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Abstract. Grice, Lewis, and Skyrms proposed similar distinctions between

kinds of meaning. The meaning of terms in human language, as Lewis and

Skyrms had it, is ‘conventional’. Skyrms presented models showing how it is
possible for conventional meaning to evolve in a population without reliance

on pre-existing meaning. But one might think of conventionality as coming

in degrees, based on whether the evolutionary process begins with ‘natural
saliences’. We propose a theory of natural salience and several extensions of

Skyrms’s models to capture this notion. These models reveal that natural

saliences can hinder, as well as help, the evolution of language.
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1. Meaning and Natural Salience

The difference between ‘natural’ and ‘non-natural’ meaning, as Paul Grice had
it, is the difference between the uses of ‘meant’ in the following sentences:

The spots meant that you had measles.(1)

When the doctor said ‘You have measles’, she meant that you had measles.(2)
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In (2), the doctor meant something non-naturally, because she ‘intended the
utterance . . . to produce some effect in [her] audience by means of recognition of
this intention’ (Grice,[1957], 385). Cases like (1) lack this feature. The spots don’t
intend to tell you that you have measles, nor do you recognize such an intention.
The spots just indicate that you have measles, naturally.

Brian Skyrms, following David Lewis, suggested that Grice’s distinction would
be better put as one between ‘non-conventional’ and ‘conventional’ meaning. Grice’s
non-natural meaning becomes conventional meaning for Lewis, ([1969], 159). For
Skyrms, all meaning is natural in the sense that it ‘depends on associations arising
from natural processes’ ([2010], 1). The doctor and you have learned, over the
course of your lives, the linguistic conventions necessary for her to communicate
your diagnosis. Learning is a natural process. The spots, on the other hand, have
learned nothing and follow no such conventions. They just mean measles in the
same way that smoke means fire.

In his doctoral thesis on convention, Lewis used game theory to demystify the
claim that language is conventional. At the time, game theory had focused on sce-
narios in which the interests of agents conflicted. Lewis recognized the importance
of the coordination problem, in which the interests of agents align. The solution is
conventional when the following three conditions are met: (i) a coordination prob-
lem has multiple solutions (equilibria), (ii) agents prefer most of all that everybody
adheres to the same solution, and (iii) for that reason all agents actually adhere to
the same solution (Lewis,[1969], 42). Using a class of coordination problems known
as ‘signalling games’, Lewis argued that language fits the bill.

Although Lewis was content to take the analysis this far, Skyrms had in his
sights a more difficult question: how might linguistic conventions arise without
recursive reliance on prior language? This question traces its origins back through
the Epicureans to Jean-Jacques Rousseau and Lewis’s own doctoral advisor W.
V. Quine.1 Put another way: how is it possible for pre-linguistic agents to become
(proto-)linguistic agents? A thoroughgoing naturalism about the origins of language
requires an answer to this skeptical challenge, and Lewis’s account does not suffice.
Lewis appealed to three processes for equilibrium selection: prior agreement between
agents, precedent, and salience. Prior agreement and precedent are off the table due
to the persistent threat of circularity (Skyrms,[2000], 81). And where would salience
come from? Charles Darwin offered one such conjecture:

Since monkeys certainly understand much that is said to them by
man, and when wild, utter signal-cries of danger to their fellows;
and since fowls give distinct warnings for danger on the ground, or
in the sky from hawks (both, as well as a third cry, intelligible to
dogs), may not some unusually wise ape-like animal have imitated
the growl of a beast of prey, and thus told his fellow-monkeys the
nature of the expected danger? This would have been the first step
in the formation of language. ([1875], 87)

The idea is that there was a natural salience to the terms in the simple languages
of the earliest hominids. Through a tortuous process of evolutionary modification,
these asymmetries in the initial conditions of linguistic development eventually
birthed the meanings of terms in the languages we have today.

1See Rousseau’s Second Discourse ([2011], 57-58) and, for example, (Quine, [1936]).
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The problem, of course, is that Darwin’s conjecture is likely wrong for human
languages. Looking at modern human verbal communication, we find no evidence
of Darwinian natural salience at work—save in the case of onomatopoeia. Skyrms,
however, used Lewis’s signalling games to show what Darwin and Lewis could not:
how the chancy natural processes of evolution and learning can break initial symme-
tries and lead to the emergence of simple languages with meaningful terms. Despite
Skyrms’s success, it is clear that meaning in nature often does arise in the pres-
ence of asymmetries. Put this way, the question becomes, not whether we can get
communication without asymmetries, but how the reintroduction of asymmetries
might affect the development of language.

We are concerned in this paper with two of Skyrms’s suggestions regarding nat-
ural salience. First, Skyrms suggested that incorporating natural salience into his
signalling game models did not present any special difficulties ([2010], 21). This is
a simplification which warrants expansion. There are many ways in which asym-
metries can be introduced into signalling game models. Such asymmetries are also
present in nature, giving these models additional degrees of realism. Using recent
developments in the theory of self-assembling games, we can also take the analysis
one step further: giving an account of how natural processes might give rise to nat-
ural saliences in the first place. Such an account bolsters the Skyrmsian position
that all meaning is the result of natural processes.

Second, Skyrms suggested that the case without any natural salience is the hard-
est case for signalling to get off the ground in ([2010], 8). As we address the first
suggestion in increasingly subtle ways, we will see that this second suggestion some-
times gets things backward. The processes which drive natural salience can also
drive a wedge between agents’ pragmatic success (in terms of reward) and suc-
cessful communication (in terms of information transfer). This is not a refutation
of Skyrms’s analysis. Rather, it shows how critical symmetry-breaking adaptive
processes like evolution and learning are to the successful use of language.

2. Learning to Signal

A basic N ×N ×N Lewis signalling game has three players: nature, the sender,
and the receiver. Nature picks one of N possible states. The sender observes the
state of nature, and sends one ofN possible signals. The receiver observes the signal,
and performs one of N possible acts. Each of the possible acts corresponds to one
of the states of nature. If the receiver’s act matches the state of nature, both sender
and receiver receive a payoff. There exist N ! possible pure strategy profiles in which
the sender maps each state of nature to a different signal, and the receiver maps
each signal to the correct act. These are called the separating equilibria, and the
corresponding term language that the agents use is called a signalling system. But
there are many other inefficient equilibria in the game, in which the term language
the agents use contains synonyms and information bottlenecks, but in which neither
the sender nor the receiver could do better by unilateral deviation from the chosen
strategy. These are called the partial pooling equilibria. In a signalling game, the
development of a simple term language becomes a matter of selecting an efficient
equilibrium. Agents require no help from a pre-existing language if they can select
these equilibria in some other way.

Lewis told a qualitative story about how random chance might produce coordi-
nation in high-rationality agents ([1969], 39). Agents coordinate by happenstance,
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Figure 1. A 2 × 2 × 2 Lewis-Skyrms signalling game with act-
based reinforcement learning.

and the memory of that initial serendipitous coordination event generates mu-
tual dispositions to act similarly in the future. Skyrms gave this story quantita-
tive rigor, showing that successful coordination requires only minimal assumptions
about agents’ rationality. Specifically, their behaviours are plastic in the way de-
scribed by Thorndike’s law of effect: successful actions end up being performed
more often in the future (Thorndike, [1911]). This process of behaviour modifica-
tion is called reinforcement learning. Skyrms showed that organisms well-modeled
by these conditions are capable of learning a simple term language to describe their
environment. The insight is that linguistic conventions can be established ex nihilo
even among agents with minimal cognitive resources.

A common learning process used in Skyrms signalling game models is ‘simple
reinforcement learning.’2 We can characterize it with balls and urns. The sender
has N urns, each corresponding to a state of nature. The sender draws from the
corresponding urn after observing nature. The urn has balls of N different colours,
each corresponding to a possible signal. The sender sends the signal corresponding
to the ball drawn. The receiver in turn has N urns corresponding to the possible
signals, each with balls of N colours corresponding to the possible acts. When
the sender and receiver are jointly successful, they return the balls drawn to their
respective urns, and add an additional ball of the same colour. When they are not
successful, they return the balls to the urns without adding any new balls. Figure 1
illustrates an example setup for the case of N = 2.

Under simple reinforcement learning, Hu et al. ([2011]) proved that every sig-
nalling system has a positive probability of being attained in the limit. Argiento
et al. ([2009]) proved for the special case of N = 2 that there is long-run conver-
gence to a signalling system with probability one. But for the more general case
of N > 2, as far as we know, it is not guaranteed that the players will arrive at
a signalling system in the long run. Jeffrey Barrett ([2006]) showed by simulation
that in the medium run players in signalling games with N > 2 sometimes end up
in partial pooling equilibria, and that this effect increases with larger N and when
nature is biased. Even so, Barrett showed that agents often select relatively efficient
equilibria, and that more sophisticated learning processes make it more likely that
agents will end up in signalling systems.

2.1. What Natural Salience Is Not. Now that we have the toolkit set up,
we must frame our discussion of natural salience against the backdrop of other

2This learning model is motivated both psychologically and by its formal relation to the evo-

lutionary replicator dynamics. See (Skyrms,[2010], ch. 7-8) for background on the model and its
application to evolutionary signalling games. Note that this is an act-based implementation of the

dynamic game: individual acts—rather than whole strategies—are being reinforced.
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Skyrmsian investigations of salience. Recently, there have been two such projects:
Travis LaCroix’s ‘salience games’ and several authors’ work on the theory of self-
assembling games. These projects fill important gaps in Skyrms’s account and give
us powerful modeling resources to draw from. But they do not touch the issues we
are concerned with in the present paper.

LaCroix ([2020b]) tested the hypothesis that introducing salience into a Skyrms-
style signalling game decreases the probability of agents ending up in partial pooling
equilibria. He tested this by introducing a ‘salience parameter’ which allows for a
smooth transition between Lewis and Skyrms. The idea is that most of the time
agents behave like simple reinforcement learners. But with some probability µ, the
sender will instead send a signal corresponding to the most-reinforced ball in the
relevant urn, rather than drawing from the urn at random. Ditto for the receiver,
mutatis mutandis. This amplifies the success of previously-successful actions beyond
what simple reinforcement learning is capable of doing. LaCroix showed by simula-
tion that agents in his salience games avoid partial pooling equilibria significantly
more often than vanilla reinforcement learners do, and that they reach signalling
systems significantly more quickly.

In light of LaCroix’s project, we come to understand salience in at least two
ways. The first is what Robin Cubitt and Robert Sugden called the ‘salience of
precedent’ in a reconstruction of Lewis (Cubitt and Sugden,[2003], 201). The second
is Darwin’s natural salience. LaCroix salience games generalize the Lewis-Skyrms
signalling game by incorporating the salience of precedent above and beyond that
captured by simple reinforcement learning. The addition of LaCroix’s salience pa-
rameter allows agents in Skyrmsian models to recognize this salience with different
degrees of reliability. But in this paper we are concerned with saliences of the second
kind: natural saliences which break initial symmetries without precedent.

Barrett ([2021]) discussed a further kind of ‘salience’: the salience which deter-
mines what players pay attention to when choosing their acts in the first place.
Daniel Herrmann and Jacob VanDrunen went on to give a generalized description
of the problem:

Suppose [the sender] signals by waving a red flag. What is the
signal here? Is it the colour? The fact that it is a flag? The pattern
in which she waves it? Where she stands when she is waving it?
([2022])

Barrett, Herrmann, and VanDrunen were working within the nascent framework
of self-assembling games, introduced in (Barrett and Skyrms, [2017]). The funda-
mental question in the theory of self-assembling games is: how might signalling
games come to be played in the first place? That is, how might a sender learn
to become a sender, and a receiver a receiver? Part of this involves the receiver
learning to recgonize that the sender’s action can be interpreted as a signal about
nature.

In the simplest case, Herrmann and VanDrunen’s ‘attention game’ model works
as follows. The sender is just a vanilla sender as in a basic N × N × N signalling
game. The receiver, however, has an urn which controls what she attends to when
conditioning her action. One of the kinds of balls in this attention urn corresponds
to attending to the sender’s act. The other kinds correspond to attending to other
possible things she can attend to. These are called ‘observation’ or ‘signalling chan-
nels’. The receiver also has a set of action urns corresponding to these channels.
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Play on the receiver’s end proceeds as follows. She first draws a ball from the at-
tention urn. This determines the channel she pays attention to. Finally, she draws
from the action urn corresponding to the value of that channel, and performs the
corresponding act. Both her attention urn and action urn are reinforced.

Herrmann and VanDrunen showed that the receiver can learn to attend to the
sender’s act while the sender and receiver simultaneously learn a signalling system.
In attention games, the saliences of agents—in the sense of what they pay attention
to in the world—co-evolve with their signalling dispositions.3

Attention games generalize signalling games in a critical way. A basic signalling
game has the available signals baked in: a set of phenomena are naturally salient
to the receiver as possible signals to be acted on. But in attention games, the
receiver starts without the natural salience of one set of signals. Here we have a
more thoroughgoing attempt at eliminating the need for a philosophical appeal to
natural saliences.4

These considerations locate the present account within the landscape of salience.
Here we investigate natural saliences, rather than the saliences LaCroix was con-
cerned with. Furthermore, we are concerned with the saliences of particular signals
within a signalling channel, rather than the saliences of particular signalling chan-
nels (in contrast to Barrett, Herrmann, and VanDrunen’s original models). Despite
the difference in the type of salience modeled, our account builds on the mechanics
of previous models, and makes contact with previous questions. In §4.1, for exam-
ple, the model is a direct extension of the basic attention game. Likewise, in the
spirit of LaCroix’s analysis, a principal concern will be whether or not the presence
of natural salience helps agents escape from partial pooling equilibria.

Now that we understand our situation with respect to prior work, we can turn
to a discussion of natural salience in more detail. We begin with a survey of the
empirical data surrounding natural salience in nature.

3. Varieties of Salient Experience

Darwin’s conjecture about natural salience extended beyond the evidence he
cited. His evidence concerned the more general case of animals picking out particu-
lar kinds of predators with their alarm calls. The vanilla Lewis-Skyrms framework
deals with this case well. At issue in his conjecture about the language of early
hominids, however, is more than their ability to pick out natural kinds by dis-
tinct vocalizations. It is whether the initial vocalizations they used were somehow
well-suited to denote the kinds they picked out. We are concerned in this section
with what forms this ‘well-suitedness’ might take in nature. We suggest that the
phenomenon of natural salience might be divided into two categories: positive and
negative natural salience.5 We discuss each in turn.

3Attention games thus answer another issue that Cubitt and Sugden raised: the need for a

‘theory of the co-evolution of conventions and of concepts of salience’ ([2003], 202).
4This need might be reduced in other ways. For example, Alexander et al. ([2012]) provided

a set of signalling game models in which agents invent new signals within a fixed channel. This

contrasts with the attention game models, in which agents learn which channel to communicate
across in the first place.

5The designations ‘positve’ and ‘negative’ are themselves conventional. They may have carried
natural meanings at the genesis of the present project, but the authors are no longer able to

articulate them.



NATURALIZING NATURAL SALIENCE 7

Positive natural salience occurs when a signal is well-suited to its use in virtue
of its prior association with the phenomenon it is used to denote. Before agents
begin communicating, one or more of the agents has experienced some stimulus in
conjunction with a phenomenon of interest. Later, when the agents want to establish
a communication system, a signal imitating that stimulus might then end up being
used as a term denoting the already-associated phenomenon in the language the
agents develop.

Darwin had positive natural salience in mind when he posed his wise-ape conjec-
ture. In nature, the most common way in which communication based on positive
natural saliences comes about is through the process of ritualization.6 For exam-
ple, some caterpillars are able to decide territorial disputes by ritualized displaying
in which a territory’s ‘owner’ will produce vibrations with its rear segment and
mandibles. Scott et al. ([2010]) find evidence from comparative morphology that
these vibratory displays originated as phenomena associated with violent territo-
rial defense. Over time, these vibrations become recognizable as signals of territorial
ownership. This simple communication system is incentivized by the mutual benefit
derived from peaceful conflict resolution.

Consider again our definition of positive natural salience: a signal being well-
suited to its use in virtue of its prior association with the phenomenon it is used
to denote. In the caterpillar example, the vibratory stimulus has become a signal
by which the owner communicates its territorial claim to the intruder. Even if the
language of caterpillars has conventional features, the natural salience of particular
vibrations existed before, and presumably informed, the caterpillars’ conventional
system of communication.

Darwin suggested the case of vocal alarm calls which imitate a predator in order
to communicate the predator’s presence. The presence of this phenomenon in na-
ture is more dubious, but some evidence for it among birds exists. The Sri Lanka
Magpie will sometimes imitate the call of one of its predators, the Besra Spar-
rowhawk. Ratnayake et al. ([2009]) observed this happening in conjunction with
increased magpie mobbing of nearby hawks. Other evidence is scarce. In an ex-
tensive literature review published shortly before the magpie study, Kelley et al.
([2008]) considered a variety of attempts to explain vocal mimicry in birds. Due
to a variety of hypotheses on offer and the lack of decisive evidence discriminat-
ing among them, they concluded that ‘we are no closer [than we were in 1982] to
determining even a single function for vocal mimicry [in birds]’ ([2008], 526).

Although common in birds, vocal mimicry is absent in primates (Planer and
Sterelny,[2021], 158). In mild support of Darwin’s conjecture, vocal mimicry does
form a staple of communication in some contemporary foraging societies (Lewis,
[2009]). Planer and Sterelny suggest that the utility of vocal mimicry may have
brought fine-grained vocal control under positive selection pressure in hominids
([2021], 78). But the models we will consider in §4 demonstrate that developing im-
itative alarm calls is a complex process. And, as it turns out, this process can pull
apart the formation of linguistic systems from the formation of pragmatically suc-
cessful behaviour. We are thus left with little reason to expect Darwinian mimicry
to be an accurate model for the development of human language. So much for
positive natural salience.

6For classic treatments of ritualization in zoology, see (Tinbergen; Huxley; Lorenz, [1952; 1966;
1966]).
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Negative natural salience occurs when a particular signalling convention is well-
suited in virtue of the context in which it is deployed. There are at least two ways
in which this can occur. In the first, the use of particular signals is differentially
rewarded in particular states of the world. In the second, the use of signalling
conventions which prioritize certain states of the world is differentially rewarded.

Kavanagh ([1980]) reports a remarkable example of what we call negative natural
salience in the Tantalus Monkey (a species of vervet). Some vervets in Cameroon
live on the savannah. These are prey to wild dogs. Others live in forests, where
they are prey to human farmers who hunt the pests with domesticated dogs. On
the savannah, vervets use a loud alarm call to signal the presence of dogs. But
in the forests, vervets use a quiet call to signal the same predator. This allows
the vervets to make an inconspicuous escape from the more sophisticated hunting
weapons employed by the dogs’ human companions.

Returning to our definition of negative natural salience: the forested vervet’s
signal for ‘dog’ has become well-suited in virtue of an advantage its use affords in
the presence of the phenomenon it is used to denote (dog [with human]). Negative
natural salience arises because different signals incur unequal costs.

In the above examples, certain signalling systems have a natural salience because
their particular terms are more efficient at signalling about states. One can also
imagine a case in which certain states are more important to talk about, full stop.
Take, for instance, a hypothetical prosimian species whose members are primarily
preyed upon by lions. They might have many things they could use their language
to talk about. But suppose that they have limited communicative resources, so they
must choose their words wisely. It makes some sense to think that a likely language
for them would partition the world into ‘lion’ and ‘everything else’, provided that
their use of language is motivated by pragmatic, evolutionary success. This is an-
other case of negative natural salience: one in which the signalling convention as a
whole, including its partitioning of the world, is salient.

We will discuss models of negative natural salience later in §5. But first we turn
to positive natural salience.

4. Positive Natural Salience

Positive natural salience removes the initial symmetry in a signalling game by
altering the initial propensities of the agents. Skyrms writes:

The [Darwinian] scenario of some small initial natural salience
amplified by evolutionary feedback may well be the correct one
for many evolutionary histories. [. . .] It can be represented in sig-
nalling games simply by moving the initial probabilities off exact
symmetry—in a given state the sender is initially more likely to
send one particular signal than others, and a receiver is more likely
to react to that signal in the appropriate way. ([2010], 21-22)

One way this kind of symmetry-breaking might be accomplished in a vanilla
Lewis-Skyrms signalling game is by adding extra initial balls of certain colours to
certain urns in order to jump-start the learning process. Contrastingly, the basic
model presented here shows how the initial symmetry might be broken via the
dynamics of pre-play learning, eliminating the ad hoc stipulation of favourable
initial conditions. Here it is important to distinguish between the agents’ history
prior to playing the signalling game, and the agents’ history of play in the signalling
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game. The goal of the basic model is to show how the receiver’s history prior to
her becoming the receiver might affect her propensities when she initially begins
playing the signalling game with the sender. This generalizes the stipulation of
initial asymmetries, embedding the saliences of an agent within the context of a
broader learning process which extends beyond the signalling game itself. The model
subsequently presented in §4.1 adds further degrees of freedom in an attempt to
provide an even more general account of this process.

For the basic model, which we will call Model A, consider a modified N ×N ×N
Lewis-Skyrms signalling game with N = 16 to ensure a large number of viable
partial pooling equilibria. Sender and receiver both begin with one ball of each type
in their urns, but the sender does not play in the early rounds of the game. For an
initial sequence of K rounds, the signalling channel is instead directly correlated
with nature in the following way. With probability p, the signal sent maps perfectly
onto the state of nature according to one of the N ! possible signalling systems
(pre-selected at the outset of the game). With probability 1 − p, the signal sent
is chosen uniformly at random. This can be thought of as the receiver imperfectly
observing the actionable state of nature via some correlated cue. It falls into the
category which Barrett and Skyrms ([2017]) call a cue-reading game, albeit with
only partially-informative cues.7 During the initial rounds, the receiver learns by
simple reinforcement. For all rounds after the first K, the signalling channel is
manipulated by the sender’s play instead. At that point, the sender begins to learn
by simple reinforcement as well. The results reported below are based on 1000
simulations each of the following experimental conditions: p ∈ [0, 1] with increments
of 0.1 and K ∈ {102, 5 × 102, 103, 5 × 103, 104}, with 107 regular rounds following
the initial rounds.

Appendix A contains a detailed description of the results. The basic finding is
that both increasing the correlation p of the initial signalling channel and increasing
the number of initial rounds K leads to the attainment of more robust signalling
conventions. Agents’ accuracies increase as both p and K increase. Senders will
also more reliably learn to use parts of the pre-selected signalling system that the
channel was initially associated with. That is, if one state was associated with signal
α during the initial rounds, a sender will subsequently be more likely to use α to
represent that state, as p and K increase. But these effects are more sensitive to
increases in K than they are to increases in p. Even a slightly-correlated channel
can have a large impact on the final signalling convention if the receiver has been
exposed to it for a long period of time.

Model A provides an account of Darwin’s positive natural salience within the
framework of Skyrms signalling games. The objective initial correlation of the sig-
nalling channel produces a subjective salience of particular acts for particular ob-
served signals on the receiver’s part. The sender, in turn, learns to mimic the sig-
nals sent during the initial rounds, playing what Barrett and Skyrms ([2017]) call a
sensory-manipulation game given the receiver’s initially-learned dispositions. This
salience exemplifies two properties. First, it is dynamically acquired from initially-
symmetric conditions: all that was required was for there to exist a conditionally
correlated observation channel which the receiver happens to be attuned to. Second,
as a basis for Lewisian common knowledge, it is weak—perhaps about the weakest

7More specifically, the mutual information between the observation channel f1 and the nature
random variable Σ in the initial rounds is I(f1; Σ) = [(N − 1)p+ 1] log[(N − 1)p+ 1].
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Figure 2. Model A/1 with N = 4.

one could go. Lewis writes that salience in general is a weak basis for common
knowledge because ‘the salience of an equilibrium is not a very strong indication
that agents will tend to choose it’ (Lewis,[1969], 57). In this case, in fact, the salient
equilibrium is not even salient to both players. The Skyrmsian adaptive dynamics
is still doing the heavy lifting for establishing the signalling convention, but positive
natural salience is getting it off the ground in a particular direction.

The largest remaining gap in the story is how the agents coordinate on the
conditionally correlated channel in the first place. How does the receiver become
attuned to the relevant feature of the world, and how does the sender come to
manipulate that feature? In the next section, we show how this can come about
by means of an adaptive process as well. This will also shed light on how the weak
salience we are studying can produce failures of coordination as well as successes.

4.1. Extended Attention Games. The next model is a modified Herrmann-
VanDrunen attention game. In the standard attention game, features of the world
which serve as potential signalling channels are correlated with the sender’s action.
In the modified attention game presented here, signalling channels are instead cor-
related with nature.8 There is also an additional process by which a sender can
choose which channel to manipulate. Both sender and receiver must now learn not
only to signal, but to play the signalling game with each other in the first place.
This setup allows us to examine how a sender and receiver might learn to coordinate
on a particular signalling channel based on its conditional correlation with nature.

We will now consider the model, which we will denote Model A/1, in detail.
The game has N states of nature, N corresponding acts, and 2 possible signalling
channels (features) f0 and f1, both of which can take on N different states. The
dispositions of the players may once again be conceptualized as urns. In addition
to two sets of N urns mapping states of nature to signals (one set for each feature),

8That is, in the original attention game, features are correlated with nature only through their

correlation with the sender’s action, which is in turn correlated with nature. But here we have the
opposite: the channel is correlated directly with nature, and thus also possibly with the sender’s

actions as mediated by nature.



NATURALIZING NATURAL SALIENCE 11

the sender also has a manipulation urn with balls of 2 colours corresponding to
the different signalling channels he could choose to manipulate. On a round of the
game, the sender draws a ball from his manipulation urn, then draws a ball from
his signalling urn corresponding to the state of nature and the chosen signalling
channel, and sends the corresponding signal.

The signalling channel which the sender does not manipulate takes on a value
based on the following algorithm for conditional correlation. If it is f0, it takes on
any value uniformly at random—that is, f0 is perfectly uncorrelated with nature
when the sender is not manipulating it. If it is f1, however, it takes on a value using
the same correlation procedure described for the initial rounds of Model A: with
probability p it takes on a value corresponding to a fixed bijective map from states
of nature onto signals, and with probability 1− p it takes on a value uniformly at
random.

The receiver likewise has two sets of N action urns corresponding to the two
possible signalling channels, and an attention urn with which she selects which
channel to condition her act on. Sender and receiver reinforce all urns at the end
of the round with the simple reinforcement dynamics. The complete model is illus-
trated in Figure 2. Once again, the reported results are based on 1000 simulations
for 107 rounds of play, but this time there are no initial rounds. The experimental
conditions tested are p ∈ [0, 1] with increments of 0.1 and N ∈ {2, 4, 8, 16}.

Appendix B contains a detailed description of the results, along with helpful
illustrations. Here, the findings are significantly less intuitive. As p increases from 0
to middling values, the mean accuracy of agents decreases, before increasing again
to above the baseline as p approaches 1 (perfect correlation of f1 with nature). This
effect, as well as the effects described below, become more dramatic as N (number
of states/signals/acts) increases.

Further examination sheds light on this counterintuitive result. First of all, as p
increases, receivers are more likely to pay attention to f1. So far, this makes good
sense. But as p increases, senders become less likely to manipulate f1, after a slight
initial increase in the likelihood for low but non-zero values of p. When we focus
in on only those senders and receivers who successfully coordinated on f1, we see
two additional trends. For middling values of p, the senders in this group (as in
Model A) are more likely to be using parts of the signalling system that f1 was
conditionally correlated with. The mean accuracy of the sender/receiver pairs in
this group is likewise higher than the mean accuracy of those who didn’t coordinate
on f1. But both of these quantities (alignment with the naturally salient signalling
system and relative accuracy) peak and then decrease as p approaches 1.

By the time p = 1, agents who successfully coordinated on the conditionally
correlated channel f1 are doing worse on average than agents who didn’t coordinate
on f1. This is the most counterintuitive result of all, but understanding it is the
key to the whole thing. The group of agents who didn’t coordinate on f1 consists
of both those agents who coordinated on f0 instead, and those agents who didn’t
coordinate at all. In the group of agents who didn’t coordinate, senders learn to
manipulate f0, and receivers learn to manipulate f1. If p = 1, receivers in this group
will learn to do the correct act with perfect accuracy. If the sender manipulates f1
and overrides the default correlation with nature, the receiver’s accuracy can only
go down. Because the sender is reinforced not on success in communicating with the
receiver but on the the receiver’s pragmatic success, the (would-be) sender learns
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not to talk to the (would-be) receiver. Again, the interested reader may refer to
Appendix B for a more detailed and visual presentation of the results.

The basic conclusion here is that the presence of a signalling channel which has
a small conditional correlation with nature can improve both the chances of co-
ordination and the effectiveness of signalling when players coordinate on it. This
supports our findings from Model A. But this basic conclusion is tempered by the
further result that as conditional correlation increases, the chances of miscoordina-
tion also increase. For middling values of p, this is to the detriment of the success
of the players as a whole—the receiver is attracted to the conditionally correlated
channel, but without sender intervention is not capable of doing better than the
conditional correlation allows. But when p approaches 1, the receiver is capable of
near-perfectly-successful action even without sender intervention.

That the receiver will do better without sender intervention is obviously the
case at p = 1.0, but is less obviously the case even at p = 0.9. When p =
0.9 and N = 16, the greatest possible accuracy (without sender intervention) is
9/10 + (1/10)(1/16) ≈ 0.906. This is slightly less than the average accuracy of
0.908 attained in the regular 16× 16× 16 Lewis-Skyrms signalling game (Model A,
K = 0). But initially—before the sender has learned any signalling conventions—
the receiver will do better without sender intervention as long as p > 0. It is this
factor which allows miscoordination to take hold in the learning process.

There are two kinds of symmetry-breaking that must happen in attention games:
within-channel coordination of which signals mean what, and between-channel co-
ordination of which partition of the world to treat as a signal in the first place.
Conditional correlation can lead to a natural salience that affects both processes. It
can facilitate within-channel coordination, as seen both in Model A and in Model
A/1 for middling values of p. It can also facilitate between-channel coordination,
as seen for small values of p in Model A/1. But it can also impede the process of
between-channel coordination, as illustrated in Model A/1 with middling-to-high
values of p. The sender is rewarded based on whether the receiver is successful, and
not whether the receiver is successful by attending to the channel the sender is ma-
nipulating. So, there is an initial pragmatic cost to the sender’s choice of breaking
the conditional correlation if the receiver could be doing better than chance without
sender intervention.

Skyrms assumes that the case without something like positive natural salience
is the worst case for the emergence of coordinated signalling conventions:

In some cases there may well be natural salience, in which case
the amplification of pre-existing inclinations into a full fledged sig-
nalling system is that much easier. ([2010], 21)

We have seen that Skyrms is correct for the case of within-channel coordination,
but Model A/1 shows that there is an even worse case for between-channel coordi-
nation. This is when there are possible signals which are too well-suited to convey
their content. In such cases, it is not worth it for the sender to signal at all.

Another gap remains in the model if we want it to capture Darwin’s notion
of vocal mimcry in alarm calls. Suppose a predator’s presence or absence is the
state of nature, and the predator’s presence is correlated with a particular sound.
But while the predator doesn’t always make the sound (imperfect correlation), the
(proto-)sender can imitate the sound to alert his partner. On the surface, this bears
many similarities to the situation in Model A/1. But consider: if the predator has
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growled, the sender cannot make the predator un-growl. Thus far, our signalling
game models have assumed that the sender has perfect control of whether or not
the receiver does or doesn’t hear a growl. But this is not the case in general. Usually,
an asymmetry in the possibility of intervening on a particular signalling channel
exists. The next model fills this gap.

4.2. Asymmetrical Intervention. To capture the case of an asymmetrical pos-
sibility of intervention, we can consider the following modifications to the game in
Model A/1. Call this Model A/2. The state of nature is that a predator is either
present or absent (50/50 chance), thus we only consider the case of N = 2. There
are two possible vocalizations which the sender can make, and which the receiver
can hear. The sender, upon observing whether or not there is a predator, chooses
among the acts ‘make sound α’, ‘make sound β’, and ‘do nothing’. Making sounds
α and β can be thought of as manipulating channels f0 and f1 respectively. Inde-
pendently of the sender’s choice, with probability p, the predator (if present) will
make sound β. Thus, f1 is correlated with nature. The sender’s possibility of ma-
nipulating f1 is limited: if the predator did not make sound β, the sender’s decision
to make sound β will change the value of f1. (Assume that by default things are
silent.) If the predator did make the sound, however, nothing the sender can do
will change the value of f1 (although the sender might redundantly choose to make
sound β). The receiver, as before, chooses between listening for α and listening for
β.

The behaviour of agents—in particular the sender—in Model A/2 warrants fur-
ther investigation. Appendix C contains a detailed discussion of the results. Re-
ceivers always learn to be very successful. But what we find on the whole is that
the same pattern is present in Model A/2 as was present in Model A/1. If the reader
had hypothesized that an asymmetry in the possibility of intervention would close
the gap between the raw success of the agents playing the game and the coordi-
nation of the agents on the conditionally correlated signalling channel, the reader
would have been mistaken.9 By all appearances, this phenomenon is ubiquitous in
attention games with correlated signalling channels. These results serve to highlight
a critical but thus-far underappreciated point: in realistic signalling scenarios, the
pragmatic success of agents in the short- and medium-run often conflicts with the
long-run success of agents in communicating.

5. Negative Natural Salience

Negative natural salience can develop when a signal is well-suited in virtue of an
advantage its use affords in the presence of the phenomenon it is used to denote.
The simplest way to capture this in a signalling game model is by stipulating that
while N !− 1 of the possible signalling systems pay off 1 on average, the remaining
signalling system pays off r > 1 on average. This would be the signalling system
which makes use of the negative natural salience. Figure 3 illustrates this in exten-
sive form. It is a setup similar to an example coordination game given by Lewis,
([1969], 10).10

9This is in fact what the authors speculated early on.
10It is important to note for the case of negative natural salience that the relative advantage

of one signalling system over another does not necessarily violate Lewis’s definition of convention.

The primary criterion for a convention is that it is not a unique solution to the coordination

problem at hand. An extreme case of negative natural salience might collapse this.
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Figure 3. Top: vanilla Lewis signalling game with N = 2 in ex-
tensive form. Bottom: Model B with N = 2, α well-suited to com-
municate A, and β well-suited to communicate B.

Will negative natural salience help agents avoid partial pooling equilibria? In
the context of simple reinforcement learning, we have previous evidence that the
answer is Yes. This evidence comes from a model due to Skyrms, ([2010], 96-97).
Skyrms’s model features a related setup in which the initial weights (number of balls
in agents’ urns) are shifted. Skyrms found that as the initial weights of the simple
reinforcement learning process decrease in magnitude, agents are less likely to end
up in partial pooling equilibria. Decreasing the magnitude of the initial weights
increases the magnitude of the reinforcements relative to the initial weights. This
is similar to what the process giving rise to negative natural salience does: increase
the magnitude of rewards for the success of certain acts, relative both to the initial
weights and to the rewards for the success of other acts.

Our model operationalizes negative natural salience more directly. The model—
Model B—is exactly like a vanilla Lewis-Skyrms signalling game, with the following
modification. If the receiver is successful, the agents both receive a payoff of 1
(one ball added to each urn), as in a vanilla game. If, however, the agents were
successful and the signal the sender used corresponded to a pre-selected bijection
of states to signals, the agents both receive a payoff of r (see Figure 3). That
bijection corresponds to the signalling system which has negative natural salience
for the agents. As with Model A, we consider the case of N = 16, and test the
effect of r ∈ {100, 101, 102, 103} with simulations (note that r = 100 is just the
vanilla 16× 16× 16 game). Appendix D describes the results in detail. At r = 10,
the agents on average learn to use about one-half of the signals in the negatively
naturally salient system, and display a significant increase in mean success when
compared to their success in the vanilla game. But this effect does not significantly
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increase as r increases by further orders of magnitude. With a small amount of
negative natural salience, agents thus typically learn to communicate using terms
both with and without good reason for their use. Getting agents to a language with
only terms that have good reason for their use is significantly harder.

5.1. Information Transfer. Allowing disparate payoffs for success using different
signals opens the door to other expansions of the Skyrmsian model. The last scenario
we will consider features agents who have different payoffs for success in different
states of nature. This models a case in which success is critical in certain states of
nature, and less important in others. For example, if a species is primarily preyed
upon by lions, a language which prioritizes clear communication about lions might
be selected over languages which do not prioritize talking about any particular kind
of thing at all. This might come at the cost of decreasing the amount of information
transferred on average.11 Of the scenarios examined thus far, this is the most direct
way in which communicative success comes into conflict with pragmatic success.

LaCroix ([2020a]) studied information transfer in signalling games with infor-
mation bottlenecks. Consider a 10 × 2 × 10 signalling game—that is, one with 10
equiprobable states of nature but only 2 possible signals for the sender and receiver
to communicate with. There are many possible term languages which maximize
the agents’ pragmatic success. If the language divides up the world so that one
term picks out one state, and the other term picks out the remaining nine, this
yields a mean accuracy of 0.2. The same mean accuracy is attained with a language
that divides up the world into two sets of five states. Although any language which
makes use of both terms can achieve the maximum possible accuracy, only the
language which divides up the world into two sets of five maximizes information
transfer.12 LaCroix showed that agents are more likely to learn a language with
high information transfer, compared to a baseline in which agents randomly select
a pragmatically-successful language. There are more ways to divide the world up
into two sets of five than into a set of one and a set of nine. So, an agent who selects
a pragmatically successful langage at random will already be more likely to choose
a language with higher information transfer. But for a reason that is yet unclear,
agents are even more likely to prioritize information transfer in simulations of the
game than would be predicted by this analytic baseline.

Now consider a new modification of this setup. Nine of the ten states yield a
baseline payoff of 1 on success. One of the ten, however, yields a larger payoff of
r > 1 on success. Unlike in the previous section, the high payoff no longer depends
on which signal was sent, but simply on whether the receiver performs the cor-
rect action in one particular state. This is negative natural salience of a different
kind. What becomes salient is now not the language which signals particular states
with particular terms, but the languages which prioritize success in the one par-
ticular state by reserving one of the two available terms for communicating about
it. Languages which prioritize information transfer are in this case less salient than
languages which prioritize pragmatic success as defined by expected payoffs. Ap-
pendix E details the results from 1000 simulations of this model (Model C), with
r ∈ {1, 2, 10} and 106 rounds of play per simulation. With a small increase in r

11Throughout this section, by ‘information transfer’, we will mean the mutual information
between a state of the world and the signal sent by the sender, where the probabilities are given

by the sender’s dispositions and the biases of nature. See Appendix E.
12See Appendix E for details on how information transfer is calculated in signalling games.
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(r = 2), we already observe a significant deviation from LaCroix’s results in favour
of more pragmatically successful languages. With r = 10, LaCroix’s results are
inverted: most agents learn the languages which transmit the lowest amounts of
information. To be clear, this dramatic result is—well, dramatic—because it hap-
pens after a simple modification: tweaking the magnitude of certain rewards. The
observed tendency of signalling agents to maximize information transfer only holds
in the knife’s-edge case in which rewards are perfectly balanced.13

6. Conclusion

In this paper we showed how natural processes might give rise to languages
that have terms which are not purely conventional. This required a theory of nat-
ural salience, motivated by lacunae in the basic signalling game models of Lewis
and Skyrms (§1 and §2) and the—sometimes conjectured, sometimes observed—
occurrence of such phenomena in nature (§3). We found that a variety of natural
processes can create these saliences, and that the saliences can be helpful.

But the knife cuts both ways: while natural salience typically increases agents’
pragmatic success, in a wide range of situations it also decreases agents’ commu-
nicative success. This happens in two ways. First, natural salience can lead agents
to coordinate on a language which does not maximize information transfer (§5.1).
Second, it can lead agents to miscoordinate such that they do not establish a reli-
able communication channel at all (§4.1 and §4.2). This second way provides one
possible explanation for the empirical failure of Darwin’s hypothesis. Once we un-
derstand that high natural salience frequently causes the process that establishes
linguistic conventions to fail, our expectation should be that whenever we observe
a linguistic convention, it has arisen in a context of low (or no) natural salience.14

Pragmatic success can come apart from the development of communication be-
cause, in the short run, the presence of natural salience disincentivizes the sender
from destroying the information that the receiver receives from nature. But this
information is imperfect.15 Furthermore, since the sender observes nature directly,
in principle the agents could coordinate with a signalling system which would yield
them maximal pragmatic success. Thus, the more subtle story is not that natural
salience pulls apart pragmatic success and communication. Rather, it pulls apart
short-term pragmatic success from the in-principle pragmatic success that could
arise from a more sophisticated linguistic system.

These results are only as good as the models for which we can demonstrate them.
Many extensions suggest themselves. The model of Darwin’s conjecture might be
further refined: for example, the base rate of a predator’s presence will typically
be lower than one-half. It is also typically more important to avoid a real predator

13Tucker et al. ([2022]) suggested a three-way trade-off in the evolution of simple term lan-

guages. The first, ‘complexity’, is what we have been calling information transfer (mutual informa-
tion). The second, ‘utility’, is the expected payoff. The third, ‘informativeness’, tracks task-agnostic

success. It can be thought of as the expected payoff assuming that all success is rewarded equally.

In the games LaCroix investigated, informativeness and utility come apart from complexity. In
the game studied here, all three values come apart.

14Of course, to make this story precise, we would need to think about the base rates of both
natural salience and linguistic conventions. Really, our model gives us insight into the likelihood
of linguistic conventions given different levels of natural salience.

15Except for the edge case of p = 1, which corresponds to the context in which the receiver
gets perfect access to nature.
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than to avoid falling prey to a false alarm. Additionally, if a receiver is capable
of paying attention to multiple channels, the sender’s signal on the uncorrelated
channel might become useful in spite of its redundancy.16 Likewise for the model
of negative natural salience: if naturally salient signals always benefit their users
(regardless of the receiver’s successful action), agents might be even more inclined
to use them. Nevertheless, the models presented here instruct us well. Previously, we
thought that natural salience provided a shortcut in the evolution of language. Our
models witness this possibility. But they also teach us that, in many cases, natural
salience hinders the development of linguistic conventions in favour of short-term
pragmatic success.

Appendix A. Model A Results

Figure 4 shows the results for Model A. The most relevant quantity to consider
is the ‘alignment with nature’. This tracks how closely the sender’s signalling dis-
positions align with the bijection that is used to determine the value of the channel
during the initial rounds (call this the ‘natural bijection’):

(3) Alignment =
# of sender urns with modes corresponding to initial bijection

N
.

The baseline for this quantity when K = 0 is 0.062, which is approximately 1/16.17

The quantity is sensitive both to increasing p and increasing K, but is more sen-
sitive to the latter. With p = 0.2,K = 104, the mean alignment is 0.978, which is
significantly higher than 15/16 ≈ 0.938. With p = 1.0,K = 102, the mean align-
ment is only 0.116, which is still less than 2/16 = 0.125. With p = 1.0,K = 5×102,
however, this quantity jumps to 0.536, which is around 8.5/16 ≈ 0.531. We con-
clude from this that senders are indeed more likely to send signals corresponding
to the natural bijection when the receiver has had the opportunity to learn using
that bijection.

The other relevant quantity is the cumulative accuracy which players attain.
The baseline at K = 0 is 0.908. Once again, this quantity is more sensitive to an
increase in K than to an increase in p. With K = 102, the players on average never
do better than the baseline, even when p = 1.0. With p = 1.0,K = 5 × 102, this
jumps slightly to 0.926, and it again jumps to 0.984 when K is increased to 103. By
comparison, when K = 5× 103, the mean cumulative accuracy reaches 0.991 when
p = 0.3, and it reaches 0.993 when p = 0.2,K = 104. But with large K (K > 103)
we observe another effect when there is no correlation of the signalling channel in
the initial rounds (p = 0.0). With K = 5 × 103 the mean cumulative accuracy is
below the baseline at 0.902. With K = 104, it is also below the baseline at 0.904.
So, with a large number of initial plays, a signalling channel which is perfectly
uncorrelated with nature can be more of a help than a hindrance, but with only
a small correlation, it becomes a significant help to successful coordination on a
signalling system. On the other hand, with a small number of initial plays, the
initial correlation (even when it is high) has much less of an effect overall.

16Such is the case in some of the models described in (Barrett, [2021]) and (Barrett and

VanDrunen, [2022]). This would be particularly easy to do for Model A/2, in which the receiver
could be wired to act on any of the four possible signal-observations: α only, β only, α and β, or

total silence. But the modification would remove the attention-learning process from the receiver’s

end, and thus collapse the distinction between communicative and pragmatic success.
17Because in this case there are no initial rounds, the value of p is irrelevant.
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Appendix B. Model A/1 Results

Understanding what is going on in Model A/1 is a more subtle undertaking.
Consider first the results shown in Figure 5 which parallel the results from Model
A. Here, because senders have two sets of signalling dispositions—one for each
channel—and only one channel is conditionally correlated with nature, the align-
ment with nature cannot be calculated absolutely as in Model A. So, we begin by
examining the cumulative accuracy. We see that accuracy decreases for middling
values of p to a nadir at around p = 0.6 (for N ∈ {2, 16}) or p = 0.7 (for N ∈ {4, 8}),
before rising to levels significantly above the baseline when p = 1.0. Unlike in Model
A, accuracy is not an approximately monotonic function of p, but follows a much
different pattern. What is the explanation of this?

We begin to get an idea of what’s going on by examining the behaviour of senders
and receivers individually. Figure 6 shows the proportion of senders and receivers
who are more likely to manipulate/attend to the conditionally correlated feature
f1. As expected, the receivers display the clear trend of being more likely to attend
to f1 as p increases (the increase is monotonic for all N except N = 4, for which it is
only monotonic on p ∈ [0.1, 1.0]). Perhaps surprisingly, however, the senders exhibit
a more complex trend. After a slight increase in the probability of manipulating f1
as p increases, the probability declines to a quantity far below the baseline. Both
the initial increase and the final decrease is once again larger for greater N . We see,
then, that despite an initial attraction of senders to f1 with low-but-nonzero values
of p, miscoordination becomes more common as p approaches 1.

The presence of possible miscoordination suggests further analysis to get a clear
picture of how the conditional correlation of a channel influences the success of those
senders and receivers who actually do coordinate on it. Figure 7 plots two natural
statistics for the groups (in each condition) of agents who successfully coordinate
on f1. The first (left) is the alignment with nature. The effect we observe is that,
as p increases, alignment goes up, but then it falls back (although still above the
baseline at p = 0.0) when p reaches 1. This effect is greater with larger N , but
peaks earlier: at N = 2 the peak value is at p = 0.6, at N = 4 it is at 0.7, at N = 8
it is at p = 0.5, and at N = 16 it is at 0.4. The second statistic (right) is a ratio of
accuracies calculated in the following way. Let G be the group that coordinates on
f1, and GC its complement. Then,

(4) Accuracy Ratio =
Mean Cumulative Accuracy (G)

Mean Cumulative Accuracy (GC)
.

The accuracy ratio reveals that, although the accuracy of players in aggregate is
declining for middling values of p, it is actually increasing for those players who
successfully coordinate on f1. And, although the accuracy of players in aggregate
increases toward 1 for high values of p, the accuracy ratio decreases to below 1.
Further analysis reveals that this is not because the accuracy of the players who
successfully coordinate on f1 decreases, but because of the increase in accuracy
of those who do not. When we examine the accuracy ratio when G is the group
who coordinates on f0 (the conditionally uncorrelated channel), a nearly-identical
picture emerges, except that neither the proportional increase nor decrease is as
extreme.18 So, it is largely the coordination simpliciter, and not the coordination

18More specifically, for increasing N , the accuracy ratio peaks at 1.03, 1.05, 1.10, 1.19 respec-
tively, and takes on minimum value (at p = 1.0) of 1.00, 0.98, 0.95, 0.92 respectively.
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on the conditionally correlated channel in particular, that is having the largest effect
on accuracy.

Appendix C. Model A/2 Results

Figure 8 compares the mean accuracy of agents in Model A/2 with the mean
accuracy of agents in Model A/1 with N = 2. Note that the Model A/2 accuracy
is everywhere higher, but exhibits the same trend. Namely, the accuracy is slightly
lower at middling values of p than at the extremes. The difference in mean accuracy
between the middle values and the extremes is very small: 0.996 at p = 0.0, to a
low of 0.978 at p = 0.4, to a high of 0.998 at p = 1.0. But without reading tea
leaves, no clear trend is visible from p = 0.2 to 0.9. Rather than representing an
overall decrease in accuracy, the mean is being dragged down by a few agents who
fail to coordinate successfully. At p = 0.4, for example, 0.003 of the sender/receiver
pairs did not exceed an accuracy of 0.75. The lowest-scoring of these pairs had a
cumulative accuracy of only 0.510.

Figure 9 compares the mean sender and receiver attentions for Models A/1 with
N = 2 and A/2. The sender manipulation quantity this time is specifically how
often the sender will manipulate f1 when the predator is present. The first thing to
notice is that when p = 0.0, the probability that a sender learns to manipulate f1
to signal the presence of a predator is only 0.401, while the receiver learns to attend
to f1 0.502 of the time. The sender manipulation quantity is not a spurious statis-
tical deviation from 0.5. To see how this works, consider all the possible signalling
systems that could develop:

(1) manipulate f0 when predator present, f1 when absent
(2) manipulate f0 when predator present, do nothing when absent
(3) manipulate f1 when predator present, f1 when absent
(4) manipulate f1 when predator present, do nothing when absent
(5) do nothing when predator present, manipulate f0 when absent
(6) do nothing when predator present, manipulate f1 when absent

For (1), (2), and (5), if the receiver attends to f0 perfect communication is
possible. For (3), (4), and (6), perfect communication is possible if the receiver
attends to f1. There are thus 6 separating equilibria in the game. But, in only 2 of
them does the sender manipulate f1 when the predator is present. This partially
explains why the senders learn to manipulate f1 significantly less than half of the
time, although more work is needed to determine why the learning dynamics select
those equilibria more than one-third of the time.

Note, however, the broadly similar pattern present in sender manipulation and
receiver attention when compared with the results in Model A/1. Senders initially
become more likely to manipulate f1 as p increases, before dropping back down
as p approaches 1.0. Receivers gradually become more likely to attend to f1 as p
increases. The differences are that senders become most likely (0.611) to manipulate
f1 at p = 0.7, which is a peak at a higher value of p than for any case in Model
A/1. Likewise, the receivers do not become significantly more likely to attend to f1
until after p = 0.7, where the probability that a receiver will learn to attend to f1
is 0.522. Nonetheless, the same basic patterns hold which demonstrate a divergence
between the pragmatic success of agents and their success in communicating.
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Appendix D. Model B Results

Figure 10 shows results for Model B. As with Model A, when there is no natural
salience (r = 1, thus making it a vanilla 16 × 16 × 16 signalling game), the mean
alignment with nature is 0.062 ≈ 1/16, and the mean accuracy is 0.908. Here,
the alignment with nature is based on how much the sender’s evolved signalling
dispositions match the signalling system which would pay off r (if the receiver’s
dispositions matched):

(5) Alignment =
# of sender urns with modes corresponding to act paying r

N
.

These quantities jump when r = 10 to a mean alignment of 0.476 and mean accuracy
of 0.953, but subsequently level off. When r = 1000 the mean alignment is still only
0.481 and mean accuracy is only 0.959.

Appendix E. Model C Results

The formula which captures the average information transmitted by a sender in
a signal when there are N equiprobable states of nature is:

Avg Inf =
∑

signals

∑
states

P (signal)P (state | signal) log [N × P (state | signal)](6)

Figure 11 plots the average information transmitted by senders in each of the
conditions. A note on the figure: each point represents the average information
transmitted by the sender at the end of a completed simulation. These are rank-
ordered, so that they form an empirical CDF: the y-value of a point indicates
the proportion of simulations for that condition in which senders transmitted at
most the quantity of information specified on the x-axis. We can calculate the
breakpoints for different ways in which a 2-term signalling convention can divide a
10-state world. If each term represents 5 states of nature (represent this as ⟨5, 5⟩),
the average information transferred will be 1.0 bits. If one term represents 4 states
and the other 6 states (⟨4, 6⟩), average information will be 0.971. If ⟨3, 7⟩, 0.881. If
⟨2, 8⟩, 0.722. And finally, if ⟨1, 10⟩, 0.469.

When r = 1, the experiments replicate LaCroix’s results. All agents end up with
cumulative success rates greater than 0.19. We can approximate how many agents
ended up with each kind of language by examining how many senders’ average
information transfers lie between two breakpoints. If a sender has average informa-
tion between two breakpoints, then we will assume for simplicity that the agent’s
language is heading towards the partition with higher average information. This
replicates LaCroix’s results, giving:

232 agents with ⟨5, 5⟩ partitions.
524 agents with ⟨4, 6⟩ partitions.
205 agents with ⟨3, 7⟩ partitions.
38 agents with ⟨2, 8⟩ partitions.
1 agent with ⟨1, 9⟩ partitions.

When r = 2, we already see significant deviation from the behaviour when r = 1.
Once again, all agents have cumulative accuracy greater than 0.19. But, fewer agents
end up with languages that partition the world equally. We have:
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64 agents with ⟨5, 5⟩ partitions.
441 agents with ⟨4, 6⟩ partitions.
381 agents with ⟨3, 7⟩ partitions.
100 agents with ⟨2, 8⟩ partitions.
14 agents with ⟨1, 9⟩ partitions.

Finally, when r = 10 we see many agents learning the ⟨1, 9⟩ and ⟨2, 8⟩ partitions.
997 agents end up with cumulative accuracy greater than 0.19, but 3 do not. These
have accuracy very close to 0.10: they did not learn a term language at all. Of the
other 997:

1 agent with ⟨5, 5⟩ partitions.
11 agents with ⟨4, 6⟩ partitions.
146 agents with ⟨3, 7⟩ partitions.
476 agents with ⟨2, 8⟩ partitions.
363 agents with ⟨1, 9⟩ partitions.
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Figure 4. Results for Model A showing the alignment of the final
signalling convention with the mapping given by the initial corre-
lation of the signalling channel (left), and the cumulative accuracy
of the players after 107 plays (right). Means are taken out of a
sample size of 103 simulations for each condition.

Figure 5. Results for Model A/1 showing the cumulative accu-
racy of the players.
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Figure 6. Results for Model A/1 showing the proportion of
senders (left) and receivers (right) attuned to the conditionally
correlated channel f1.

Figure 7. Results for Model A/1 showing the alignment of the
final signalling convention when both sender and receiver are coor-
dinated on f1 (left), and the ratio of the accuracy of players when
coordinated on f1 to the accuracy of players under all other out-
comes.
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Figure 8. Results for Model A/2 showing the cumulative accu-
racy of the players, compared with the accuracies of players in
Model A/1 with N = 2.

Figure 9. Results for Model A/2 showing the proportion of
senders (left) and receivers (right) attuned to the conditionally
correlated channel f1, compared with the players in Model A/1
with N = 2.
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Figure 10. Results for Model B showing the alignment of the
final signalling convention with the signalling system with highest
payoffs (left), and the cumulative accuracy of the players after
107 plays (right). Means are taken out of a sample size of 103

simulations for each condition.

Figure 11. Results for Model C showing the average amount of
information in a signal sent by the sender, as a particular state of
nature becomes more salient (larger r; r = 1 is no salience). This
is an empirical CDF. A point indicates the result of a particular
simulation (1000 in total for each of the three experimental con-
ditions). These points are rank-ordered, so that the y-value of a
point indicates the proportion of simulations for that condition in
which senders communicated at most the quantity of information
specified on the x-axis.
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