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Abstract. In this work we consider the problem of the approximate hedging of a contingent
claim in minimum mean square deviation criterion. A theorem on martingale representation in
the case of discrete time and an application of obtained result for semi-continous market model
are given.
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1. Introduction

The activity of a stock market takes place usually in discrete time. Unfortunately such markets
with discrete time are in general incomplete and so super-hedging a contingent claim requires usually
an initial price two great, which is not acceptable in practice.

The purpose of this work is to propose a simple method for approximate hedging a contingent
claim or an option in minimum mean square deviation criterion.

Financial market model with discrete time:

Without loss of generality let us consider a market model described by a sequence of random
vectors {S,, n = 0,1,...,N}, S, € R4, which are discounted stock prices defined on the same
probability space {Q, ¥, P} with {F,, n = 0,1,..., N} being a sequence of increasing sigma-
algebras of information available up to the time n, whereas “risk free » asset chosen as a numeraire
59 =1,

A Fj-measurable random variable H is called a contingent claim (in the case of a standard call
option H = max(S, — K, 0), K is strike price.
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Trading strategy:

A sequence of random vectors of d-dimensiony = (y,, n = 1,2,..., N) with, = (7}, +2,.
v3)T (AT denotes the transpose of matrix A ), where 43 is the number of securities of type j kept by
the investor in the interval [n — 1, n) and v, is F,_; -measurable (based on the information available

up to the time n — 1), then {y,} is said to be predictable and is called portfolio or trading strategy .

..y

Assumptions:

Suppose that the following conditions are satisfied:
i) ASp = Sn —Sn—1, H€E€ Ly(P), n=0,1,...,N.
ii) Trading strategy v is self-financing, i.e. SZ_I%_] = ST_,~n or equivalently ST Ay =0
foralln=1,2,...,N.
Intuitively, this means that the portfolio is always rearranged in such a way its present value
is preserved.
iii) The market is of free arbitrage, that means there is no trading strategy v such that v7 So :=
7-50 L0, yv.Sny 20, Pyny.Sy >0} > 0.
This means that with such trading strategy one need not an initial capital, but can get some profit and
this occurs usually as the asset {Sn} is not rationally priced.
Let us consider

N d
GN(')’) = Z'Tk-ASk with .. AS, = Z’Y,JCAS,JC.
k=1 i=1
This quantity is called the gain of the strategy v .
The problem is to find a constant ¢ and v = (v, n = 1,2,..., N) so that

Ep(H — ¢ — Gn(7))? — min. (1)

Problem (1) have been investigated by several authors such as H.folmer, M.Schweiser, M.Schal,
M.L.Nechaev with d = 1. However, the solution of problem (1) is very complicated and difficult for
application if {S,} is not a {F,}-martingale under P, even for d = 1.

By the fundamental theorem of financial mathematics, since the market is of free arbitrage, there
exists a probability measure Q ~ P such that under Q {S,} is an {F,}-martingale, i.e. EQ(Sn|Fn) =
Sn—1 and the measure Q) is called risk neutral martingale probability measure .

We try to find ¢ and 7 so that

EgQ(H — ¢ — Gn(7))? — min over 7. (2)

Definition 1. (~;;) = (v (c)) minimizing the expectation in (1.2) is called Q- optimal strategy in the
minimum mean square deviation (MMSD) criterion corresponding to the initial capital c.

The solution of this problem is very simple and the construction of the Q-optimal strategy is
easy to implement in practice.

Notice that if Ly = dQ/dP then

EQ(H — c— GN(7))* = Ep[(H — c— GN)*Ly]

can be considered as an weighted expectation under P of (H — ¢ — G y)? with the weight Ly. This
is similar to the pricing asset based on a risk neutral martingale measure Q.
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In this work we give a solution of the problem (2) and a theorem on martingale representation
in the case of discrete time.

It is worth to notice that the authors M.Schweiser, M.Schal, M.L.Nechaev considered only the
problem (1) with S,, of one-dimension and M.Schweiser need the additional assumptions that {S,}
satis fies non-degeneracy condition in the sense that there exists a constant  in (0, 1) such that

(E[ASn|Fa_1))? < 8E[(ASn)?|Fp-)] P-as. foralln=1,2,...,N.
and the trading strategies v,’s satisfy :
E[q«,,AS'ﬂ]2 < 00,

while in this article {S,} is of d-dimension and we need not the preceding assumptions.

The organization of this article is as follows:

The solution of the problem (2) is fulfilled in paragraph 2.(Theorem 1) and a theorem on the
representation of a martingale in terms of the differences AS,, (Theorem 2) will be also given (the
representation is similar to the one of a martingale adapted to a Wiener filter in the case of continuous
time).

Some examples are given in paragraph 3.

The semi-continuous model, a type of discretization of diffusion model, is investigated in para-
graph 4.

2. Finding the optimal portfolio

Notation. Let () be a probability measure such that Q is equivalent to P and under Q {S,, n =
1,2,..., N} is an integrable square martingale and let us denote En(X) = EqQ(X|F,), Hnv =
H, H, = Eg(H|F,) = E,(H); Var,_1(X) = [Cov,_1(Xj, X;)] denotes the conditional variance
matrix of random vector X when F,_ is given, ' is the family of all predictable strategies .

Theorem 1. If {S,} is an {F,,}-martingale under Q then

Eq(H - Hy - Gn(v"))? = min{Eq(H — ¢~ Gn(7))*: 7 € T}, (3)
where <. is a solution of the following equation system:
[Varpn—1(ASR)1vn = Eno1 ((AH,AS,)  P-as., (4)

Proof. At first let us notice that the right side of (3) is finite. In fact, with v, = 1 for all n, we have

2
N d
Eo(H-c—Gn(7))?=Eqg|H-c- Z Z AS;’;\ < o0.
n=1 j=1 }
Furthermore, we shall prove that y*AS,, is integrable square under Q.

Recall that (see [Appendix A)) if Y, X, X5, ..., X are d+1 integrable square random variables
with E(Y) = E(X;)=++- = E(Xg) =0and ifY = b1 X1 +b2Xo+ - +bgX4 is the optimal linear
predictor of Y on the basis of X1, X5, ..., X4 then the vector b= (b, by, ..., b4)T is the solution of
the following equations system :

Var(X)b= E(Y X), (5)
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and as Var(X) is non-degenerated b is defined by

b= [Var(X)]*E(Y X), (6)
and in all cases
WTE(YX) < E(Y?), (7)
where X = (X1, Xa, ..., Xi)T. |
Furthermore,
Y-Y1X, ie EX{(Y -Y)]=0,i=1,...,k (8)

Applying the above results to the problem of conditional linear prediction of AH, on the basis
of AS} AS2,...,AS? as F, is given we obtain from (5) the formula (4) defining the regression
coefficient vector ¥*. On the other hand we have from (5) and (7):
E(72TASn)? = EE,1(1a  AS,AST 1) = E(v7 Vara_1 (ASn) )
= E(7aEn-1(8HrAS,)) < E(AHn)2 < ©oo.

With the above remarks we can consider only, with no loss of generality, trading strategies <y, such
that

E._1(mASR)? < 0.
We have:
Hy=Ho+ AH; +--- + AHy

and
En_1(AHn = YIASn)? = En_1(AH,)? = 29  En 1 ((AHRASp) + 7 Enc1(ASRAST )7

This expression takes the minimum value when v, = ..
Furthermore, since { H, — ¢ — Gn(v)} is an {F,}- integrable square martingale under @,

N 2

Ho—c— Y (AHn— 1mASy)
n=1

2

Eq(Hy —c— Gn(v))? = Eq

= (HQ—C)2+EQ

"N
) (AH, - 1,AS,)
.n=]

N
= (Hy-¢)? + E Eg(AH, — 7,AS,)? (for AH, — v,AS,, being a martingale difference)

n=1
N
= (Ho - )+ EQ ) En-1(AH, — 1aAS,)?
n=1

N
> (Hp — C)2 + Eg Z E,.(AH, - 7::ASH)2

n=1
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N
= (Ho=c)*+ EQ) (AHn - 7,AS8,)?
n=1}
N - 2
> (AH, — 7,AS8,)

n=1

= (HO—C)2+EQ

> EQ(Hn — Ho — Ga(7"))%

So Eg(Hn — c— Gy(7))? > Eg(Hn — Ho — Ga(7*))? and the inequality becomes the equality if
¢ = Hp and vy = v".

3. Martingale representation theorem

Theorem 2. Let {H,, n=0,1,2,...}, {Sa, n=0,1,2,...} be arbitrary integrable square random
variables defined on the same probability space {2, 3, P}, F5 = o(Sp,...,S,). Denoting by
T1(S, P) the set of probability measures Q such that Q ~ P and that {S,.} is {F>} integrable square
martingale under Q, then if F = \|3° ( 3, H,, S, € L2(Q) and if {H,} is also a martingale under
Q we have.

1. Ho=Ho+ Y I ASk+Cy as., (9)
k=1

where {Cn} is a { Fy } —Q-martingale orthogonal to the martingale {S,}, i.e. En_1((AC,AS,) =0,
foralln=0,1,2,.., whereas {v.} is {F>_,}- predictable.

n
2. Ho=Ho+ Y WASy:=Ho+Gn(7) Pas. (10)
k=1
for all n finite iff the set I1(S, P) consists of only one element.
Proof. According to the proof of Theorem 1, Putting

ACr = AHx — {TASk, Cn =Y ACk, Co =0, (11)
k=1
then AC, LASy, by (8).
Taking summation of (11) we obtain (9).
The conclusion 2 follows from the fundamental theorem of financial mathematics.

Remark 3.1. By the fundamental theorem of financial mathematics a security market has no arbitrage
opportunity and is complete iff II(S, P) consists of the only element and in this case we have (10)
with v defined by (4). Furthermore, in this case the conditional probability distribution of S, given
FS | concentrates at most d + 1 points of R¢ (see [2], [3]), in particular for d = 1, with exception of
binomial or generalized binomial market models (see (2}, [7]), other models are incomplete.

Remark 3.2. We can choose the risk neutral martingale probability measure ¢ so that  has minimum
entropy in II(S, P) as in [2] or Q is near P as much as possible.
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Example 1. Let us consider a stock with the discounted price Sy at t =0, S at t = 1, where
4Sy/3  with prob. p,,
S1=14 5 with prob. pa, p1,p2,p3>0, pr+p2+ps=
5S50/6  with prob. ps.
Suppose that there is an option on the above stock with the maturity at ¢ = 1 and with strike price
K = Sp. We shall show that there are several probability measures @ ~ P such that {Sp, S} is,
under Q, a martingale or equivalently Eg(AS;) = 0.

In fact, suppose that () is a probability measure such that under Q S, takes the values
480/3, So, 2S0/3 with positive probability g1, ¢2, g3 respectively. Then Eg(AS)) = 0 &
So(q1/3 — q3/6) = 0 & 2q, = g3, so Q is defined by (g1, 1 —3q1, 2¢1), 0 < q1 < 1/3.

In the above market, the payoff of the option is

= (Sl = K)+ = (AS])+ = max(ASl,O).
It is easy to get an Q-optimal portfolio
v* = EQ[HAS))/Eq(AS))? =2/3, Eq(H) = q150/3,
EQlH - Eq(H) —v*A8))* = 183(1 - 3q1)/9 — 0 as ¢ — 1/3.
However we can not choose q, = 1/3, because ¢ = (1/3, 0, 2/3) is not equivalent to P. It is better

to choose g1 = 1/3 and 0 < q; < 1/3.
Example 2. Let us consider a market with one risky asset defined by :

Sn=S0]] Zi, or Sn = Su-1Zn, n=1,2,.., N,
i=1
where Z,, Zs, ..., Zn are the sequence of i.i.d. random variables taking the values in the set (2 =
{di,da,...,dy)and P(Z; = d) =pr >0, k=1,2,..., M. Itis obvious that a probability measure
Q is equivalent to P and under QQ {S,} is a martingale if and only if Q{Z; = dx) = qx > 0, &k =
2,....,.Mand Eg(Z;) =1, ie

q1d) + qadz + - -+ qmdpy = 1.

Let us recall the integral Hellinger of two measure ) and P defined on some measurable space
{Q*, F}:

H(P,Q) = / (dP.dQ)'2
In our case we have i
H(P,Q) =) {P(Z)=dn, Zy=dp,...,Zn = din)"Q(Z1 = dit, Z2 =dia,..., Zn = din)'/?
= Z{Piwu Pi2gi2 . . -PiNQiN}l/2

where the summation is extended over all d;y, dio, . . ., din inQ oroverall iy, io,...,iny in {1,2,..., M},
Therefore

C M N
PQ—<Z .q,‘f"’}

We can defme a distance between P and @ by

1Q ~ PII* =2(1 - H(P,Q)).
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Then we want to choose Q* in II(S, P) so that ||Q* — P|| = inf{||Q — P|| : Q € II(S, P)} by solving
the following programming problem:

M 1/2_1/2

1
E pi/qi/ —max
i=1

with the constraints

i) qudy + qad2 + -+ + gqudy = 1.

i) g1 + g2+ +qm =1

i) q1, q2,..., qar > 0.
Giving p1, p2,..., Pasr we can obtain a numerical solution of the above programming problem. It is
possible that the above problem has not a solution. However, we can replace the condition (3) by the
condition

iii’) q1, g2,-.., qa > 0,

then the problem has always the solution ¢* = (g7, 43,..., q3s) and we can choose the probabilities
qQ1, 92, - - -, gar > 0 are sufficiently near to g7, 43,...,q3 .

4. Semi-continuous market model (discrete in time continuous in state)

Let us consider a financial market with two assets:
+ Free risk asset {B,, n =0,1,..., N} with dynamics

n \
B, = exp (Zrk) , 0< 1, <. (12)

k=1
+ Risky asset {Sn, n =0,1,..., N} with dynamics

Sn = Spexp (Z[“(S"‘l) + G'(Sk—l)gk]) , (13)
k=1
where {gn, n =0,1,..., N} is a sequence of i.i.d. normal random variable N (0, 1). It follows from
(13) that
Sn = Sn—1€xp(p(Sn-1) + 0(Sn-1)gn), (14)

where Sp is given and p(Sn—1) := a(Sn-1) — 0%(Sn-1)/2, with a(z), o(x) being some functions
defined on [0, 00) . i
The discounted price of risky asset S, = S,,/B,, is equal to

Sn = Spexp (Z[u(sk_l) -+ cr(Sk_l)gk]) : (15)
\k=1

We try to find a martingale measure @ for this model.
It is easy to see that Ep(exp(Agx)) = exp(A\?/2), for gx ~ N(0, 1), hence

Eexp (Zn:[ﬂk(sk—l)gk = ﬂk(sk—l)z/Ql) =1 (16)

\k=1
for all random variable Bx(Sk-1) .
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Therefore, putting

L, =exp (Z[ﬁk(sk—l)gk = ﬁk(sk—1)2/2]) yr=1,...,N (17)
k=1
and if Q is a measure such that dQ = LydP then Q is also a probability measure. Furthermore,
> - = exp(i(Sn-1) = Tn + 0(Sn-1)gn)- (18)
On-1

Denoting by E°, E  expectation operations corresponding to P, Q,
E.() = E[(.)|FS) and choosing
(a(Sn—l) = Tn)

ﬁn - U(Sn—l) (19)

then it is easy to see that
En-1[82/Sn-1] = E°[LnS8n/Sn-1|FS)/Ln-y = 1
which implies that {S,} is a martingale under Q.
Furthermore, under (), S, can be represented in the form
Sn = Sn-1exp((4*(Sn-1) + 0(5n-1)g5). (20)

Where p*(Sn—1) = 7n — 0%(Sn-1)/2, g% = —Bn + gn is Gaussian N(0, 1). It is not easy to show the
structure of I1(S, P) for this model.

We can choose a such probability measure E' or the weight function Ly to find a Q- optimal
portfolio.
Remark 4.3. The model (12), (13) is a type of discretization of the following diffusion model:

Let us consider a financial market with continuous time consisting of two assets:

+Free risk asset:
t
By = exp (/ r(u)du) ; (21)
0

+Risky asset: dS; = Sia(S)dt + o(S:)dWt], Sy is given, where
a(.), o(.): (0,00) — R such that za(z), zo(x) are Lipschitz. It is obvious that

S; = exp {/t[a(S.,) — 0%(Sy)/2)du + /.t U(Su)qu} , 0<t<T. (22)
0 0
Putting
u(S) = a(8) - 0*(9)/2, (23)

and dividing [0, 7] into N intervals by the equidistant dividing points 0,A, 2A,..., NA with
N = T/ A sufficiently great, it follows from (21), (22) that

j nA n;‘.L 1
Sna = S(n—1)a €Xp / 1(Sy)du + j o(Sy)dW,
(n—-1)A (n—-1)A

2 Sn-1)a €xP{{Sn-1)a)A + (Stn-1)a)[Wna — Wn-1)al}
2 Sin-1)a €XP{(Sn-1)a)A + 0(S(n-1)a) A ?gn}
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with gn = [Wna — Wu_al/AY2 n =1,..., N, being a sequence of the i.i.d. normal random
variables of the law IV (0, 1), so we obtain the model :

Sna = Sin-1)a exp{u(Si_1)a)A + o(S("n_l)A)Al/"’g,.}. (24)
Similarly we have

Bia = Bl_1)a exp(r(n-1)a8)- (25)

According to (21), the discounted price of the stock S; is

. 8 t )

St = 't?t = Sp exp {/ [4(Su) = u]du + fa(su)dwu} . (26)

t 0 0

By Theorem Girsanov, the unique probability measure Q under which {S;, FS, Q} is a martingale
is defined by
T 1 (T
@Q/ap)Ff =exp [ puaws - [ 62, = Lro) (27)
0 0

where

R _((a(S_,) —T,)
3 U(S,) ’
and (dQ/dP)|Fy denotes the Radon-Nikodym derivative of Q w.r.t. P limited on FZ. Furthermore,

under Q
t
Wt. = Wt +/ ﬁudu
0

is a Wiener process. It is obvious that LT can be approximated by

N A"
Ly = exp (Z B 2g, — Aﬂfﬂ) (28)
k=1
where
[a(Sn-1)a) = Tnal
,Bn =
o(Stn-1)a)
Therefore the weight function (25) is approximate to Radon-Nikodym derivative of the risk unique
neutral martingale measure @ w.rt. P and @ is used to price derivatives of the market.

(29)

Remark 4.4. In the market model Black- Scholes we have Ly = Lr. We want to show now that for
the weight function (28)

Eg(H — Hy— Gn{(7*))2 = 0as N s ocoor A — 0.
where 4* is QQ-optimal trading strategy.

Proposition. Suppose that H = H(St) is a integrable square discounted contingent claim. Then
Eq(H - Hy - Gn(v*))2 > 0as N — co or A — 0, (30)

provided a, r and o are constant ( in this case the model (21), (22) is the model Black-Scholes ).
Preoy’. 1t is well known (see[4], [5]) that for the model of complete market (21), (22) there exists a trad-
ing strategy @ = (e = @t8(t), 0 = 't = T), hedging
H,where v : [0,T] x (0,00) — R is continuously derivable in ¢ and S, such that

T -
H(ST) = Hp + / ¢edS(t) as.
0
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On the other hand we have

N 2

2
< EqQn (H Hop - Zw(k I)AASnA)

2
T
Eq (.,/0 pedS(t) — ;w(n-n)aﬁs(n-l)a) Ln/Lt
=1

T N 2
= Eq (/0 pedS(t) — Z‘ib(kw—l)aAS(n-q)A) —0as A —0.

k=1
(since Ly = Lt and by the definition of the stochastic integral Ito as a and & are constant ) .

Appendix A
Let Y, X1, X3,..., X be integrable square random variables defined on the same probability
space {1, F, P} suchthat EX, =-.- = EXy=EY =0.
We try to find a coefficient vector b = (by,...,b4)T so that
E(Y-bX - —bgXa)?=E(Y -bTX)? = min (Y —aTX)2 (A1)
a€

Let us denote EX = (EXj, ..., EXg)T, Var(X) = [Cov(X;, X;), i,j =1,2,...,d] = EXXT.

Proposition. nghieng The vector b minimizing E(Y — a7 X)2 is a solution of the following equation
system :

Var(X)b= E(XY). (A2)
PuttingU =Y —bTX =Y - ¥, with ¥ = bT X, then
E({U? = EY? - bTE(XY) > 0. (A3)
EUX;)=0 foralli=1,...,d. (A4)
EY?=EU?+ EY2. (A5)
__Byy _(EP\” 5
P = (EviETHIE ~ \EV?) (A6)
(p is called multiple correlation coefficient of Y relative to X).
Proof. Suppose at first that Var(X) is a positively definite matrix. For each @ € RY We have
Fa)=E(Y —aTX)2=EY?-2aTE(XY) +aTEX X"a (A7)
VF(a) = -2E(XY) + 2Var(X)a.
gi(“) i,j=1,2...,d| = 2Var(X).

It is obvious that the vector b minimizing F'(a) is the unique solution of the following equation:
VF(a) =0 or (A2)
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and in this case (A2) has the unique solution :
b= [Var(X)]'E(XY).
We assume now that 1 < Rank(Var(X)) =r < d.

We denote by e), €3, . . ., e4 the ortho-normal eigenvectors w.r.t. the eigenvalues Aj, Ag, ..., Ag
of Var(X) , where A\ > Ao > -+ > A\ > 0= Aryy = -- = Ay and P is a orthogonal matrix with
the columns being the eigenvectors e), e, ..., €4, then we obtain :

Var(X) = PAPT, with A = Diag()\}, Ag, . .., Aa).

Putting
Z=PT'X =[efTX,elX,...,el X7,
Z is the principle component vector of X, we have

Var(Z) = PTVar(X)P = A = Diag(Ay, Az, ..., A\, 0, ..., 0).

Therefore
EZ’,=--=EZ23=0,502Z 41 =++=24=0 P-as.
Then
F(a) = E(Y —a"X)? = E(Y — (a" P)Z)?
=E(Y —a}Z), — - — a3Z4)?
=E(Y -a}Z, - —alZ)%
where
a'T = (a},...,a)) =a” P, Var(Z,,...,2,) = Diag(A;, Ag, ..., A;) > 0.
According to the above result (b}, ..., %) minimizing E(Y —a}Z; —- -+ —a*Z.)? is the solution of
A ... O b;\ EZ\Y
vow gem wws | | e | (A8)
0 wew by / EX,Y
or
(P, =y @ 0N 0\ [ b \ (EZiY\ [ EZY
0O ... A O ... O b | _ | EZY | | EZY (A9)
0o ... 0 0 0 ol 0 | EZ,. .Y
\o ... 0 0o ... of/\ey)] \ 0o ) \Eax

with &7, ..., b} arbitrary .
Let b= (by,...,bs)T be the solution of b7 P = b*T, hence b = Pb* with b* being a solution of (A9).
Then it is follows from (A9) that
Var(Z)PTb = E(ZY) = PTE(XY)
or
PTVar(X)PPTb = PTE(XY) ( since Var(Z) = PTVar(X)P)
or
Var(X)b = E(XY)
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which is (A2). Thus we have proved that (A2) has always a solution ,which solves the problem (A1).
By (A7) , we have

F(b) = min E(Y — a7 X)?

= EY? - 2b6TE(XY) + b7 Var(X )b

= EY? - 2TE(XY) + bTE(XY)

= EY? - bTE(XY) > 0.
On the other hand

EUX; = E(X;Y) - E(XpTX) =0, (A10)

since b is a solution of (A2) and (A10) is the ith equation of the system (A2).
It follows from (A1Q) that

E(UY)=0and EY2=E({U+Y)?= EU? + EY?2+ 2E(UY) = EU? + EY2

Remark. We can use Hilbert space method to prove the above proposition. In fact, let H be the set of
all random variables £’s such that E¢€ = 0, E£2 < oo, then H becomes a Hilbert space with the scalar
product (¢, ¢) = E£(, and with the norm ||€|| = (E€2)!/2 . Suppose that X1, Xs,...,Xq, Y € H, L
is the linear manifold generated by X, X»,..., X4 . We want to find a ¥ € H so that ||Y — Y|
minimizes, that means ¥ = b7 X solves the problem (A1). It is obvious that Y is defined by

Y=Proj,Y =bTXandU =Y -Y € L'

Therefore (Y 07X, X;) =00or EGTX X)) = E(X;Y) foralli = 1,...,dor b E(XTX) = E(XY)
which is the equation (A2). The rest of the above proposition is proved similarly.
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