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NAGELIAN REDUCTION  
AND COHERENCE
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Abstract : It can be argued (cf. Dizadji‑Bahmani et al. 2010) that an increase in 
coherence is one goal that drives reductionist enterprises. Consequently, the 
question if or how well this goal is achieved can serve as an epistemic criterion 
for evaluating both a concrete case of a purported reduction and our model of 
reduction : what conditions on the model allow for an increase in coherence ?
In order to answer this question, I provide an analysis of the relation between 
the reduction and the coherence of two theories. The underlying model of 
reduction is a (generalised) Nagelian model (cf. Nagel 1970, Schaffner 1974, 
Dizadji‑Bahmani et al. 2010). For coherence, different measures have been put 
forward (e.g. Shogenji 1999, Olsson 2002, Fitelson 2003, Bovens & Hartmann 
2003). However, since there are counterexamples to each proposed coherence 
measure, we should be careful that the analysis be sufficiently stable (in a sense 
to be specified). It will turn out that this can be done.

Keywords : Nagelian reduction, Coherence, Bayesian coherence measures, 
Bayesian networks, Bayesian analysis

I. MOTIVATION AND OUTLINE.
It can be argued (cf. Dizadji‑Bahmani et al. 2010) that one goal that drives 

reductionist enterprises is the coherence of theories. Suppose we have two 
theories, TP and TF, that share – at least partially – one domain of applica‑
bility. There is a danger that TF and TP don’t cohere. What we would expect 
from a reduction from TP to TF is that it gives us a proof of their coherence. If 
it doesn’t – so much the worse for our concept of intertheoretic reduction.

Two questions arise : first, what happens to the coherence of theories in 
reductions ? Moreover, we can use coherence as a touchstone for epistemically 
evaluating reductions. What conditions has a reduction to satisfy in order to 
increase the coherence of TF and TP ?
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In order to answer these questions, the concept of coherence shall be con‑
sidered first (§ 2). Various measures of coherence have been proposed and 
are presented in § 2.1, and a sense shall be given in § 2.2 of how problematic 
it indeed is to give the concept a precise meaning in agreement with our in‑
tuitions. In § 3, I present what Dizadji‑Bahmani et al. in (2010) call the „gen‑
eralised“ Nagel‑Schaffner model of intertheoretic reduction. In § 4, the two 
concepts run together : the coherence measures are applied to a reductive 
context in order to see what the conditions on a reduction are in order for 
the coherence of the theories to increase. This will shed a light on the log‑
ic of reductions.

II. THE CONCEPT OF COHERENCE.

Coherence comes in degrees (unlike, for example, consistency). 
Consequently, coherence is normally seen as inducing an order on sets of 
propositions („information sets“) ; moreover, it is usually treated probabil‑
istically.

Coherence is an important concept, for example for theory choice in sci‑
ence (cf. Kuhn 1977, Bovens & Hartmann 2003, 53 et sqq.), or, as claimed 
here, as one goal that drives reductionist enterprises. However, I claim that 
it is not a concept whose everyday meaning is to be made precise. There are 
numerous proposals to measure the degree of coherence of information sets, 
each of them giving some insight into the notion, but there is not one „cor‑
rect“ coherence measure : for each of them, one can construct examples in 
which the measure in question yields counterintuitive results.

I suggest the situation is rather like the case of Bayesian confirmation 
measures, and should receive an analogous treatment Fitelson gave for con‑
firmation measures (1999). This gives the following picture : different coher‑
ence measures may yield different results in different situations ; this is not a 
dilemma as long as it is secured that either the respective application is suf‑
ficiently stable (i.e. insensitive to the choice of the measure) or, if this is not 
the case, arguments must be given why the chosen coherence measure(s) are 
to be preferred to other measures in the application in question. This should 
be kept in mind when investigating what happens to the coherence of the‑
ories in reductions.

II.1. COHERENCE MEASURES.

In what follows I give a list of coherence measures (which I don’t claim is 
exhaustive). Despite the advertised pluralism of coherence measures, I think 
that Bovens’ and Hartmann’s (cf. 2003) approach is distinct in that it yields 
more philosophical insight into the nature of coherence : rather than tenta‑
tively putting forward a measure, they develop it axiomatically. The presen‑
tation of their measure will therefore occupy more space than the other ones.
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Call a statement Ri a partially reliable1 source i provides us with an infor‑
mation item. The information set S = {R1,...,Rm} consists of information items 
from m independent sources ; the same for n independent sources in S′ = 
{R′1,...,R′m}. Let P be a probability distribution over information sets ; let C be 
the relation „not less coherent than“. The following measures of coherence 
mx(...) have been proposed.
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Fitelson (cf. 2003). Consider the two‑item information sets {Ri, Rj} and {Ri′, 

Rj′}. Fitelson uses the Kemeny‑Oppenheim measure of factual support for his 
measure. For example,
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(defined for P (Rj) < 1 and P (Ri) > 0) denotes the factual support Rj provides 
for Ri. What Fitelson then measures is the average factual support between 
the propositions of the information set : {Ri, Rj}C {Ri′, Rj′} iff
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 In general, for all information sets S, the measure takes the mean value 
of the factual support all Ri ∈ S  receive from all . In the ap‑
plications of Fitelson’s measure the calculations tend to become quite large : 
there are n × (2n–1 – 1) cases to consider for information sets with n elements. 
For example, for S = {R1, R2, R3} there are 9 cases to consider ({F(R1, R2 , R3), 
F(R1,  R3), F(R1, R2 & R3), ...}) whose mean value defines the coherence of S.

„Weak Bayesian Coherentism“ (cf. 2003, NA). Bovens and Hartmann 
claim that what has gone wrong in all the tentative approaches to measure 
coherence is that they invoke certain correct intuitions that usually only ac‑
count for one aspect of this complex notion. For example, the Olsson meas‑
ure is sensitive only to the relative agreement between the propositions in 

1 A feature that will be of importance in the Bovens & Hartmann approach. In the formalism I 
closely follow their exposition in 2003, 30 et sqq.
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question (to be explained below) but neglects the fact that more information 
can increase the coherence while even diminishing the relative agreement of 
the propositions. The idea of Bovens’ and Hartmann’s axiomatic approach 
is to instead look at the role that coherence plays : the role of increasing our 
confidence in an information set –‑ the subjective probability, that is. The first 
axiom of „Weak Bayesian Coherentism“ is thus :

• For all information sets S, S′, if S is no less coherent than S’, then our 
degree of confidence that the content of S (i.e. the conjunction of the propo‑
sitions in S) is true is no less than our degree of confidence that the content 
of S′ is true, ceteris paribus.

 In order to measure coherence, it must be taken into account that there 
are other factors that play a role in determining our confidence in informa‑
tion sets, namely, how expected the transmitted information is and how re‑
liable its sources are. We need to abstract from these factors ; the ceteris par‑
ibus‑clause thus says that how expected the information is and how reliable the 
sources are does not vary from information set to information set.

The second axiom takes into account the probabilistic nature of coherence :
 • A partial coherence‑order over a set of information sets is fully deter‑

mined by the probabilistic features of its information sets.

The order is partial because of an impossibility result : it turns out that 
some pairs of information sets are not comparable with respect to their co‑
herence as defined in the B&H way without reference to the reliability of the 
sources. Bovens’ and Hartmann’s reaction is to constrain the application of 
their coherence measure to pairs of information sets for which the measure 
yields a definite result for all possible values of the reliability of the sources 
(hence, the addendum „weak“ to their „Bayesian Coherentism“).

Their strategy then is the following. Our confidence that some informa‑
tion set is true is maximal when the information is maximally coherent – only 
containing logically equivalent propositions –, ceteris paribus. This leads B&H 
to define the coherence of an information set as the ratio of the confidence 
boost we receive from it over the confidence boost we would receive from the 
same information but in a maximally coherent information set (cf. 2003, 33).

This can be made precise : let Rn denote the propositional variable that 
can take two values, viz. Rn  and ¬ Rn. Let ui be the sum of all the joint prob‑
abilities of the instances of i negative values and n – i positive values of the 
variables R1, ..., Rn  (cf. 2003, 17). For example, for the information set S = {R1, 
R2}, we have u0 = P(R1, R2), u1 = P(R1, ¬R2) + P(¬R1, R2), and u2 = P(¬R1, ¬R2).

A maximally coherent information set S = {R1, ..., Rn} can formally be de‑
fined as an information set with the specific distribution of u :

< u0 = r, u1 = 0,..., un–1 = 0, un = 1– r >
– since its propositions are logically equivalent, either all the propositions 
are true or all the propositions are false.
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It can be shown (cf. Bovens & Hartmann 2003, Appendix A.1), given the 
constraints that the sources be equally partially reliable and independent, 
that under the following definition of the coherence measure the partial or‑
der of coherence defined with the help of it satisfies the axioms (i) and (ii) :
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for all values of r ∈ (0,1).
(1 – r) is the reliability parameter ; it tells us how reliable the sources of 

the information are : the bigger (1 – r) the more reliable the source of the in‑
formation is (so the smaller r ∈ (0,1) the more reliable the source is). What 
the reliability parameter measures can formally be made precise.2 However, 
this is not important for our purpose. For when comparing information sets 
with the same number of information items there is a sufficient condition 
for the comparability of these information sets in which (1 – r) cancels out ; 
and in the analysis of coherence in reductive contexts, this will be enough 
(for the information sets in question – the set of two scientific theories before 
and the set of the very same scientific theories after a reduction – will always 
have the same cardinality). In Appendix B.1 in (Bovens & Hartmann 2003) it 
is proved that the following proposition follows from the above definition :

For two information sets S and S′ with the same number of information 
items it is a sufficient condition for S′CS that

(a) u0 ≤ u0′ and ui ≥ ui′ for all i ∈ 1,..., n– i or

(b) �u0 ≥ u0′ and 
u
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 for all i ∈ 1,..., n– i (cf. Boven & Hartmann 2003, 37).

For information sets containing only two information items, (a) or (b) are 
also necessary for S′CS.

II.2. DIGRESSION : AN EXAMPLE.

To get a feeling for the measures, but especially to underline my thesis 
that each of the measures yields counterintuitive results in some situations, 
let’s consider a simple example.3 In Bovens & Hartmann 2003, there are 

2 In the line of the following (cf. Bovens & Hartmann 2003). Let p denote the probability that the 
source gives a report to the effect that Ri is the case, given that Ri, and let q denote the probabil‑
ity that the source gives a report to the effect that Ri is the case given that ¬Ri, for i = 1,..., n. It is 

assumed that the sources are not fully reliable, i.e. p ≠ 1 but that they are more or less reliable, 

i.e.  p > q. Then we define r q
p

:= . By our assumptions p ∈ (0,1) and p > q, r ∈ (0,1).

3 For readers not interested in the conceptual riddles of coherence, this section can be skipped.
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counterexamples to all the coherence measures except their own ; so let’s fill 
the gap.4

Someone killed Francois. There are 10 suspects for the crime, some of 
which definitely R1 = had a motive to kill Francois. The detective knows this 
about five of them. He also knows that five suspects R2 = are Francophile ; 
and that only one is both R1 and R2 : Francophile and interested in Francois’s 
death. Nothing else is known about any of the suspects.

Now consider Situation 1 : the detective receives two different reports 
from two partly and equally reliable witnesses the first one claiming that 
the killer (k) was one of the suspects we already know have a motive to 
kill Francois and the second one claiming that the killer was Francophile. 
The information set S = {R1k, R2k} is, of course, not very coherent under 
our assumption that the overlap of Francophiles and suspects interested 
in Francois getting killed (i.e. the relative agreement of R1k and R2k) is very 
small. The Boolean algebra in Fig. 1 shows the situation the detective faces.

R1 R2

.1

.1 .4.4

u0 = .1, u1 = .8, u2 = .1
Figure 1 : Boolean algebra representing 

the initial information in situation 1.

4 Finishing this investigation, I found that Douven and Meijs come up with an alleged counter‑
example to Bovens’ and Hartmann’s measure in (2005), and Bovens and Hartmann reject their 
critique in (2005). However, my counterexample is stronger in the following sense: Douven and 
Meijs state two information sets S′ and S one of which is intuitively clearly more coherent than 
the other one but in the B&H measure they are incomparable. In my first counterexample, one 
information set S′′ is intuitively more coherent than another one S′′′ but the measure yields that 
S′′′CS′′. In consideration of this counterexample, the measure is harder to salvage.
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R1

R3

R2

0

0 0

.1

.1
0

.4 .4

u0 = .1, u1 = 0, u2 = .8, u3 = .1
Figure 2 : Extending the information set 

in situation 1.

During his investigation, the detective finds out that Francois had an affair 
with one of the suspect’s wives (let R3 = to have a wife Francois had an affair 
with) ; namely, the suspect that happens to be both interested in Francois’s 
death and Francophile. A third witness appears, equally reliable as the other 
two, claiming that the killer is just the suspect whose wife had an affair with 
Francois. The Boolean algebra in Fig. 2 shows the new information set S′ = 
{R1k, R2k, R3k} the detective faces.

Applying the Bovens&Hartmann measure yields that the difference of 
coherence between S′ and S is positive :
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for all 0 < r < 1. Thus, the extra information the detective receives makes the 
information set more coherent. This can be depicted as a function on r, as 
in Fig. 3.
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Figure 3 : The Bovens&Hartmann measure yields 
an intuitive result in situation 1 : the value of the extended information set 

S′ (red graph, g (x)) is higher than that 
of the original information set S (blue graph, f (x)), 

for all values of the reliability parameter (here called x). 
The green graph is the difference g (x) – f (x), 

which is strictly positive for x ∈ (0,1) .

Thus, the measure yields quite an intuitive result in situation 1. But now 
consider situation 2 : suppose Francois had an affair with almost all of the 
suspects’ wives, as in the Boolean algebra in Fig. 4. Just like in situation 1, 
the detective is in the state of knowledge shown in Fig. 1 at first ; he then re‑
ceives a report to the effect that Francois had an affair with his killer’s wife, 
so the new information set again is S′ = {R1k, R2k, R3k} .
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R1

R3 .1

R2

0

.4 .4

.1

0

0 0

u0 = .1, u1 = .8, u2 = 0, u3 = .1
Figure 4 : Situation 2 : a counterintuitive result 

in the Bovens&Hartmann measure.

Intuitively, the information set S′ is, as in situation 1, more coherent than 
S, since it is identical to S but contains another information item, R3, which 
is just the union of R1 and R2. The new witness report does not add much in‑
formation (although it does add information, and our detective is of course 
interested in obtaining this information). One would expect this informa‑
tion set to be more coherent than S and less coherent than S′ in situation 1. 
Applying Shogenji’s and Fitelson’s measures yields results coinciding with 
this intuition (I omit to give the calculations here), whereas Olsson’s meas‑
ure is completely insensitive to all three situations. In contrast, applying the 
Bovens&Hartmann measure, in situation 2 S′ has lower values than S :

m S r
r r

r
B H&

3

3

2

( ) = .1 .9 (1 )
.1 .8 (1 ) .1 (1 )

< .1 .9 (1 )
.1

′ + × −
+ × − + × −

+ × −
+ ..8 (1 ) .1 (1 )

= ( )2 &× − + × −r r
m SB H

for all 0 < r < 1. This can be seen in the graph in Fig. 5.
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Figure 5 : Situation 2 : g (x) < f (x) for x ∈ (0,1). 
A counterintuitive result.

The B&H measure thus yields a counterintuitive result in situation 2. We 
can also ask what happens when applying the measure to Boolean algebras 
that assign more and more information to R3, i.e. if we go towards situation 
1 with R3 ∩ R1  R2 = ∅ and R3 ∩ R2  R1 = ∅ ; some of these Boolean algebras 
are shown in Fig. 6.

R1

R3 .1

R2

0

.3 .4

.1

0

.1 0

u0 = .1, u1 = .7, u2 = .1, u3 = .1
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R1

R3 .1

R2

0

.3 .3

.1

0

.1 .1

u0 = .1, u1 = .6, u2 = .2, u3 = .1

R1

R3 .1

R2

0

.2 .2

.1

0

.2 .2

u0 = .1, u1 = .4, u2 = .4, u3 = .1

Figure 6 : Situations not comparable to S 
in the Bovens&Hartmann definition of coherence.

We would expect that the information set gets more and more coherent 
until the extreme case of situation 1. This is what the Shogenji and the 
Fitelson measures indeed tell us. However, in the Bovens&Hartmann 
measure, what happens is that the coherence of the information sets thus 
produced compared to each other does increase, but the information sets 
are not comparable to S : for different values of the reliability parameter r, 
one curve is sometimes above and sometimes below the other curve. They 
are incomparable to S until we reach the extreme case of situation 1. This is 
another counterintuitive result.
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By the way, it is hard to come up with a counterexample to the Bovens & 
Hartmann measure in which the two information sets in question have the 
same number of information items. This might hint at where the problem lies.

Needless to say, all this depends on intuitions ; and they may vary quite 
a bit. On the other hand, the goal of the coherence measures is precisely to 
make our intuitions about coherence precise. There are clear cases where 
our intuitions abandon us in deciding which of two information sets is more 
coherent (cf. Bovens & Hartmann 2003), and it is nice to have an impossibility 
result as in the Bovens&Hartmann measure and thus to impose a partial order 
on sets of information sets. However, the Bovens&Hartmann measure does 
not seem to correctly draw the line (as seen in the second counterexample).

Again : the conclusion to draw from this is, in my opinion, that we must 
ensure that in our applications of the measures the results must be sufficiently 
stable. This is not very precise, but it turns out that in the application to 
reductions this is clearly the case.

III. NAGELIAN REDUCTION.

My presentation of Nagelian reduction is guided by the model 
Dizadji‑Bahmani et al. proposed in (2010).5 In the same paper, arguments 
can be found to the effect that this is indeed the correct model of intertheo‑
retic reduction.

The general, well‑known idea of Nagelian reduction is that what consti‑
tutes a reduction is a logical derivation of the laws of the theory to be reduced 
from the laws of the reducing theory. However, there are hardly any two sci‑
entific theories for which each law of the one can be derived from the laws of 
the other : an approximation is all there can normally be found.

Let TF be the set of the law‑statements of the fundamental theory in ques‑
tion and let TP be the set of the law‑statements of the phenomenological the‑
ory in question. Notice a notational ambiguity : I use TF to denote both the 
fundamental theory and the set of its laws ; the same for TP, and TF

*, TP
*, which 

are yet to be defined (this is adopted from Dizadji‑Bahmani et al. 2011, 323). 
If one holds the view that a theory is more than a set of laws there should 
be two different signs for the two. This is, however, no question with which 
the present analysis is concerned, and since nothing hinges on it, an inno‑
cent sloppiness.

A sufficient condition for a successful reduction from TF to TP in the line 
of Nagel (cf. 1970) is that there is a set of laws TP

* for which it holds that

5 Bahmani et al. (2010), (2011) call it the Generalised Nagel-Schaffner Model of Reduction, GNS. 
Besides giving a very neat analysis of it I see, however, no substantive differences between GNS 
and Schaffner’s model as in (1974) or even Nagelian reduction of the later Nagel (e.g. 1970, 362 
et seqq.), and thus no need for a change of labels.



75

Nagelian reduction and coherence 

(i) �each of its members is [derivable] from TF together with boundary con‑
ditions, and

(ii) �its laws are [strongly analogous] to TP.
This defines a homogeneous reduction. Nagel (cf. 1970) was aware of the 

fact that the theory to be reduced may contain theoretical concepts that do 
not occur and are not definable in the reducing theory (for example, „entro‑
py“ as a concept of thermodynamics, is not definable in statistical mechanics 
(cf. Nagel 1970, 912)). If this is the case, [bridge laws] are required to connect 
the concepts ; Nagel called this case inhomogeneous reduction. Inhomogeneous 
reductions can be defined substituting (i) with (i’) in the above definition :
(iii) �there is a set TF

* each of whose members is [derivable] from TF together 
with boundary conditions and whose members via [bridge laws] con‑
stitute TP

*.
The establishment of a reduction is illustrated in Figures 7 and 8. In Fig. 

7, no connection is known between TF and TP. Fig. 8 shows a heterogeneous 
reduction : we have a mediating theory TF

* derived from TF whose essential 
terms are connected with another mediating theory TP

* via bridge laws, and 
TP

* is strongly analogous to TP. If the reduction in question is homogeneous, 
we can conceive of TF

* and TP
* to be identical. Thus, the model of inhomoge‑

neous reduction is general enough to cover both homogeneous and inhomo‑
geneous reductions, and the definition {(i’)(ii)} gives a necessary and suffi‑
cient condition for the establishment of a Nagelian reduction.

TF TP

Figure 7 : Theories TF and TP before reduction.

TF and 
Boundary con-

ditions
TF

* TP
* TP

Derivation Bridge laws Strong

analogy

Figure 8 : Nagelian reduction as illustrated 
in (Dizadji‑Bahmani et al. 2010).

The connecting notions of [bridge laws] and [strong analogy] are intui‑
tive but not precise and thus, problematic. Nagel (1970) claims that [bridge 
laws] can either express the identity of entities or relations between proper‑
ties. Following Nagel and Schaffner (e.g. Nagel 1970), Dizadji‑Bahmani et al. 
(2010) require for a [strong analogy] that TP

* and TP share the same essential 
concepts, and that TP

* be at least as empirically adequate as TP. The last de‑
sideratum follows from the fact that TP

* is in fact a corrected version of TP (cf. 
Nagel 1970, 362 et sqq.).
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However, [bridge laws] and [strong analogy] really call for further (for‑
mal) refinement. This investigation into what happens to the coherence of 
two theories when one gets reduced to the other one will shed a light partic‑
ularly on the critical notion of strong analogy (cf. § 5). If our claim that co‑
herence works as one epistemic touchstone of reductions is correct, it will 
follow from our analysis that a necessary condition on a successful reduc‑
tion is that TP

* and TP be positively probabilistically related, viz. that P (TP|TP
*) 

> P (TP|¬TP
*).

III.1. �REPRESENTING NAGELIAN REDUCTION 
PROBABILISTICALLY.

The model of intertheoretic reduction presented in the preceding para‑
graph is the model of reduction that underlies this investigation ; in the fol‑
lowing, „reduction“ shall just refer to this Nagelian model of intertheoret‑
ic reduction. Again, I refer to (Dizadji‑Bahmani et al. 2010) for arguments to 
the effect that Nagel’s is in fact the correct model of reduction.

A reduction establishes a particular relation between two scientific theo‑
ries. It has already been said that this relation is more complex than a mere 
logical derivation of the laws of one theory from the laws of the other theo‑
ry. As in other contexts too complex (arguably) to be represented in a purely 
qualitative framework (e.g. the context of confirmation), it seems to be nat‑
ural to apply probability theory to model reduction.

For our purpose, it will be convenient to represent the model of Nagelian 
reduction with the help of Bayesian networks. Bayesian networks are graph‑
ical models originally applied to expert systems in contexts of causal reason‑
ing. In our context, no causality is involved, but that doesn’t matter : for any 
probability function over a set of random variables can be represented in 
terms of Bayesian networks (cf. Williamson 2005). They are an effective rep‑
resentation of a joint probability distribution over a set of random variables ; 
moreover, probabilistic (in)dependencies can easily be read off this graphi‑
cal representation of a probability function.

Bayesian networks are directed acyclical graphs. They consist of three 
things (for a detailed presentation of Bayesian networks, cf. (Jensen 2000), 
particularly chapter 2) :
(1) �a finite set of nodes which represent discrete random variables X, Y, ... – 

in our case propositional variables each of which can take two values, 
e.g. X and ¬ X ;

(2) �a set of arrows between nodes such that no cycles occur ; and
(3) �a probability table that gives the probabilities of the values of each var‑

iable X conditional on all the combinations of all the values of X’s par‑
ents. For variables in root nodes, the probability table gives the uncon‑
ditional probabilities of their values.
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A few more words about Bayesian networks and causality. Usually the 
arrows are interpreted as causal links between variables : assume X is rep‑
resented by a parent node ; then the value of X has causal impact on the val‑
ues taken by the variables Y1...Yn  in X’s child nodes. However, for our pur‑
pose, an arrow just denotes that a change of the value of X may change the 
probabilities of the values of Y1...Yn. This doesn’t imply any attitude towards 
causality.

Now our key problem is to find a Bayesian network to represent the right 
target probability function to model reduction. In the preceding paragraph 
we developed graphical models of two theories pre and post reduction ; let’s 
try to convert them into Bayesian networks. First, we define the proposition‑
al variable TF : TF can take the values TF = y meaning the conjunction of the 
propositions in TF is true ; and TF = n meaning the conjunction of the proposi‑
tions in TF is false. X = y/n is standard notation when working with Bayesian 
nets, but let me introduce another innocent sloppiness (cf. § 3) and just write 
TF and ¬TF for TF = y and TF = n, respectively – this is convenient because we 
are only concerned with propositional variables. We define the propositional 
variables TP and (for the situation after the reduction) TF

* and TP
* in the same 

way as TF. These propositional variables define the nodes of our networks.
Let P be the probability function pre‑reduction, and P′ the probability 

function post‑reduction. Let us make a few simplifying assumptions about 
the probability functions that could be dropped subsequently. Suppose TF 
and TP are probabilistically independent before the reduction. Second, as‑
sume that the prior probability of the fundamental theory is the same pre 
and post reduction. This makes the comparison of the coherence pre and 
post reduction easier. In the following section, I will at some points also as‑
sume that the prior probability of the phenomenological theory be the same 
before and after the reduction ; it will be made explicit when this is the case. 
Finally, assume that the [bridge laws] state a perfect correlation (see below).

Consider the situation before the reduction first. We assumed that TF and 
TP are probabilistically independent. We can represent this assumption in 
a Bayesian network with two nodes TF and TP and no arrows between the 
nodes. The probabilities of the theories are two constants P(TF) = a and P(TP) 
= b. We assume in the entire course of this investigation that a, b ∈ (0,1). This 
is an unproblematic assumption idle to argue for : theories with zero proba‑
bility are not interesting.

Now consider the situation after the reduction. Clearly, for each connect‑
ing notion – [derivation], [bridge laws], and [strong analogy] – there is an 
arrow because these notions establish a relation between the respective var‑
iables which we want to express probabilistically. These are also all the ar‑
rows because all the conditions that constitute a reduction are taken into ac‑
count ; and we haven’t assumed that there are relations apart from these. For 
example, we haven’t assumed a direct relation between TF and TP. Now how 
to draw the arrows ?
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First, we need to represent the [derivation] from TF to TF
* in our Bayesian 

network. Since it follows from Kolmogorov’s axioms that for any probabil‑
ity function P and propositions A, B, if AB then P(B|A) = 1, we draw an ar‑
row from TF to TF

* and write P′(TF
*|TF) = 1 and P′(TF

*|¬TF) = x with x ∈ [0,1].
Second, the bridge laws : we assume that they state a perfect correlation, 

that is „you can have both or neither“ of TF
* and TP

* : they are logically equiv‑
alent. Logical equivalence can be modeled by an arrow in either direction to‑
gether with suitable entries in the probability table ; for example, Fig. 9 shows 
a Bayesian network with an arrow from TF

* to TP
* and the entries P′(TP

*|TF
*) = 

1 and P′(TP
*|¬TF

*) = 0. Dizadji‑Bahmani et al. (2011) argue that this is equiv‑
alent to an arrow in the opposite direction and the entries P′(TF

*|TP
*) = 1 and 

P′(TF
*|¬TP

*) = 0, for non‑extreme priors. This is not entirely true, for this ver‑
sion produces a different Bayesian network in which TF and TP are d‑sepa‑
rated (independent, that is) if no evidence for TF

* is involved. If TF  and TP are 
independent there is no change in coherence to the situation before the re‑
duction (nor is there any flow of confirmation). Hence, we are in need of an‑
other argument for drawing the arrow from TF

* to TP
* since the argument „it 

doesn’t matter, so we can equally draw it to the right“ does not apply. The 
argument might be found in the general fact that TF explains TP .6

Third, how to model the notion of strong analogy between TP
* and TP  ? 

Analogy seems to be a symmetrical relation. However, as explained in § 3, 
TP

* in fact corrects TP  and is logically stronger than TP. Bahmani et al. thus argue 
that „’analogy’ is perhaps not the right word as TP

* is indeed stronger than 

6 There might be an argument already to be found in (Nagel 1970) to the effect that this direc‑
tion in fact produces the correct Bayesian network. According to Nagel, bridge laws in reduc‑
tions (call them reductive bridge laws) state either necessary and sufficient or only sufficient condi‑
tions (cf. Nagel 1970, 367). More precisely, reductive bridge laws have the following form. In § 
3, it was mentioned that Nagel considered two types of bridge laws, namely relations between 
properties and identifications of (classes of) entities. Let F be a predicate of TF and P a predicate 
of TP but not of TF ; let a be a name in TF and b a name in TP but not TF ; let x range over the do‑
main of objects TP talks about. According to Nagel (ibid.), a sentence is a reductive bridge law 
just in case (a) or (b) holds :  
(a) „For all x : if F applies to x then P applies to x“ / „For all x : if a denotes x then so does b“, or 
(b) „For all x : F applies to x iff P applies to x“ / „For all x : a denotes x iff b does“. (There are 
other forms of bridge laws – necessary conditions – but they are, according to Nagel (ibid.), 
not reductive : there may be loss of logical strength from TP to TF. This might pose a prob‑
lem for the Nagelian model of reduction ; think of examples like light waves (in TP  = phys‑
ical optics) as a subset of electromagnetic waves (in TF  =electrodynamics), which Nagel ex‑
plicitly mentions. In these cases, boundary conditions must be specified (“Electromagnetic 
waves in the spectrum [X, Y] are light waves”) for a successful reduction to take place.) 
Now think of our simplifying assumption that bridge laws state a perfect correlation – as in (b) – 
as a special case. In normal cases (a), we naturally draw the arrow from the left to the right since 
a bridge law states a sufficient condition in terms of TF under which the property P refers to oc‑
curs. We can then specify the probability table P′(TP

*|¬TF
*) = 1 and P′(TP

*|TF
*) = y, where y ∈ [0,1].

However, the argument needs to be backed up by case studies showing that (a) is indeed the 
default case. This might suggest a procedural reading of equations in bridge laws – however, 
this exceeds the extension of this investigation.
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TP, and so it makes sense to draw an arrow from TP
* to TP “ (2011, 330). I fol‑

low this suggestion. Nothing quantitative is said about the notion of strong 
analogy, so we put two undefined constants P′(TP|TP

*) = p (I shall assume p ≠ 
0) and P′(TP|¬TP

*) = q.

P′(TF) = a

P(TF) = a

P′(TF
*|TF) = 1 P′(TP

*|TF
*) = 1 P′(TP|TP

*) = p

P(TP) = b

P′(¬TF) = 1 – a

P(¬TF) = 1 – a

P′(TF
*|¬TF) = x P′(TP

*|¬TF
*) = 0 P′(TP|¬TP

*) = q

P(¬TP) = 1 – b

TF

TF

TF
* TP

* TP

TP

Figure 9 : Bayesian networks pre & post reduction.

Fig. 9 shows the two Bayesian networks representing the situation before 
and after the reduction. The simplifying assumptions are taken into account. 
For example, the prior probability of TF  is the same before and after the re‑
duction. But note that instead of the prior probability of TP the probability 
table states its conditional probability after the reduction.

IV. COHERENCE AND REDUCTION.

We are now able to undertake the actual analysis, i.e. to see what condi‑
tions need to be fulfilled in a reduction in order for the coherence of the two 
theories involved to increase. I apply the measures given in § 2 to the the‑
ories TF and TP before and after reduction as presented in the Bayesian net‑
works in Fig. 9. So instead of applying the measures to two different informa‑
tion sets (as in § 2), we apply them to one information set S = {TF, TP} under 
two different probability functions P and P′ Let mx (...) denote the respective 
measure under the probability function P and m′x (...) the respective measure 
under the probability function P′.

IV.1. SHOGENJI.

TF  and TP  are probabilistically independent before the reduction, thus

m S P R R

P R

P T P T
P T P TSh

m

i

m

i

F P

F P

( ) = ( , , )

( )
= ( ) ( )

( ) ( )
=1.1

=1



∏
×
×
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 Note that the Shogenji measure has the feature that for any number of in‑
dependent theories, their coherence always gets assigned the value 1.

After the reduction, TF and TP are probabilistically dependent. Hence,

′ ′ × ′
′ × ′

′
′

m S P T T P T
P T P T

P T T
P TSh

F P P

F P

F P

F

( ) = ( | ) ( )
( ) ( )

= ( | )
( )

.

 So ′m S m SSh Sh( ) > ( )  iff P′(TF|TP) > P′(TF). We specified in the Bayesian net‑

work in Fig. 9 that P′(TF) = a  ; in appendix [B], it is calculated that 

′
+ − + − − +

P T T ap
p a x ax q a x axF P( | ) =
( ) (1 )

. Inserting these values, we get

ap
p a x ax q a x ax

a
( ) (1 )

>
+ − + − − +

as a necessary and sufficient condition for an increase in coherence of the 
two theories in a reduction, when the underlying measure is the Shogenji 
measure (the fraction is always well‑defined ; see appendix [B]). This holds iff

ap a p a x ax q a x ax> ( ( ) (1 )),+ − + − − +
so iff

p p a x ax q a x ax> ( ) (1 )+ − + − − +

where the expression on the right is just P′(TP) (this is calculated in appen‑
dix [A]). So in the Shogenji measure, S receives a coherence boost in a reduc‑
tion iff the post reductive probability of TP is lower than that of TP given its 
strongly analogous theory TP

*. When is this the case ?
Proposition (1). S receives an increase in coherence in a reduction under 

the assumptions specified in the Bayesian network (Fig. 9) and if the under‑
lying coherence measure is the Shogenji measure iff

P′(TP|TP
*) > P′(TP|¬TP

*).

Proof. We have shown that under the Shogenji measure, the coherence of 
S = {TF, TP} increases in a reduction iff

p (a + x – ax) + q (1 – a – x + ax) < p. 

Since (a + x – ax)  and (1 – a – x + ax) sum to 1, we can express these terms 
with the help of a constant, say a = a + x – ax, and thus 1 – a = 1 – a – x + ax. 
Note that a ∈ (0,1) since we assumed that a ∈ (0,1).

Inserting the constant, the condition on an increase in coherence is
p × α + q × (1 – α) < p ;

So
p α + q – q α < p

q – q α < p – p α.
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This condition is satisfied iff q < p, which is just P′(TP|TP
*) > P′(TP|¬TP

*).	

This is a plausible result : it seems an appropriate condition on the notion 
of strong analogy that P′(TP|TP

*) > P′(TP|¬TP
*), i.e. that the probability of a the‑

ory conditional on a strongly analogous theory be higher than the probabili‑
ty of the theory conditional on the negation of the strongly analogous theory.

IV.2. OLSSON.

Remember that the Olsson measure is based on m S P R R
P R RO

m

m

( ) = ( , , )
( )

1

1



∨ ∨
. 

Because of the independence of the two theories before the reduction, the 
measure yields

m S P T T
P T TO

F P

F P

( ) = ( , )
( )∨

= .ab
a b ab+ −

 We don’t need to worry about the expressions being undefined because 
of our assumption that a, b ≠ 0. This holds for all the fractions in this section.

Note that the Olsson measure is sensitive to prior probabilities in the 
case of independent information items : the higher the prior probabilities, 
the higher the value of coherence the measure yields. This does not coincide 
with our intuitive notion of coherence.

After the reduction, we need the value of

′ ′
′ ∨

′ × ′
′ + ′ − ′

m S P T T
P T T

P T T P T
P T P T PO

F P

F P

F P P

F P

( ) = ( , )
( )

= ( | ) ( )
( ) ( ) (( | ) ( )

.
T T P TF P P× ′

 Calculating (see appendix [A] and [B]) the values of P′(TP) and P′(TF|TP) 
and inserting all the values, we get

=
( ) (1 )

ap
a p a x ax q a x ax ap+ + − + − − + −

 So the coherence of the two theories as measured with the Olsson measure 
increases in a reduction iff

ab
a b ab

ap
a p a x ax q a x ax ap+ − + + − + − − + −

<
( ) (1 )

.

When is this the case ? One way to compare the expressions is to fix the 
probability of TP :

Proposition (2). If P(TP) = P′(TP) then it is a necessary and sufficient condition 
for an increase in coherence under the Olsson measure that P′(TP|TP

*) > 
P′(TP|¬TP

*).
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Proof. The coherence increases iff
     ab
a b ab

ap
a p a x ax q a x ax ap+ − + + − + − − + −

<
( ) (1 )

.
    

 (1)

 Assume that P(TP) = b = p (a + x – ax) + q (1 – a – x + ax) = P′(TP).
Sufficient condition. Suppose P′(TP|TP

*) = p > q = P′(TP|¬TP
*). It was proved 

in § 4.1 that this is the case iff p(a + x – ax) + q(1 – a – x + ax) < p. Since we 
assumed that b = p(a + x – ax) + q(1 – a – x + ax) < p, it is also the case that b < 
p. So ab < ap for a ∈ (0,1). So the enumerator on the right side of (1) is bigger 
than the enumerator on the left side.

Thus, if the denominator on the left side is bigger or equal than on the 
right side then the inequality in (1) holds. Is it the case that a + b – ab ≥ a + 
p(a + x – ax) + q(1 – a – x + ax) – ap ? a cancels out, so b – ab > p(a + x – ax) + 
q(1 – a – x + ax) – ap. But since we assumed P(TP) = b = p(a + x – ax) + q(1 – a 
– x + ax) = P′(TP), this is the case iff – ab ≥ – ap. But since p > b, this is the case.

Necessary condition. Suppose it is not the case that P′(TP|TP
*) = p > q = 

P′(TP|¬TP
*), so q ≥ p. By the same line of argument as above,

		  ab
a b ab

ap
a p a x ax q a x ax ap+ −

≥
+ + − + − − + −( ) (1 )

. 	

The condition q < p  is plausible and in agreement with what we proved in § 
4.1 is the result of applying Shogenji’s measure. However, the presupposition 
that P(TP) = P′(TP) is an (over)simplification. In general, we would expect 
that P(TP) < P′(TP). Why would we expect this ? Dizadji‑Bahmani et al. (2011) 
argue (although they indeed fix the probability of TP) that evidence which 
pre reduction confirmed TF but not TP may post reduction as well confirm TP ; 
thus, its probability may be higher. Another factor is coherence : if a theory 
gets reduced to a well accepted fundamental theory and thus (as argued here) 
coheres well with it, its probability might be higher.

So let’s drop the simplifying assumption. It is then possible to get a 
sufficient condition for an increase in coherence.

Proposition (2.1). It is a sufficient condition for an increase in coherence 
under the Olsson measure that P′(TP|TP

*) > P(TP) and P′(TP|TP
*) > P′(TP|¬TP

*).

Proof. We further reduce (1) :

b a p ap
p a x ax q a x ax

+ − +
+ − + − − +

−1<
( ) (1 )

1

a b ap
p a x ax q a x ax

p+
+ − + − − +

+<
( ) (1 )

.

 Now assume that P′(TP|TP
*) = p > b = P(TP) and P′(TP|TP

*) = p > q = P′(TP|¬TP
*). 

By the first assumptions, it is a sufficient condition for a coherence boost that
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a ap
p a x ax q a x ax

<
( ) (1 )

,
+ − + − − +

so
p(a + x – ax) + q(1 – a – x + ax) < p,

which means that
P′(TP) < P′(TP|TP

*).
As shown in § 4.1, this is equivalent to P′(TP|TP

*) > P′(TP|¬TP
*), which was 

our second assumption.	

Note again that P′(TP|TP
*) > P′(TP|¬TP

*) iff P′(TP|TP
*) > P′(TP) ; so we can also 

state the result thus : if the probability of the theory to be reduced condition‑
al on its strongly analogous theory is both bigger than its prior probability 
before and after the reduction then the coherence of the theories increases.

To sum up, we have two plausible results if we apply the Olsson meas‑
ure : under the assumption that the probability of TP  be the same before and 
after the reduction, it is a necessary and sufficient condition for a coherence 
boost that P′(TP|TP

*) > P(TP|¬TP
*) ; and it is a sufficient condition for a coher‑

ence boost that both P′(TP|TP
*) > P′(TP|¬TP

*) and P′(TP|TP
*) > P(TP).

IV.3. BOVENS & HARTMANN.

Remember that ui denotes the sum of all the joint probabilities of the 
instances of i negative values and n – i positive values of the variables R1,..., 
Rn (cf. § 2 or Bovens & Hartmann 2003, 17). So for our information set S = {TF, 
TP}, we have u0 = (TF, TP), u1 = P(TF, ¬TP) + P(¬TF, TP) and u2 = P(¬TF, ¬TP). I use 
ui to denote the respective value pre reduction and u′i to denote the respective 
value post reduction.

Let’s repeat what the Bovens & Hartmann measure states for our special 
case in which the information sets in question have only two items : for such 
information sets S and S′ it is a necessary and sufficient condition for S′CS that

(i)	 u0 ≤ u′0 and u1 ≤ u′1 or

(ii)	 u0 ≥ u′0 and u
u

u
u

1

1

0

0′
≥

′
 (cf. Bovens & Hartmann 2003, 37).

As said before, for our reductive context, we don’t apply the measure to 
two different information sets but to the same information set S under two 
different probability functions, namely before and after the reduction takes 
place. Condition (i) then requires for S to be not less coherent after the re‑
duction that the joint probabilities of the theories be no lower after reduction 
and that the sum of the joint probabilities of one theory being true while the 
other one being false be no lower before the reduction. In other words, con‑
dition (i) is satisfied iff

P(TF|TP) ≤ P′(TF|TP)
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and
P(TF, ¬TP) + P(¬TF, TP) ≥ P′(TF, ¬TP) + P′(¬TF, TP),

The values for the first part are already known ; the values for the second 
are calculated in appendix [C]. Inserting values, a sufficient condition for a 
coherence increase or equality in a reduction under the Bovens & Hartmann 
measure is :

(i.a)	 ab ≤ ap, so b ≤ p and
(i.b)	� a + b – 2ab ≥ a + p(a + x – ax) + q(1 – a – x + ax) – 2ap, so b – 2ab ≥ 

p(a + x – ax) + q(1 – a – x + ax) – 2ap.

Condition (ii) is satisfied iff

P T T P T TF P F P( , ) ( , )≥ ′

and
P T T P T T
P T T P T T

P T T
P T T

F P F P

F P F P

F P

F P

( , ) ( , )
( , ) ( , )

( , )
( , )

¬ + ¬
′ ¬ + ′ ¬

≥
′

..

Inserting values (calculations are in appendix [C]), condition (ii) requires 
that

(i.a)	 b ≥ p and

(ii.b)	
a b a b

p a x ax q a x ax ap a ap
ab
ap

(1 ) (1 )
( ( ) (1 ) ) ( )

− + −
+ − + − − + − + −

≥ .

When are conditions (i) or (ii) the case ? Again, it is easy to compare the 
right with the left sides if we fix the probability of TP.

Proposition (3). If the probabiliy of TP is the same pre and post reduction 
it is a necessary and sufficient condition for an increase in coherence under 
the B&H measure that P′(TP|TP

*) > P′(TP|¬TP
*).

Proof. Suppose P(TP ) = b = p(a + x – ax) + q(1– a – x + ax) = P′(TP).
First consider condition (i). Since b = p(a + x – ax) + q(1– a – x + ax), (i.b) 

holds iff – 2ab ≥ – 2ap, so iff b ≤ p. But just in this case (i.a) is fulfilled as well. 
So b ≤ p is a necessary and sufficient condition for (i) to hold.

What we have proved is that b ≤ p  is a necessary condition for S being not 
less coherent post reduction. Is it more coherent post reduction ? Suppose it 
is not, so it is also the case that S is not less coherent pre reduction. Then, by 
the same line of argument as above, b ≥ p. So b = p. Thus, if b = p  then S is in 
fact equally coherent before and after reduction. An increase in coherence 
takes place only if b < p.7

7 Note that in the other measures, I have presupposed that S is strictly more coherent after re‑
duction iff m′X(S) > mX(S). This is trivial: if m′X(S) > mX(S) then SpostCSpre but not SpreCSpost is the case; 
but if m′X(S) = mX(S) then both SpostCSpre and SpreCSpost  are the case, so Spre and Spost are equally co‑
herent.
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Now consider condition (ii). Since p(a + x – ax) + q(1– a – x + ax) = b, con‑
dition (ii.b) becomes

a b ab
a b ap

b
p

+ −
+ −

≥2
2

(a + b – 2ab)p ≥ (a + b – 2ap)b

p(a + b) – 2abp ≥ b(a + b) – 2abp

p ≥ b.
But (ii.a) states that b ≥ p ; so p = b is a necessary and sufficient condition for 

S to be not less coherent after the reduction, by (ii). However, it is easily seen 
that if p = b, by (ii) S is also not less coherent before reduction ; i.e., it is equally 
coherent before and after the reduction in this case. Hence condition (ii) 
cannot produce a coherence boost in a reduction, and thus can be dismissed.

We conclude that it is a necessary and sufficient condition for an increase 
in coherence under the B&H measure that b = p(a + x – ax) + q(1– a – x + ax) 
< p, which is a condition already known from § (4.1). As shown there, this is 
the case iff P′(TP|TP

*) = p > q = P′(TP|¬TP
*).

IV.4. FITELSON.

The range of Fitelson’s coherence function is [– 1, 1]. As in the Shogenji 
measure, sets of independent propositions always get assigned the same 
value ; in the Fitelson measure, this is the value 0. The extreme values – 1 
and 1 are assigned only to information sets with propositions each or which 
is unsatisfiable (for – 1) or satisfiable and each logically equivalent (for 1) 
(cf. Fitelson 2003). We need the values of F(TF ,TP) and F(TP ,TF), both before 
and after the reduction. As with the probability function, let’s use F′(...) to 
distinguish the Kemeny‑Oppenheim function after the reduction.

Before reduction, applying Fitelson’s measure to the conjunction of the 
theories yields 0 because of our assumption that TF and TP be probabilistically 
independent. So all that Fitelson’s measure requires for the coherence to 
increase in the reduction is

′ + ′F T T F T TF P P F( , ) ( , )
2

> 0,

so
′ + ′F T T F T TF P P F( , ) ( , ) > 0

The question is, what are the conditions for this to be the case ? In appen‑
dix [D] it is calculated that

′ ′ − ′
′ ¬ × ′

F T T P T T P T
P T P TF P

P P P

F P

( , ) = ( | ) ( )
( ) ( )

;
*
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and

′ ′ − ′
′ + ′ − × ′ ×

F T T P T T P T
P T T P T P T TP F

P P P

P P P P P

( , ) = ( | ) ( )
( | ) ( ) 2 ( | )

*

* * ′′P TP( )
.

Both denominators are strictly positive (see appendix [D]) ; and since the 
enumerators are equal, it is a necessary and sufficient condition for an increase 
in coherence that P′(TP|TP

*) – P′(TP) > 0. We know this result from § 4.1, so :
Proposition (4). A necessary and sufficient condition for an increase in co‑

herence if the underlying measure is Fitelson’s is that p > q.

V. �FURTHER RESEARCH ; MERITS AND PROBLEMS OF THE 
BAYESIAN FRAMEWORK.

We have seen that the coherence measures applied yield a stable result : 
in all the measures, it is a sufficient condition and in most of the measures 
also a necessary condition for the coherence of two theories to increase in a 
reduction that the theory to be reduced be positively related to its strongly 
analogous theory which, possibly via bridge laws, follows from the reduc‑
ing theory. The simplifying assumptions underlying this result are that the 
theories be probabilistically independent before the reduction, that the prob‑
ability of the fundamental (and partly also of the phenomenological) theory 
be the same pre and post reduction, and that the [bridge laws] state a perfect 
correlation. It is to be expected that if these assumptions are given up, be‑
sides the positive correlation of TP

* and TP there will be additional conditions 
on an increase in coherence. This is left for another investigation.

It was claimed at the beginning that we can not only look at what happens 
to two theories in terms of their coherence when one gets reduced to the oth‑
er one, but also evaluate cases of purported intertheoretic reductions in terms 
of the coherence of the theories involved : does their coherence increase in 
the reduction ? Second, from this double‑edged relation (which is a typical 
feature of Bayesian analyses) we can draw conclusions about the logic of re‑
duction. It was mentioned in § 3 that the intuitive notion of [strong analogy] 
is problematic and in need of a refinement. We can now see the line in which 
this can be done. If coherence is a relevant criterion for analysing reductions, 
positive correlation seems to be a minimal requirement for the theory to be 
reduced and the mediating theory to be strongly analogous.

Some lines of further research : in the next step, our questions could be 
stated cardinally : how much should the coherence increase in order for the 
reduction to be admissible, and which conditions on a reduction and its crit‑
ical notions result from this ?

Another interesting follow‑up question : what about the coherence of two 
phenomenological theories both of which get reduced to one and the same 
fundamental theory ? Arguably, their coherence should increase as well. 
Naturally, in answering these further questions the results of applying di‑
verse measures should again sufficiently agree with each other.
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Even if they do, we should bear a few caveats in mind when asking what 
coherence demands for a reduction. First, coherence is only one of various 
factors (like simplicity, conservatism, confirmation, etc.) that drive reduc‑
tionist programmes. Only a stubborn coherentist would hold that coher‑
ence should be the only one. Certainly, coherence can still be regarded as 
an important one : if two theories (partly) share a domain of applicability, 
it is an unfortunate state if they do not cohere, and we wouldn’t call a phe‑
nomenological theory reduced to a fundamental one (or two phenomeno‑
logical theories reduced to one and the same fundamental one) if the „re‑
duction“ did not give us a proof of an increase in coherence. Moreover, the 
various factors – coherence, simplicity, etc. – are rivals only if they demand 
features which are mutually inconsistent. Now our result nicely coincides 
with the one Dizadji‑Bahmani et al. (2011, 331 et sqq.) arrive at in the con‑
text of confirmation : it is a necessary condition for a reduction to have ad‑
vantageous confirmatory features that the strongly analogous theories be 
positively related. These confirmatory features are that the prior probability 
P′(TF|TP), their probability given some evidence, and their degree of confir‑
mation as measured by the difference measure are higher after than before 
a reduction. So much for coherence and confirmation ; other factors should 
as well be checked.

Finally, we shouldn’t remain silent about a problem that occurs when we 
are confronted with practical cases of reductions ; namely the old Bayesian 
riddle of how to ascribe subjective probabilities to theories and which poses 
(or so I argue) some particular problems in the model of reduction that un‑
derlies this investigation. It is to be expected that – besides the usual prob‑
lem of assigning prior probabilities – it is particularly problematic to answer 
the questions :

(a)	Before reduction : how to decide if two given theories TF and TP are 
in fact probabilistically independent or not ? After all, they share (at least 
partially) one domain of applicability ; however, without having reduced TP 
to TF (or having established some other intertheoretic relation between them), 
what can be said about their (in)dependence ?

(b)	 After reduction : how are we to fix conditional probabilities ? 
Particularly problematic is the fixing of

�	 1. P′(TP
*|TF

*) and P′(TP
*|¬TF

*) : should the assumption that the bridge laws 
state a perfect correlation be relaxed ? and
�	 2. P(TP|TP

*) and P′(TP|¬TP
*) : how to determine if TP

* and TP are indeed 
strongly analogous ?
It should be noted that mediating theories like TF

* and TP
* are not normal‑

ly stated by scientists ; this seems to make the fixing of their probabilities or 
of other theories’ probabilities given mediating theories artificial.
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Appendix

The procedures for calculating probabilities in Bayesian nets are, for ex‑
ample, explained in (Jensen 2000). They are standard when working with 
Bayesian networks.

[A] Post‑reduction prior probability P′(TP).
 First, we use the second Bayesian network in Fig. 9 to get P′(TP) – the pri‑

or probability of TP  after the reduction. This could be done by just applying 
the chain rule, but it is instructive for seeing how the value depends on the 
assumptions specified in the Bayesian net to once go for an iterated margin‑
alisation. We start with marginalising P′(TF) out of P′(TF

*|TF) :
P′(TF

*) = P′(TF
*,TF) + P′(TF

*,¬TF)
We read the conditional probability table off the Bayesian network

P′(TF
*|TF) TF ¬TF

TF
* 1 x

¬TF
* 1 – 1

(not needed)
1 – x

(not needed)

With the help of the conditional probability table we get the joint proba‑
bility table using the fundamental rule on P′(TF) = a :

P′(TF
*,TF) TF ¬TF

TF
* a (1 – a)x

¬TF
* (not needed) (not needed)

So P′(TF
*) = a + (1 – a)x = a + x – ax.

Next, we need the value P′(TP
*) :

P′(TP
*) = P′(TP

*,TF
*) + P′(TP

*,¬TF
*) 

Conditional probability table :

P′(TP
*|TF

*) TF
* ¬TF

*

TP
* 1 0

¬TP
* (not needed) (not needed)
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Applying the same procedure as before, we get the joint probability table :

P′(TP
*,TF

*) TF
* ¬TF

*

TP
* a + x – ax 0

¬TP
* (not needed) (not needed)

So P′(TP
*) = a + x – ax (because of the perfect correlation between TF

* and 
TP

*, this step could have been omitted but is, of course, vital if the assump‑
tion of a perfect correlation is dropped).

Finally, we calculate
P′(TP) = P′(TP,TP

*) + P′(TP,¬TP
*)

Conditional probability table :

P′(TP|TP
*) TP

* ¬TP
*

TP p q

¬TP (not needed) (not needed)

Joint probability table :

P′(TP,TP
*) TP

* ¬TP
*

TP p(a + x – ax) q(1 –(a + x – ax))

¬TP (not needed) (not needed)

Thus, we have the first value we are interested in – the prior 
probability of TP after the reduction :

P′(TP) = p(a + x – ax) + q(1 – a – x + ax)

[B] Post‑reduction conditional probability P′(TF|TP).

Next, we need P′(TF|TP) . By definition of conditional probability,

′ ′
′

P T T P T T
P TF P

F P

P

( | ) = ( , )
( )

.
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Applying the chain rule, we get

′ ′∑P T T P T TF P

F P

F F P P( , ) = ( , , , )
,T T

T T
* *

* *

= ( ) ( | ) ( | ) ( | )′ × ′ × ′ × ′P T P T T P T T P T TF F F P F P P
* * * *

= 1 1 = .a p ap× × ×

So

′
+ − + − − +

P T T ap
p a x ax q a x axF P( | ) =
( ) (1 )

.

 For this to be a well‑defined expression we require that p(a + x – ax) + q(1 
– a – x + ax) ≠ 0, which always holds if a > 0 and p > 0 because the first sum‑
mand is > 0 and the second summand cannot be negative.

[C] Sums of joint probabilities.

For the Bovens&Hartmann measure, we need the sum of the joint proba‑
bilities of one theory and the negation of the other, respectively, i.e. the val‑
ues of P(TF|¬TP) and P(¬TF|TP) and of P′(TF|¬TP) and P′(¬TF|TP).

Before reduction the theories are independent ; thus, the sum of these joint 
probabilities is just

u a b a b a b ab1 = (1 ) (1 ) = 2 .− + − + −

After reduction the values are calculated as follows. From appendix [B], 
we already have the values to calculate (instead of using the chain rule) 
P′(¬TF,TP) = P′(¬TF|TP) × P′(TP), namely

= (1
( ( ) (1 )

) ( ( ) (1 )).−
+ − + − − +

× + − + − − +ap
p a x ax q a x ax

p a x ax q a x ax

So

′ ¬ + − + − − + −P T T p a x ax q a x ax apF P( , ) = ( ) (1 ) .

By the chain rule,

′ ¬ ′ ¬∑P T T P T TF P

F P

F F P P( , ) = ( , , , )
,T T

T T
* *

* *

= ( ) ( | ) ( | ) ( | )′ × ′ × ′ × ′ ¬P T P T T P T T P T TF F F P F P P
* * * *

= 1 1 (1 ) = .a p a ap× × × − −
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 The post‑reduction sum of the joint probabilities of one negative and one 
positive value of TF and TP , respectively, is thus

′ + − + − − + − + −u p a x ax q a x ax ap a ap1 = ( ( ) (1 ) ) ( )

= ( ) (1 ) 2 .p a x ax q a x ax a ap+ − + − − + + −

[D] Values for the Kemeny‑Oppenheim measure.

Finally, we need some missing values for the Fitelson measure. It has al‑
ready been said (cf. § 2.1) that the Kemeny‑Oppenheim function is defined 
thus :

F R R
P R R P R R
P R R P R Ri j

j i j i

j i j i

( , ) =
( | ) ( | )
( | ) ( | )

− ¬
+ ¬

for P(Rj) < 1 and P(Ri) > 0. We are interested in F′(TF,TP) and F′(TP,TF) – F′ being 
the Kemeny‑Oppenheim function applied to the theories after reduction. So,

′ ′ − ′ ¬
′ + ′ ¬

F T T P T T P T T
P T T P T TF P

P F P F

P F P F

( , ) = ( | ) ( | )
( | ) ( | )

.

Inserting values which are already known (from appendix [B]),

′ ′
′

P T T P T T
P T

ap
a

pP F
P F

F

( | ) = ( , )
( )

= =

and (from appendix [C])

′ ¬
′ ¬
′ ¬

− + − − +
−

P T T P T T
P T

px apx q aq qx aqx
aP F

P F

F

( | ) = ( , )
( )

=
1

.

 For both expressions to be well‑defined, we require that 0 < a < 1.
Inserting the values in the Kemeny‑Oppenheim measure, we get

′
− − + − − +

−

+ − + − − +
−

F T T
p px apx q aq qx aqx

a
p px apx q aq qx aqx

a

F P( , ) = 1

1

= 1

1

p ap px apx q aq qx aqx
a

p ap px apx q aq qx aqx
a

− − + − + + −
−

− + − + − − +
−

= ,p ap px apx q aq qx aqx
p ap px apx q aq qx aqx
− − + − + + −
− + − + − − +
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which is always well defined for p > 0 and a < 1 (both of which were already 
required above and are unproblematic). It looks rather ugly, but we meet 
old acquaintances in it :

= ( ( ) (1 ))
(1 )
p p a x ax q a x ax
p a px apx q aq qx aqx

− + − + − − +
× − + − + − − +

= ( | ) ( )
( | ) ( ) ( , )

′ − ′
′ × ′ ¬ + ′ ¬

P T T P T
P T T P T P T T

P P P

P F F F P

*

= ( | ) ( )
( | ) ( ) ( | ) ( )

′ − ′
′ × ′ ¬ + ′ ¬ × ′ ¬

P T T P T
P T T P T P T T P T

P P P

P F F P F F

*

= ( | ) ( )
( ) ( ( | ) ( | ))

′ − ′
′ ¬ × ′ + ′ ¬

P T T P T
P T P T T P T T

P P P

F P F P F

*

= ( | ) ( )
( ) ( )

.
′ − ′
′ ¬ × ′

P T T P T
P T P T

P P P

F P

*

For F′(TP,TF) :

′ ′ − ′ ¬
′ + ′ ¬

F T T P T T P T T
P T T P T TP F

F P F P

F P F P

( , ) = ( | ) ( | )
( | ) ( | )

In appendix [B], it was calculated that 

′
+ − + − − +

P T T ap
p a x ax q a x axF P( | ) =
( ) (1 )

 ;
 

in order to get P′(TF,¬TP), we insert values we already have (appendix [C] 
and [A]) in

′ ¬
′ ¬
′ ¬

−
− + − + − − +

P T T P T T
P T

a ap
p a x ax q a x axF P

F P

P

( | ) = ( , )
( )

=
1 ( ( ) (1 ))

,,

in which the denominator is ≠ 0 iff p < 1 or q < 1 (let’s suppose the latter). 
F′(TP,TF) then becomes a compound fraction :

′ + − + − − +
− −

− + − − − − +F T T

ap
p a x ax q a x ax

a ap
p a x ax q a x

P F( , ) = ( ) (1 ) 1 ( ) (1 aax
ap

p a x ax q a x ax
a ap

p a x ax q a x ax

)

( ) (1 ) 1 ( ) (1 )

,

+ − + − − +
+ −

− + − − − − +

which we want to reduce. Note that we don’t need to worry about the de‑
nominator being = 0 since the first summand is positive by the assumptions 
that a, p > 0 and the second summand cannot be negative.
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The fraction in the enumerator becomes

ap p a x ax q a x ax a ap p a x ax q a x ax(1 ( ) (1 )) ( )( ( ) (1 ))
(
− + − − − − + − − + − + − − +
pp a x ax q a x ax p a x ax q a x ax( ) (1 )) (1 ( ) (1 ))+ − + − − + × − + − − − − +

= ...

= ( ) (1 )
( ( ) (1 )) (1 (

ap ap a x ax aq a x ax
p a x ax q a x ax p a

− + − − − − +
+ − + − − + × − + xx ax q a x ax− − − − +) (1 ))

,

and the fraction in the denominator

ap p a x ax q a x ax a ap p a x ax q a x ax(1 ( ) (1 )) ( )( ( ) (1 ))
(
− + − − − − + + − + − + − − +
pp a x ax q a x ax p a x ax q a x ax( ) (1 )) (1 ( ) (1 ))+ − + − − + × − + − − − − +

= ...

= 2 ( ) 2 (1 ) ( ) (1 )
( (

2ap ap a x ax apq a x ax ap a x ax aq a x ax
p

− + − − − − + + + − + − − +
aa x ax q a x ax p a x ax q a x ax+ − + − − + × − + − − − − +) (1 )) (1 ( ) (1 ))

.

Now since both fractions have the same denominator, we reduce the com‑
pound fraction to

′ − + − − − − +
− + − −

F T T ap ap a x ax aq a x ax
ap ap a x ax apqP F( , ) = ( ) (1 )

2 ( ) 2 (12 −− − + + + − + − − +a x ax ap a x ax aq a x ax) ( ) (1 )
.

We then try to find compound values in this expression :

= ( ) (1 )
( ) (1 ) 2 (2

p p a x ax q a x ax
p p a x ax q a x ax p a x ax

− + − − − − +
+ + − + − − + − + − )) 2 (1 )− − − +pq a x ax

= ( ( ) (1 ))
( ) (1 ) 2 ( (

p p a x ax q a x ax
p p a x ax q a x ax p p a x

− + − + − − +
+ + − + − − + − + −− + − − +ax q a x ax) (1 ))

= ( | ) ( )
( | ) ( ) 2 ( | ) ( )

.
′ − ′

′ + ′ − × ′ × ′
P T T P T

P T T P T P T T P T
P P P

P P P P P P

*

* *
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