excluded
from knowledge. However, safety does not always align with our intuitions about
when a belief is sufficiently free from error for knowledge. For example, while
statistical evidence about men stealing phones leaves open the possibility that
Barbara stole the phone, this possibility may not be nearby or similar to the
actual world (Gardiner, 2020). If Jake is a frequent criminal and Barbara is so
wealthy that the thought of stealing has never occurred to her, then any possible
world where Barbara steals the phone is very distant from the actual world. In
this case, your belief is safe, even though intuitively it falls short of knowledge.

This is not an isolated example: many authors have argued that safety cannot
explain why cases of accidental (or lucky) true belief are not knowledge (Hiller
and Neta, 2007; Pritchard, 2012). Even further, some authors have argued that
safety fails as a necessary condition on knowledge (Comesaña, 2005; Kelp, 2009;
Bogardus, 2014). In this paper, I argue that these cases arise because of safety’s
formulation in terms of similarity between possible worlds and develop an alter-
native theory, causal safety, which can address these critiques of safety.2 Causal
safety builds on a characterization of possible errors in belief as errors in the causal
relationships between facts and evidence, where a belief is causally safe if the only
possible errors are improbable, non-actual causal errors. Causal safety combines
insights from both modal criteria for knowledge like safety and the causal theory
of knowledge (Goldman, 1967), and builds on work arguing for causal analyses
of counterfactuals over similarity-based theories (Hiddleston, 2005; Pearl, 2009;
Briggs, 2012). Causal safety, I argue, can better explain the phenomena safety
was introduced to explain, like why knowledge excludes Gettier cases and statis-
tical evidence, and can avoid the counterexamples offered against taking safety as
a necessary condition on knowledge.

This paper is organized as follows. In §1, I introduce the safety condition
and some of the problems arising for it. In §2, I motivate causal safety as a
solution to the problems of safety, and in §3, I introduce causal safety formally
using the theory of causal models. In §4, I argue that causal safety can escape
the arguments that safety is not necessary for knowledge and cannot adequately
address Gettier cases. In §5, I shift focus to cases of statistical evidence, arguing
that causal safety offers a robust explanation for why statistical evidence is often
insufficient for knowledge, including in the profiling case introduced above.

2While I focus on safety in this paper, many of the arguments carry over to related notions
utilizing similarity or nearness of possible worlds, such as sensitivity (Nozick, 1981; DeRose, 1995;
Enoch et al., 2012) and Lewis’s (1996) relevant alternatives theory of knowledge.
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1 Knowledge and Safety

Suppose, following an example from Chisholm (1966), that you see what appears
to be a sheep in a field. Your visual evidence justifies your belief that there is
a sheep, and under normal circumstances, your judgment is correct and you can
know that there is a sheep. Gettier cases, however, show that knowledge requires
one’s evidence to do more than justify a true belief: it must also be appropriately
connected with the underlying facts. Imagine, for example, that what you took
to be a sheep is actually just a rock, but by chance there is a sheep elsewhere in
the field. In this case, your belief that there is a sheep in the field is both true
and justified by your evidence, but you do not know that there is a sheep because
your evidence is not actually related to the presence of the sheep.

This motivates a further requirement for knowledge beyond justification and
truth: if one’s belief in p is true merely by chance or by luck, one cannot know p.3

This non-accidentality condition can explain why Gettier cases are excluded from
knowledge, as Gettier cases paradigmatically arise when one’s belief is justified
and true, but is true only because of some luck or accident disconnected from
one’s evidence (Gettier, 1963; Zagzebski, 1994). Furthermore, this condition can
explain why beliefs based on brute statistical evidence fall short of knowledge, as
these beliefs can only be true by chance. For example, in the lottery case (Kyburg,
1961), the odds that a given lottery ticket will lose are very high, but there is no
explanation for why the ticket loses beyond luck or chance.

While a non-accidentality condition on knowledge is appealing, it offers little
guidance without a more precise account of what it means for a belief to be true
by chance or by accident. The most popular characterization of this condition is
through safety: a belief is true non-accidentally if it is safe, where belief in p is safe
if the agent could not have easily believed p falsely.4 This is typically explicated
in terms of the nearby or most similar possible worlds: belief in p is safe in world
w if, in the closest or most similar worlds where one would have believed p, p
is true. The safety condition purports to explain why cases of accidentally true
belief are not knowledge. In the Gettier case above, there is a nearby world where
you believe that there is a sheep based on the rock, but where there is no sheep in
the field, so your belief could have easily been false and is therefore unsafe. And
in the lottery case, even if your ticket loses in the actual world, there is a nearby
world where your ticket won, so believing the ticket will lose based on the low
odds of winning is unsafe.

However, further investigation shows safety to be less compelling than it ini-
tially appears. Consider the Gettier case discussed above. Here, believing that

3See, for example, Unger (1968); Zagzebski (1994); Pritchard (2005).
4The non-accidentality of safety is more often formulated as an anti-luck condition; see

Pritchard (2005). I will not discuss the subtleties involved in explicating the notions of non-
accidentality or epistemic luck; see Schafer (2014); Vogel (2017); Paterson (2020).
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there is a sheep based on a rock seems unsafe, as there is a nearby world where
you continue believing there is a sheep based on the rock, but where the sheep
is gone. This intuition, however, depends on aspects of the case: if the area sur-
rounding the field is inhospitable for sheep, there may be no nearby world where
the sheep is outside of the field, rendering your belief safe.5 This is a common
problem for safety: if p could not have easily been false, then one’s belief is safe,
even if one’s evidence for p is not at all connected to the fact that p. Hiller and
Neta (2007) and Pritchard (2012) offer further examples in this vein. Imagine
someone reads the correct temperature from a broken thermometer, where some
further luck guarantees that the broken thermometer is always correct: perhaps a
hidden agent sets the broken thermometer to always be correct or the substance
measured would explode if the temperature were different. In this case, one’s
belief is safe, since there is no nearby scenario where your belief is false, but it is
not knowledge: a reading from a broken thermometer is insufficiently connected
to the actual temperature to ground knowledge.

While these cases challenge the explanatory power of the safety criterion, other
cases raise counterexamples to the claim that safety is a necessary condition for
knowledge (Comesaña, 2005; Kelp, 2009; Bogardus, 2014). Consider a variant of
Comesaña’s case: suppose Andy is planning a party at his house and has asked
Judy to invite people. Andy does not want John to attend, so he tells Judy to
let him know if she informs John of the party location so that he can change
it. When John talks to Judy, he introduces himself as Jack, so Andy does not
find out that he was invited, meaning that John’s belief about the location of the
party is true. Here, John knows that the party will be at Andy’s house, coming
to know it through reliable testimony. However, in a nearby world where John
had introduced himself differently, the party would have been moved and John
would have had a false belief, making his belief unsafe.

These cases suggest that safety fails to account for the non-accidental con-
nection between one’s evidence and the facts necessary for knowledge: there are
cases where one’s belief is safe, but not appropriately grounded in one’s evidence,
and cases where one’s belief is appropriately grounded in one’s evidence, but un-
safe. This threatens to undermine both the explanatory power of safety and the
claim that safety is necessary for knowledge. The next section motivates a causal
safety criterion for knowledge which I argue better captures the non-accidental
relationship between one’s evidence and the facts needed for knowledge.

2 Motivating Causal Safety

Safety offers an account of the possible errors that block the appropriate connec-
tion between facts and belief: belief in p is unsafe if one could have easily made

5This criticism of safety is also found in Dutant (2010).
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an error about p, or if there is a nearby world where p is false. However, the
cases in the previous section show that what happens in nearby possible worlds
is not the best way of thinking about the possible errors in belief which preclude
knowledge. The errors standing in the way of knowledge can be better understood
by analyzing the relationship between facts and evidence more directly. Consider
again the case of perceiving a sheep. Here, one’s evidence is the perceptual ap-
pearance of a sheep, and one infers from this evidence that there is a sheep, as the
presence of a sheep is the most likely cause of the evidence. While this inference
is justified, it is also fallible. For example, it is possible that there is no sheep at
all, and that one’s evidence is caused by something other than a sheep, such as
a rock, a sheep-like dog, or a hallucination. In causal terminology, these possible
deviations are examples of triggering abnormalities, or factors other than a sheep
which cause the appearance of a sheep.

Triggering abnormalities can be represented with a causal error term captur-
ing ways in which the world can deviate from what is expected based on causal
relationships. Generally, knowledge is compatible with the possibility of causal
errors: in normal cases when one perceives a sheep, the possibility of a trigger-
ing abnormality causing one’s evidence is not sufficient to undermine knowledge.
However, there are situations where a causal error term can stand in the way of
knowledge. When an error term is activated in the actual world, it can block
the appropriate connection between one’s evidence and the target proposition,
preventing knowledge. For example, in perceiving a sheep, when a triggering ab-
normality is activated, one’s evidence is caused by something other than a sheep,
rendering the evidence insufficiently connected to the presence of a sheep to know
that there is a sheep. This explains why one cannot know that there is a sheep
in the Gettier case: even though the belief is true, the evidence is caused by a
triggering abnormality and is therefore disconnected from the fact that there is
a sheep. This is part of the non-accidentality of knowledge: even though the
belief that there is a sheep is correct, the belief is only correct because a trigger-
ing abnormality happened to cause the right kind of misleading evidence. Unlike
with the safety criterion, this judgment does not depend on the particular facts
of the Gettier case, like whether the sheep would be present in nearby worlds: all
inferences that there is a sheep based on a triggering abnormality, like a rock, are
disqualified from knowledge.

Requiring that no causal error term intervene between one’s evidence and the
target proposition, however, is not sufficient to exclude many problematic cases
from knowledge. Problems also arise when a causal error blocking the relationship
between evidence E and target proposition p does not actually occur, but is likely
to occur. In this case, the evidence E is too weak to be definitively linked to p and
therefore cannot serve as the basis for knowledge. For example, when perceiving a
sheep, if one’s evidence is merely a gray-white blob in the distance, the probability
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that this evidence is caused by something other than a sheep is too substantial to
ignore, even if the actual cause of the evidence turns out to be a sheep. Here, the
relevant probability is objective rather than subjective: if an error is in fact likely
to occur in the evidential situation, then the high probability of error can block
knowledge. In addition to excluding cases of weak evidence from knowledge, this
condition can explain why one lacks knowledge in cases where errors are extremely
likely, such as the barn façade case, and cases where one’s evidence is statistically
strong, but causally weak, as in the profiling case discussed in §5.

These two conditions motivate the definition of causal safety in the next sec-
tion: believing p based on E is causally safe when no error terms block the
inference of p from E through causal relationships, where an error term stands in
the way if either (1) it is likely to be activated or (2) it is activated in the actual
world.6 Following modal accounts of knowledge, this can be interpreted in terms
of possible alternatives: belief in p based on E is causally safe in alternative or
world w if p is true in all causally relevant alternatives where E is true, where an
alternative is causally relevant if all the error terms activated in the alternative
are either likely or activated in the actual world.7 Causal safety captures the in-
tuition that knowledge must be free or safe from error, offering a theory of which
errors stand in the way of knowledge.

One consequence of this account of causal safety is that any deviation from
the actual world which does not arise from an error term in the causal rela-
tionships between p and E is causally relevant. Intuitively, this is part of the
non-accidentality of knowledge: if the truth of p depends on the values of some
variables one does not have causal evidence for, then even if p is true, it is true
because these variables happened to have the correct values by chance rather than
by virtue of the evidence E. This excludes from knowledge cases where there is
no causal connection between one’s evidence and the target proposition, including
many cases of statistical evidence. For example, when someone believes that there
is a sheep based on a coin toss, whether there is a sheep corresponds to an inde-
pendent variable in the model one has no causal evidence for, so the conditions
for causal safety cannot rule out the alternative that there is no sheep until one

6Limiting the domain of worlds to those where you believe p on the basis of E, rather than
considering all worlds where you believe p, is analogous to the common ‘safe-method’ version
of safety, where the domain is limited to worlds where you believe p according to the same
methods as in the actual world. This is discussed as a condition for sensitivity in Nozick (1981)
and Williamson (2000), and Comesaña (2005) and Dutant (2010) discuss the need for such a
condition for safety.

7One interpretation of this modal notion of causal safety is as a ‘normality’ approach to
knowledge, where knowledge requires that one’s belief p is true in all worlds which are normal
compared to the actual world. On this interpretation, a world u is abnormal relative to w if
it involves activating a low-probability error term which is not activated in w. See the theory
of Goodman and Salow (2021), as well as the related normality theory of justification of Smith
(2010, 2017).
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has strong enough causal evidence.
Thus, causal safety restricts attention to cases where there is a causal connec-

tion between E and p. While this may seem restrictive, such a causal connection
is present in a wide variety of epistemic circumstances where one has knowledge.
Consider the standard sources of knowledge: in perception, memory, and tes-
timony, the fact that p causes one to perceive p, to remember p, or to receive
testimony that p. More complex cases of knowledge also involve a causal con-
nection between facts and evidence: knowledge about the future can arise when
one’s evidence will cause a future event (e.g., buying a plane ticket will cause me
to be in Paris) and inference to the best explanation often involves inferring that
a theory is the most likely cause of the observed evidence. The causal connection
between p and E is closely related to the requirement Goldman (1967) imposes in
his causal theory of knowing, where knowledge requires that one’s belief in p be
causally connected to the world. However, causal safety can handle more cases
of knowledge than Goldman’s causal theory, as causal safety focuses on causal
relationships between variables rather than between one’s beliefs and the world,
allowing the theory to plausibly extend to more general dependency relations, like
those observed in mathematics and ethics.

3 Defining Causal Safety Formally

Causal safety identifies the kinds of errors which are inconsistent with knowledge.
These possible errors in reasoning are captured by the error terms in causal rela-
tionships. For example, the errors discussed in the previous section for perceiving
a sheep are triggering abnormalities, or things other than a sheep which cause the
appearance of a sheep. Error terms can be analyzed more formally by represent-
ing the causal laws as structural relationships between variables. The theory of
causal models used below follows the work of Pearl (2009) in formalizing causality,
building on a framework which has been applied extensively in psychology (Gly-
mour, 2001; Sloman, 2005; Gopnik and Schulz, 2007) and the study of language
(Hiddleston, 2005; Briggs, 2012).

Variables capture the ways different aspects of the world could be. For exam-
ple, in perceiving a sheep, there is a variable S representing whether a sheep is
present or not and a variable A representing whether there appears to be a sheep.
These variables are both binary, i.e., S = 1 when there is a sheep and S = 0
when there is not a sheep. The value of A depends on the value of S: generally,
the appearance of a sheep is caused by a sheep. However, this relationship is
not perfectly deterministic. Sometimes, the appearance of a sheep is caused by
a triggering abnormality, like a rock or a hallucination. Other times, a sheep
does not cause the appearance of a sheep due to an inhibiting abnormality, like
when the sheep is hidden or the observer is incapacitated. These abnormalities
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are captured by error variables: we define UA to be a binary variable activated
when a cause other than a sheep triggers the appearance of a sheep and U ′

A to
be a binary variable activated when a factor inhibits the appearance of a sheep
based on the presence of a sheep. The causal relationship between S and A can
then be captured as a structural equation between variables, A = (S∧¬U ′

A)∨UA,
which says that there appears to be a sheep when either (1) there is a sheep and
nothing inhibits it from appearing that way or (2) something other than a sheep
causes the appearance of a sheep. This relationship can also be represented as a
causal diagram indicating the influence of S on A:

S

A

This structure generalizes to other causal relationships through the formalism
of causal models. Causal models specify a set of variables and the causal relation-
ships between the variables, represented by structural equations. A causal model
M includes three sets of variables: the exogenous variables U , the error variables
E , and the endogenous variables V . It also includes a set of structural equations,
F = {fi}, such that for each endogenous variable Vi, the structural equation fi
determines the value of Vi given the parents of Vi, PAi, and the relevant error
variables. The parents PAi are the endogenous and exogenous variables which
have causal influence on Vi, and the assignment of parents to the endogenous
variables leads to a causal graph G, where an arrow is drawn from Vi to Vj if Vi is
a parent of Vj . A causal model can be written as a tuple M = (U, E , V, F ). In the
above case, whether there is a sheep (S) is the exogenous variable, whether there
appears to be a sheep (A) is the endogenous variable, U ′

A and UA are the error
variables, and the structural equation for A and the causal graph are as described
above.

Causal models allow for a convenient representation of epistemic alternatives.
Since the endogenous variables are completely determined by the structural equa-
tions, all of the facts encoded by a causal model are determined by an assignment
to the exogenous and error variables, or a set of values w such that (U, E) = w.
The structural equations map values of (U, E) to values of V , so that if (U, E) = w,
the structural equations determine the values of the variables in V as v = F (w).
The assignments w play the role of epistemic alternatives for causal models, spec-
ifying all the different ways things could be consistent with the causal laws; we
call the set of all such assignments W . This is analogous to the set of possible
worlds from the ordinary conception of safety, and assignments w are sometimes
called causal worlds (Pearl, 2009, p. 207). Consider, in the case above, the vari-
able assignment (S,UA, U

′
A) = (0, 1, 0). Since S = 0, there is no sheep, and since

UA = 1, the structural equation for A requires that A = 1, so that there appears
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to be a sheep based on a triggering abnormality. This represents the epistemic
alternative where one sees something that looks like a sheep, but where there is
no sheep because the appearance is caused by some other factor, i.e., the case of
justified false belief. In this model, there are eight possible worlds corresponding
to the eight possible values of S, UA, and U ′

A.
For a causal model to be useful in capturing an epistemic scenario, the propo-

sitions of interest must be expressible within the model. Generally, propositions
within a causal model are built from assignments to exogenous and endoge-
nous variables: for example, the proposition ‘There is a sheep’ corresponds to
the exogenous variable assignment S = 1. Variable assignments correspond to
sets of possible worlds: for example, [Ui = ui] = {w ∈ W : wi = ui} and
[Vi = vi] = {w ∈ W : F (w)i = vi}. Propositions can also include logical combi-
nations of variable assignments: since individual variable assignments are subsets
of W , negations, conjunctions, and disjunctions of variable assignments also cor-
respond to sets of possible worlds through set-theoretic complementation, inter-
section, and union, respectively.

Belief in p based on E is causally safe when one can safely ignore the error
terms which stand between E and p in a causal model M. For example, believing
that there is a sheep on perceptual evidence is causally safe when one can safely
ignore the possibility that one’s perceptual evidence is caused by something other
than a sheep. As argued in the previous section, causal safety imposes two condi-
tions for one to properly ignore an error variable value: first, the likelihood of the
value obtaining must be negligibly small, and second, the value must not obtain
in the actual world. This first condition requires some notion of the likelihood
that an error term is activated: this can be accomplished by assuming that there
is a probability distribution Pr defined over causal alternatives in W , so that Pr
assigns a number Pr(w) ∈ [0, 1] to each w ∈ W such that

∑
w∈W Pr(w) = 1. In-

voking a probability assignment over causal alternatives is common in the causal
modeling literature, making the pair (M,Pr) a probabilistic causal model (Pearl,
2009, p. 205), and is analogous to defining a probability distribution over possi-
ble worlds in semantics and formal epistemology (Hartmann and Sprenger, 2010;
Moss, 2015). A probability distribution over causal alternatives determines how
likely an error term is to be activated. The probability that an error variable
Ei takes on value ϵi is the sum of the likelihoods of each alternative where this
requirement is satisfied: Pr(Ei = ϵi) =

∑
w∈[Ei=ϵi]

Pr(w). In stipulating that an
error term must be improbable given the evidence, I assume that there is a thresh-
old π below which errors are improbable.8 This allows for a formal definition of

8I leave open whether this threshold π is constant across cases or depends on contextual
factors. Since causal safety has many features beyond a probability cutoff, this problem is less
substantial than it is for other theories. For example, the probability cutoff is not required to
satisfy certain properties for causal safety to address problems like the lottery paradox; see Foley
(1992); Hawthorne and Makinson (2007); Leitgeb (2014).
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causal safety:

Causal Safety: A proposition p is causally safe in causal model M = (U, E , V, F )
at world w ∈ W given evidence E and probability distribution Pr if p is true in
all alternatives in W ′ where E is true, where W ′ is the set of causally relevant
alternatives w′ from W such that all error assignments Ei = ϵi in w′ satisfy either
(1) Pr(Ei = ϵi|E) > π for some cutoff π or (2) Ei = ϵi in w.9

We can see how this formal account works by reconsidering the case of per-
ceiving a sheep. Here, one believes that there is a sheep, S = 1, based on the
appearance of a sheep, A = 1, and whether one’s belief is causally safe depends
on whether the error terms inhibit the connection between the evidence and the
presence of a sheep. Conditional on the evidence A = 1, both error terms are
negligibly improbable: the probability that something other than a sheep causes
the appearance of a sheep is very low, so Pr(UA = 1|E) < π, and the probability
that something prevents the perception of a sheep, conditional on the perception
of a sheep, is also negligible, i.e., Pr(U ′

A = 1|E) < π. Thus, whether one can know
that there is a sheep depends only on condition (2), or which error terms are acti-
vated in the actual world. In the normal case of perception, where there is a sheep
(S = 1) which one sees (U ′

A = 0) and where nothing else causes the perceptual
evidence for a sheep (UA = 0), belief that there is a sheep is causally safe. This
is because the error assignments UA = 1 and U ′

A = 1 are both improbable and
non-actual, so there are no causally relevant worlds where these error terms are
activated: the only causally relevant alternative consistent with one’s evidence
that A = 1 and the structural equation A = (S ∧ ¬U ′

A) ∨ UA is the actual world,
(S,UA, U

′
A) = (1, 0, 0). On the other hand, in worlds where a triggering abnor-

mality is activated like the case of justified false belief, (S,UA, U
′
A) = (0, 1, 0), or

the Gettier case, (S,UA, U
′
A) = (1, 1, 1), belief that there is a sheep is not causally

safe. This is because the alternative (S,UA, U
′
A) = (0, 1, 0), where there is no

sheep, is causally relevant, since the only activated error term UA = 1 is activated
in the actual world, satisfying condition (2) for causal relevance.

It is important to note that the formal definition of causal safety leaves open
how the causal model M and probability distribution Pr are determined. Judg-
ments of causal safety can vary greatly depending on how these are determined,
for example, whether these factors arise from subjective beliefs or are objective
and agent-independent. While I intend for causal safety to be open to compet-

9Note that, because the probability cutoff only applies to a single error term, a proposition
which is unlikely to be true can be causally safe. Suppose, following an example from Smith
(2017), that 50 people claim they will attend your party, but there is a 10% chance each one does
not show up. If each error is negligibly improbable, your belief that all 50 people will attend can
be causally safe, even though the odds of this being the case are very low. See also the discussion
in Hawthorne and Lasonen-Aarnio (2009) and Williamson (2014).
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ing approaches to specifying causal models and probability distributions, I will
focus on what I take to be the most plausible account, where the causal model
and probability distribution are objective, so that M represents the actual causal
laws and Pr(−|E) represents an objective chance function conditional on one’s
evidence. While there are many interpretations of objective chance that can work
for causal safety, it may be helpful to think of chance in frequentist terms.10 For
example, in the sheep case, the judgment that Pr(UA = 1|E) is low corresponds
to the fact that non-sheep causes of sheep appearances make up a small fraction
of sheep appearances.

However, even using a frequentist conception of objective chance leaves room
for ambiguity in determining the probability distribution. Consider the fake barn
case (Goldman, 1976), where an agent correctly judges a building to be a barn
based on its appearance, but is only right by chance: the one real barn is sur-
rounded by numerous barn façades, which appear exactly like the real barn, but
are not actually barns. Causally, the fake barn case is just another example of
perception: we are interested in whether there is a barn (B) based on the appear-
ance of a barn (A), with triggering abnormalities UA, inhibiting abnormalities U ′

A,
and structural equation A = (B∧¬U ′

A)∨UA. For the belief that there is a barn to
be causally safe, we must be able to ignore the alternatives where UA = 1. Since
the agent observes a real barn, no triggering abnormalities are activated in the
actual world. Thus, whether this belief is causally safe depends on Pr(UA = 1|E),
or the probability that a triggering abnormality is activated when there appears
to be a barn. The probability of a triggering abnormality is low globally, as it
is not often that a barn appearance comes from something other than a barn,
but is high locally, as in the local area, the probability that a barn appearance
is caused by something other than a barn is very high. In my view, the local
interpretation is more compelling, as it is plausible that the probability distribu-
tion ought to line up with the frequencies one would observe when sampling from
one’s environment. On this interpretation, the probability that the observer’s
evidence is caused by a barn façade in the context is too high to ignore, so the
inference that there is a barn from the appearance of a barn is too error-prone
to serve as a foundation for knowledge.11 The fake barn case also highlights how
causal safety differs from Goldman’s (1967) causal theory of knowing: while the
agent’s belief is caused by a real barn, this causal connection does not entail that

10Other theories of probability that I take to be compelling candidates for use with causal
safety are propensity theories of probability and theories of (objective) evidential probability, as
in Williamson (2000, Ch. 10).

11In support of the competing judgment that the probability function takes wide scope in the
fake barn case is some experimental evidence that many people attribute knowledge in fake barn
cases (Colaco et al., 2014). While I believe that local context can affect probability assignments,
as described above, this is not an essential feature of causal safety. In general, how the local
environment affects knowledge judgments is a complex question; see Gendler and Hawthorne
(2005).
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errors in the causal relationship can be properly ignored. Causal safety, unlike
Goldman’s causal requirement, is a modal property requiring that one’s belief be
stable across changes to other variables consistent with the causal laws, and this
property fails to hold in the fake barn case despite the causal connection between
one’s evidence and the world.

4 Addressing Arguments against Safety

Like the traditional concept of safety, causal safety is a modal notion: for belief
in p to be causally safe based on E in w, p must be true in all the causally
relevant alternatives to w where E is true. Causal safety also follows ordinary
safety in attempting to capture the non-accidentality of knowledge and the fact
that knowledge should be, in some sense, safe from error. However, causal safety
makes no reference to the notion of similar or nearby possible worlds: a causal
alternative need not be similar to the actual world, and a nearby world need not
be causally relevant. For this reason, the arguments against safety discussed in
§1 do not apply to causal safety.

Consider first the arguments that safety is not necessary for knowledge, ex-
emplified by the cases of Comesaña (2005), Kelp (2009), and Bogardus (2014).
Recall the case inspired by Comesaña (2005): John found out that Andy’s party
will be at Andy’s house from Judy, when he introduced himself as Jack. He al-
most introduced himself as John, in which case Judy would have told Andy that
John was coming and Andy would have moved the party, making John’s belief
false. Since John’s belief could have easily been false, it is not safe, but John
seems to know the location of the party based on good evidence appropriately
connected to the fact that the party is at Andy’s house. Causal safety can ex-
plain this. Suppose P represents whether a party is planned for a given location,
T represents testimony that the party will be at that location, and L represents
whether the party is held at that location. The party being planned at a location
(P = 1) causes testimony that this is the case (T = 1) and causes the party
to occur at that location (L = 1), though both of these causal relationships can
suffer from triggering or inhibiting abnormalities. Thus, the structural equations
for the causal relationships are T = (P ∧¬U ′

T )∨UT and L = (P ∧¬U ′
L)∨UL and

the causal diagram is as follows:

P

T L

In Comesaña’s example, John believes L = 1, that the party will be located
at a particular location (Andy’s house), based on T = 1, (Judy’s) testimony that
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the party will be located there. In the actual world, no error terms are activated,
and the party is located at Andy’s as planned. For John’s belief to be causally
safe, L = 1 must be true in all causally relevant worlds where T = 1. Since none
of the error terms are activated in the actual world, the only way an error term
can be relevant is if it is sufficiently probable. However, conditional on testimony
about the party location (T = 1), none of the error terms have high probability
of activation: it is rare for people to lie about a party location and rare for
people to change the planned party location. This suggests that John’s belief is
causally safe: none of the error terms are activated or sufficiently probable to be
of concern, so the only causally relevant alternative is the actual world where the
party is located at Andy’s.

Comesaña’s example raises problems for safety because the inhibiting error
term U ′

L = 1 is nearly activated: in nearby worlds, Andy intervenes to ensure
that the party is not held at his house. However, the fact that U ′

L was nearly
activated does not mean that the error term is causally relevant. Since the party
location is not actually changed, the error term is not activated in the actual
world. And since the nearby event is just an outlier possibility, we would not
expect it to change the probability Pr(U ′

L = 1|E), which represents the overall
likelihood of a party location being determined independent of the plans. Invoking
a frequentist approach, we would not expect one party’s location nearly being
changed to have any effect on the frequency at which parties are changed from
their planned locations conditional on testimony.

This strategy for responding to Comesaña’s case carries over to other cases
of unsafe knowledge. Kelp (2009) and Bogardus (2014), for example, both argue
against safety using versions of Russell’s (2009) stopped clock case. Suppose, as
in Russell’s original case, that an agent sees a stopped clock which happens to
display the correct time, say 8:22, and comes to form the justified true belief that
the time is 8:22. Intuitively, the agent does not know the time, and causal safety
can explain this: the actual world is one where a triggering abnormality causes
the clock to display the correct time, 8:22, for a reason not connected with the
actual time, so it is a causally relevant alternative that the clock displays 8:22, but
that the actual time is otherwise. Kelp and Bogardus introduce cases of nearly
stopped clocks as counterexamples to safety. Here, the clock the agent uses is
perfectly functional and displays the correct time, so the agent knows the time,
but there is a nearby possibility that the clock is stopped at 8:22 while the time is
not 8:22. Kelp raises the possibility that there is a lazy arch-nemesis who always
sets the clock to 8:22, except when it is actually 8:22, and Bogardus supposes
that the clock is an atomic clock and there is a nearby alien isotope which could
set the clock to 8:22 if it decays. Like in Comesaña’s case, the agent’s belief is
nearly false because an error term could easily have been activated. In both cases,
however, no error terms are activated in the actual world, as the clock displays the
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correct time on the basis of the causal connection between the time and the clock.
Furthermore, the fact that the triggering errors were nearly activated is insufficient
to make the error terms too likely to ignore: one arch-nemesis tampering with
one clock or one almost-compromised atomic clock does not substantially raise
the probability of clocks being set by triggering abnormalities rather than the
actual time. Thus, as with Comesaña’s case above, a nearby possibility of error
is not enough to interfere with causal safety, rendering these arguments against
the necessity of safety for knowledge inapplicable to causal safety.

While causal safety may escape these counterexamples to the necessity of
safety, one might suspect that causal safety also fails as a necessary condition
on knowledge, simply for different reasons. Here, I will respond to two lines of
objection one might pursue.12 First, one might think that cases where one can
know despite the activation of an error term offer examples of causally unsafe
knowledge. Consider the following: you correctly see a sheep in front of you, but
behind you someone convincingly imitates a sheep vocalization, thus activating
a triggering abnormality for the (auditory) evidence of a sheep. In this case, it
seems you can know that there is a sheep based on your good visual evidence,
despite the activation of the triggering abnormality. However, not all triggering
abnormalities will make one’s belief causally unsafe: the only relevant triggering
abnormalities are those where activation blocks all causal paths from E to p. In
this case, no causal errors block the inference that there is a sheep along the
path from one’s visual evidence, so your belief that there is a sheep is causally
safe. More formally, this case involves sheep S causing visual appearance A and
sheep vocalization V according to A = (S ∧¬U ′

A)∨UA and V = (S ∧¬U ′
V )∨UV

in world (S,U ′
A, UA, U

′
V , UV ) = (1, 0, 0, 1, 1). Even though UV = 1, UA is neither

activated nor likely to be activated, so there are no causally relevant worlds where
UA = 1, so the only worlds consistent with evidence A = 1 ∧ V = 1 are those
where S = 1 and U ′

A = 0, meaning the belief S = 1 is true in all causally relevant
worlds consistent with the evidence, and thus is causally safe. Thus, a belief does
not become causally unsafe whenever a causal error term is activated nearby, but
only when this causal error term blocks the inference of p from E in the causal
model, a condition much less likely to be consistent with knowledge.

Second, one might think that there are cases of knowledge where the proba-
bility of a causal error term being activated is high. Consider a variant of Kelp’s
case, where a sometimes lazy arch-nemesis always sets the clock to 8:22, except
for when it is actually 8:22, when there is about a 1 in 100 chance that he gets lazy
and stops interfering. In the case where there is no interference, it seems one can
know the time, even though the probability of a triggering abnormality setting the
time seems to be .99, and so one’s belief appears causally unsafe. However, as in
the fake barn case, this verdict depends on the theory of probability used. I have

12I would like to thank the anonymous referees for suggesting these cases.
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suggested a frequentist interpretation, where probability should line up with the
frequency one would observe when sampling from one’s (local) environment.13 On
this interpretation, the likelihood of a triggering abnormality altering the clock is
still low, since this outcome is unlikely for all the nearby clocks one would sam-
ple the probability from.14 For this probability to be high, one would need to
restrict probability to hypothetical trials or propensity of an individual situation,
an interpretation which conflicts with the standard goal of using causal models to
capture general causal relationships between different settings of variables rather
than the actual causal relationships of an individual situation.15

While the counterexamples discussed so far offer the most challenging argu-
ments against adopting safety as a necessary condition on knowledge, it is also
worth considering a few arguments that safety cannot robustly explain Gettier
cases of accidental true belief. For example, in the Gettier case from §1, one’s
belief that there is a sheep based on a rock can be safe if the sheep elsewhere
in the field is also there in nearby possible worlds (such as if the surrounding
area is inhospitable), even though one’s evidence is not connected to the facts
in the right way to support knowledge. This problem does not arise for causal
safety: in any version of this Gettier case, the appearance of a sheep is caused by
a triggering abnormality, so it is a causally relevant possibility that one’s belief
is false, regardless of how distant this possibility is. Similar reasoning applies to
cases that have been developed to undermine the explanatory adequacy of safety.
Imagine, following Hiller and Neta (2007) and Pritchard (2012), that an agent
sees a broken thermometer which happens to display the correct temperature, so
the agent forms a justified true belief about the temperature which falls short
of knowledge. Now suppose that there is no nearby world where the tempera-

13For an overview of some criticisms of frequentism, and some alternative approaches to prob-
ability, see Hájek (1997, 2019).

14This interpretation has an interesting connection to Mortini’s (2022) distinction between a
‘potentially unfriendly environment’ and an ‘actually unfriendly environment’ in his environment-
relative theory of safety.

15Note that this point about causal models applying to general cases rather than specific cases
may also be relevant to the notoriously difficult case of knowing necessary truths (Dutant, 2010;
Roland and Cogburn, 2011). For example, suppose one believes that 47 is prime based on a
method M which is in general 50% accurate at identifying prime numbers. Although a causal
interpretation is contentious, this could mean that a number being prime (P ) has a causal effect
on satisfying M , though there is (at least) a 50% chance M = 1 is caused by a triggering
abnormality rather than the number being prime. Whether the belief that 47 is prime is causally
unsafe depends on whether the alternative where 47 is not prime is in the causal model, and if
we think of the model as treating P and M as variables that can take on different values for
any natural number, then the causal alternative where P = 0 should always be in the model,
even if the specific number under consideration is (necessarily) prime. This contrasts with the
situation for ordinary safety, where it is harder to motivate why there should be a possible world
where 47 is not prime, leading authors to modify safety by invoking ‘similar propositions’ to the
proposition that 47 is prime (Williamson, 2009; Hirvelä, 2019), an account which faces further
challenges (Zhao, 2022).
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ture is otherwise: perhaps, following Hiller and Neta, the thermometer measures
a volatile substance which would explode if the temperature were different, or,
following Pritchard, there is a hidden agent ensuring that the actual temperature
matches the temperature displayed by the broken thermometer. Since there is
no nearby world where the actual temperature deviates from the displayed tem-
perature, the agent’s belief is safe, even though it falls short of knowledge. The
agent’s belief, however, is not causally safe: the temperature display is caused by
a triggering abnormality rather than the actual temperature, so it is a causally
relevant alternative that the actual temperature differs from the displayed tem-
perature, even if such an alternative is distant from the actual world based on
other considerations.

Again, one may suspect that causal safety will also fail to address some Get-
tier cases, particularly in light of Zagzebski’s (1994) argument that Gettier cases
are inescapable.16 Such cases may arise if, unbeknownst to the agent, there is a
causal structure guaranteeing causal safety in a way that seems inappropriate for
knowledge. Consider a variant of Pritchard’s thermometer case, where you own a
thermometer that you think works normally, but the thermometer reading is actu-
ally controlled by a hidden agent who measures the temperature another way and
sets the thermometer to the correct temperature. In this case, one might think the
hidden agent is part of the true causal structure instead of a triggering abnormality
and, provided the agent is so reliable that the odds of a misaligned thermometer
are sufficiently low, one’s belief can be causally safe merely by chance. However,
this verdict depends on contentious modeling decisions: it is not clear that the
relevant causal structure should represent the individual thermometer rather than
how thermometers operate in general, and even if the agent is included, one might
want to include something like the agent’s intentions as an independent variable,
which would block causal safety. Regardless of how far causal safety can go as
a necessary anti-Gettier condition for knowledge, causal safety avoids the cases
that problematize safety and, I argue, better accords with our intuitions for when
belief is sufficiently grounded in evidence to confer knowledge.

5 Causal Safety and Statistical Evidence

So far, the discussion has focused on Gettier cases, especially variations of Gettier
cases designed to pose problems for the safety criterion for knowledge. However,
as discussed in §1, non-accidentality conditions on knowledge are also useful for
addressing issues which arise for belief based on statistical evidence. In particular,
a non-accidentality condition should be able to explain why very strong statistical
evidence can be insufficient for knowledge, as in the lottery case where one cannot

16Note, however, that Zagzebski excludes conditions that entail truth from her argument, and
the causal safety of p guarantees the truth of p since the actual world is always causally relevant.
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know that a given lottery ticket will lose simply because the odds of it losing are
exceedingly high.

Safety purports to explain why one cannot know based on statistical evidence.
In cases where one has strong statistical evidence for p, one’s evidence is compat-
ible with some chance that p is false, and these possible worlds where p is false
are often no further or more distant from the actual world than worlds where p is
true. Consider the lottery case: since tickets are drawn randomly, it could easily
be the case that the chosen ticket (or any other ticket) wins, so the belief that
a given ticket will lose is not safe (Pritchard, 2005). However, just as problems
arise for using safety to explain why Gettier cases are excluded from knowledge,
problems arise for applying safety to cases of statistical evidence. Consider the
Blue Bus case (Thomson, 1986; Wells, 1992; Enoch et al., 2012): a bus crash
causes damage, and one knows that 80% of buses in a city are operated by the
Blue Bus Company. Based just on this statistical evidence, one cannot know that
the Blue Bus Company is responsible, as the evidence clearly leaves open the
possibility that another bus company caused the damage.17 However, there are
situations where one’s belief might nevertheless be safe. For example, if no other
bus companies were operating near the site of the crash, or if the driver of the
bus was uniquely accident-prone of all the bus drivers in the city, then the Blue
Bus Company may have caused the crash in all of the nearby possible worlds.

Causal safety offers a more robust explanation for why statistical evidence
fails to confer knowledge. The only errors causal safety allows as compatible with
knowledge are error terms in causal relationships. When one has merely statistical
evidence for p, the alternatives where p is false often correspond to alternative
values of independent variables rather than error terms in causal relationships.
Since these are not errors arising in the causal connection between p and E, these
alternatives are causally relevant, even if they are very improbable.

Consider a causal interpretation of an N -ticket lottery: a player chooses a
ticket T from {1, ..., N}, a winner W is chosen from {1, ..., N}, and the outcome
O is determined from {l, w} (lose, win) based, in general, on whether the chosen
ticket (T ) matches the winning ticket (W ). As usual, we can add error terms UO

for situations where one wins even if one’s ticket isn’t chosen and U ′
O for situations

where one loses even if one’s ticket is chosen. These errors are activated if, say,
the lottery is rigged or the game is canceled before a winner is announced. We

17While this case is often presented in contexts involving legal liability, I focus only on the
epistemic question of whether can know that the Blue Bus Company caused the crash, which
may have a different answer from the legal question of whether the Blue Bus Company ought to
be held legally liable.
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can write the causal graph for the lottery case as follows:

W T

O

This causal model can explain why someone’s belief that their ticket will lose
is not causally safe. The relevant evidence E in the situation includes the ticket
number one has chosen, T = t, as well as statistical information about how the
value of the variable W is chosen: for each possible value w of W in {1, ..., N},
Pr(W = w|E) = 1

N . We can assume that both error terms are negligibly improb-
able, and that the world is such that a different ticket is selected to win (W = t′)
and neither error term is activated, so the player loses (O = l). In evaluating
whether the player’s belief that O = l is causally safe, we can safely ignore both
error terms UO and U ′

O, so the player wins iff W = t, which occurs with prob-
ability 1

N . Even though this event is improbable, it remains part of the set of
causally relevant alternatives even after removing all of the alternatives with low
probability and non-actual error terms. This is because W is an independent vari-
able and no evidence bears directly on which value W takes in the actual world.
This means that all possible ticket values, including W = t, are causally relevant
possibilities. Since W = t is causally relevant, the outcome O = w is causally
relevant, preventing one’s belief that the ticket will lose from being causally safe.

A similar explanation applies to the Blue Bus Case. Here, since one’s evidence
is scant, the causal model for the situation only involves a single binary variable
B, where B = 1 when the Blue Bus Company is responsible and B = 0 when
another company is responsible. One’s evidence includes statistical evidence that
the probability the Blue Bus Company is responsible is 80%: Pr(B = 1|E) = 0.8.
In this model, there are no error terms one can use to restrict the set of causally
relevant worlds, so the set of causally relevant alternatives includes both B = 1
and B = 0. Thus, the alternative where the Blue Bus Company is not responsible
is causally relevant, making one’s belief that the Blue Bus Company is responsible
causally unsafe, regardless of whether the Blue Bus Company would have been
responsible in nearby worlds.

One way of explaining why one cannot have knowledge in these cases is to
contrast mere statistical evidence with individualized evidence (Thomson, 1986).
On the causal interpretation here, individualized evidence for p is causally con-
nected to p in a causal model, while statistical evidence is not. Suppose, for
example, that one reads that ticket t won the lottery in the newspaper and that
newspapers misprint lottery winners 1 in N times, or that one learns that the
Blue Bus Company caused the crash from eyewitness testimony, which is roughly
80% accurate. In these cases, even though the likelihood one’s beliefs are true is
the same as in the cases of statistical evidence above, it seems that one’s evidence
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is strong enough for knowledge: one can know that ticket t won by reading it
in the newspaper and one can know that Blue Bus Company caused the crash
from testimony that this is the case (Enoch et al., 2012). Causal safety explains
this: both of these are cases of direct testimonial evidence, where testimony that
p is caused by the fact that p, so belief in p is causally safe when triggering ab-
normalities causing testimony that p are not activated in the actual world and
are sufficiently improbable. Thus, belief based on individualized evidence can be
causally safe, as the possible errors are error terms in structural causal relation-
ships, while belief based on equally strong statistical evidence is causally unsafe,
as the possible errors correspond to different values of independent variables one
has no causal evidence for.

However, not all cases of statistical evidence are as clear-cut as the lottery
and the Blue Bus cases. Consider the profiling case from Buchak (2014), also
discussed in Gardiner (2020): your phone was stolen, and you know that 90% of
phones are stolen by men, so you conclude that Jake (rather than Barbara) must
have stolen your phone. Intuitively, this case resembles other cases of statistical
evidence, as you assume that Jake is responsible while your evidence is insufficient
to rule out Barbara. This case is also problematic for the safety account of
statistical evidence, as it seems that you cannot know that Jake stole the phone,
but there are cases where Jake is responsible in all nearby worlds, such as if
Jake is a frequent criminal and Barbara is particularly disposed against stealing.
Furthermore, unlike the lottery and Blue Bus cases, the evidence in the profiling
case seems more direct: plausibly, being a man has a causal effect on stealing.

However, this causal connection is not strong enough to support causal safety:
while being a man is strong statistical evidence that one is responsible for a
robbery, it is weak causal evidence.18 This is because gender is not a key vari-
able explaining theft: while it plays a role, an accurate causal model explaining
theft requires additional factors. This is evidenced by research on the causes of
delinquency, which focuses on explaining delinquency through personal and so-
cial causes, such as lack of self-control (Gottfredson and Hirschi, 1990), personal
strain (Agnew, 1992), and factors from social learning, such as attitudes towards
the law and imitation of others (Akers, 2011). While gender may not influence
delinquency directly, it likely has a causal effect on these personal factors, as would
other factors like socioeconomic status, race, and social network. Messerschmidt
(2007), for example, argues that masculinity is a factor leading to the kinds of
major strain relevant for crime.

This causal structure explains why gender is not strong enough causal evidence
for theft: other factors at play are more likely to explain a theft than gender is, so
the error term capturing these other factors is very likely to be activated and is

18The fact that modal properties like safety can depend on causal structure in cases of statistical
evidence is also pointed out in Gardiner (2020).
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therefore causally relevant. Consider a simplified causal model: binary variables
M , P , and T represent whether someone is a man, whether someone meets the
personal/social prerequisites for delinquency, and whether someone commits a
theft, respectively, and the diagram for causal influence is as follows:

M

P

T

As usual, we include both triggering and inhibiting abnormalities, so the structural
equations are as follows: P = (M ∧ ¬U ′

P ) ∨ UP and T = (P ∧ ¬U ′
T ) ∨ UT . In

the profiling case, one’s evidence E includes the fact that someone committed a
theft, T = 1, and statistical evidence entailing that Pr(M = 1|E) = 0.9: the
probability that the thief is a man is 0.9. For the belief that the thief is a man
to be causally safe, M = 1 would have to be true in all alternatives once non-
actual, low probability errors are removed. Assume that, in the actual world, the
thief is a man and none of the error terms are activated: being a man led to the
relevant personal and social factors, which led to Jake stealing the phone. Whether
M = 1 is causally safe depends on how likely the possible error terms are. If we
have confidence in theories of delinquency, the error terms UT = 1 and U ′

T = 1
are negligibly improbable: the factors captured by P offer a causally adequate
explanation for a large proportion of thefts, so the likelihood that another cause
is at play or that these personal/social causes did not lead to theft, given that a
theft occurred, is slim.

However, the error terms for the relationship between personal/social causes
and gender are not negligible. This is because, while being a man is highly corre-
lated with the personal and social factors behind delinquency, being a man is not
the strongest causal influence on these factors. For many men who exhibit these
factors, the real cause is something other than gender, like socioeconomic status
or family problems: this corresponds to the case where the triggering abnormality
UP is activated. Thus, even though the probability that someone who commits
theft is a man, Pr(M = 1|E), is high, the probability that some factor other
than gender is ultimately causally responsible for this theft, Pr(UP = 1|E), is also
high. Since the error term UP is likely to be activated, alternatives where UP is
activated can be causally relevant: in particular, the world where M = 0 and the
only activated error term is UP is a causally relevant alternative where E is true,
corresponding to the case where someone who is not a man (M = 0) commits
theft for reasons not related to being a man (UP = 1). Thus, deducing that a
man is responsible for a theft based on statistical evidence is not causally safe, as
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being a man is a causally weak explanation for why someone would commit theft.
This explanation also extends to other cases of profiling, as even when properties
are strongly correlated with factors like race or gender, the real explanations for
the properties often depend on confounding factors which one has no evidence
for. Just as in the lottery and the Blue Bus cases, statistical evidence leaves open
the values of important factors in a causal model, making it a causally relevant
alternative that one’s belief is false, even when this is unlikely.

6 Conclusion

Causal safety offers a promising account of the appropriate relationship between
evidence and facts required for knowledge. According to causal safety, the only
possible errors knowledge is compatible with are those corresponding to causal er-
ror terms, and these errors are negligible only if they are both improbable and non-
actual. Causal safety can explain why Gettier cases are excluded from knowledge,
as Gettier cases arise when one’s evidence is disconnected from the proposition
of interest, typically through the activation of a causal error term. Causal safety
can also explain why knowledge cannot be based on merely statistical evidence,
as statistical evidence leaves open key explanatory variables in the causal model
and cannot guarantee the truth of the target proposition through the removal of
improbable, non-actual errors. Furthermore, causal safety can correctly explain
judgments in cases challenging the necessity of ordinary safety. While more work
is needed to identify the limitations of causal safety and to better understand
the nuances involved in applying formal devices like probabilistic causal models
to cases in epistemology, this analysis suggests that the problems identified for
ordinary safety do not extend to other modal conditions on knowledge and that
tools like causal models may be more useful for the analysis of knowledge than
the notion of similarity between possible worlds.
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