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A b strac t. In this work vve consider the problem of the approximate hedging of a contingent 
claim in minimum mean square deviation criterion. A theorem on martingaỉe representation in 
the case of discrete time and an application of obtained result for semi-continous market model 
are given.
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1 . Introduction

The activity of a stock market takes place usually in discrete time. Uníòrtunately such markets 
with discrete time arc in general incomplete and so super-hedging a contingent claim requires usually 
an initial price two great, which is not acceptable in practice.

The purpose of this vvork is to propose a simple method for approximate hedging a contingent 
claim or an option in minimum mean square deviation criterion.

Financiaỉ m arket modeỉ with discrete time:

Without loss of generality let us consider a market model described by a sequence of random 
vectors {5n> n  = 0 ,1 ,..., N }y sn e  R dy which are discounted stock prices defined on the same 
probability space {n, s , p } with {F„, n = 0 ,1 being a sequence of increasing sigma-
algebras of information available up to the time n, vvhereas ”risk free ” asset chosen as a numeraire
sĩ= 1.

A F^-measurable random variable H  is called a contingent claim (in the case of a Standard call 
option H  = max(S„ — K , 0), K  is strike price.
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Trading strategy:

A sequence of random vectors of đ-dimension 7  = (7„, n =  1,2,. . . ,  N )  vvith 7„ = (7 ,̂ 7n,... ,  
7^)r  (Á 1 denotes the transpose of matrix A  ), where 7Ẳ is the number of securities of type j  kept by 
the investor in the interval [n — 1 , n) and 7„ is Fn - 1  -measurable (based on the inforination available 
up to the time 71 -  1), then {7n} is said to be predictable and is called portỊolio or trading strategy .

Assumptions:

Suppose that the following conditions are satisíìed:
i) A s n =  s n -  s n- 1, H e L^P ) ,  n = 0,1,..  . ,N.
ii) Trading strategy 7  is self-financing, i.e. SÍỊl^n-i = s j_ i7n or equivalently S Ị _ ị A 7„ = 0 

for all n = 1 , 2 , . . N .
Intuitively, this means that the portíolio is always rearranged in such a way its present value 
is preserved.

iii) The market is of free arbitrage, that means there is no trading strategy 7 such that 7 ^ So :=
'Ỵì -Sq < 0, 7n -Sn  > 0, P ^ n .S n  > 0} > 0.

This means that with such trading strategy One need not an initial Capital, but can get some proíìt and
this occurs usually as the asset {5n} is not rationally priced.
Let us consider

N  d

G n ( 7 ) =  with 7fc.As k =  ỵ 2 ^ s í-
k= 1 j = 1

This quantity is called the gain of the strategy 7  .
The problem is to find a constant c and 7 = (7n, n  = 1,2,... ,  N) so that

E p ( H  -  c -  G/v(7))2 —> min. (1 )
Problem (1) have been investigated by several authors such as H.folmer, M.Schweiser, M.Schal, 
M.L.Nechaev with d  = 1. However, the solution of problem (1) is very complicated and diíĩìcult for 
application if {Sn} is not a {F„}-martingale under p ,  even for d — 1 .

By the íùndamental theorem of financial mathematics, since the market is of free arbitrage, there
exists a probability measure Q ~ p  such that under Q {Sn} is an {Fn}-martingale, i.e. £q(5„|F„) = 
S n - 1  and the measure Q is called risk neutral martingale probability measure .

We try to fínd c and 7 so that
E q ( H  — c -  G n { i ) ) 2 —» m in  over 7 . (2)

Defínition I. (7 *) = (jn(c)) minimizing the expectation in ( ỉ .2) is called Q- optimal síraíegy in the 
minimum mean square deviation (MMSD) criíerion corresponding to the initial Capital c.

The solution of this problem is very simple and the construction of the ộ-optimal strategy is 
easy to implement in practice.

Notice that if — d Q /d P  then
Eq(H -  c -  Gn (7))2 =  Ep\(H -  c -  GN)2LN\

can be considered as an weighted expectation under p  o f  (H  — c — G n ) 2 with the weight L n .  This 
is similar to the pricing asset based on ã risk neutral martingale measure Q.
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In this vvork we give a solution of the problem (2) and a theorem on martingale representation 
in the case of discrete time.

It is vvorth to notice that the authors M.Schweiser, M.Schal, M.L.Nechaev considered only the 
problem (1) with Sn of one-dimension and M.Schweiser need the additional assumptions that {Sn} 
satisĩies non-degeneracy condition in the sense that there exists a constant <5 in (0,1) such that

(£ỊA£n|Fn_i])2 < <5£Ị(A5„)2|Fn_i] P-a.s. for all n = 1 , 2 , . . N .
and the trading strategies 7n’s satisíy :

£[7nASn]2 < oo,
\vhile in this article {S„} is of d-dimension and we need not the preceding assumptions.

The organization of this article is as follows:
The solution of the probiem (2) is fulfilled in paragraph 2.(Theorem 1) and a theorem on the 

representation of a martingale in terms of the đifferences A S n  (Theorem 2) will be also given (the 
representation is similar to the one of a martingale adapted to a Wiener íìlter in the case of continuous 
time).

Some examples are given in paragraph 3.
The semi-continuous model, a type of discretization of diffiision model, is investigated in para- 

graph 4.

2. Finding the optimal portíolio

Notation. Let Q be a probability measure such that Q  is equivalent to p  and under Q  {S„, n =
1,2, . . . ,N} is an integrable square martingale and let us denote E n ( X )  = E Q (X \F n), H n  =
H, H n = E ọ (H \F n) =  £;„(/í);Varn_i(X) = [Cov„_i(Xj,X j) \  denotes the conditional variante 
matrix of random vector X  vvhen F„_ 1 is given, r  is the family of all predictable strategies 7 -

Theorem 1. //"{Sn} is an {F n }-martingale under Q then

Eq (H - H o -  Gn { 7*))2 =  min {Eq(H - c -  ơ n (7))2 : 7 € r } ,  (3)

where 7 * is a solution o f  the foIlowing equation system:
|^ n - i(A S n)]7 * = E n- i ( ( A H nA S n) P-a.s ., (4)

Proof. At first let us notice that the right side of (3) ìs íĩnite. In fact, with 7n = 1 for all n, we have

' , v  _A S i  < oo.

Furthermore, we shall prove that 7 *ASn is integrable square under Q.
Recall that (see [Appendix A]) if Y, X \ ,  X 2 , . ■ ■, X d  are d+1 integrable square random variables

with E ( Y ) =  E ( X  1) =  ■ • • =  E (X d ) =  0 and if Ỹ  = b \X \  +  62X 2 H-----+  bdXd is the optimal linear
predictor of Y  on the basis of ^ 1, ^ 2, . . . ,  X d  then the vector b =  (61, 62! • • • I bd)T is the solution of 
the following equations system :

Var(X)ỉ>= E ( Y X ) ,  (5)

(  N d
H - C - Y . Y .

n = l j = l



146 N. V. Huu, V.Q. Hoang /  VNU Journal o f  Science, Mathematics - Phỵsics 23 (2007) ì 43-154

and as VaríX) is non-degenerated b is deíìned by

b =  [Var(x)]_1ỉ ; ( rx ) ,

and in all cases
bT E ( Y X ) < E { Y 2),

vvhere X  = (Xi, X 2 , ■. . , X k ) T .
Furthermore,

Y  -  Ỹ ± X i ,  i.e. E \ X i ( Y  -  Ỹ)} = 0, i = 1, . . . ,  k.

(6 )

(7)

(8)

Applying the above results to the problem of conditional linear prediction of AH n on the basis 
of As \ ,  ASn, • •. I A S n  as F„ is given we obtain from (5) the íòrmula (4) defming the regression 
coeữicient vector 7 *. On the other hand we have from (5) and (7):

J5(7; TA5n)2 =  E E n - ^ / b S n A S h ' / )  = E(YnT^ r n- i  (AS„b„)
= E ir iE n - x i& H n A S n ) )  < E ( A H n ) 2 < 00.

With the above remarks we can consider only, with no loss of generality, trading strategies 7n such 
that

We have:

and

En—l (,ỴnASn) < 00.

H n  =  H o  +  A H i  +  . . .  +  A H n

En-x(AHn -  5 „)2 =  En- \ (A H n)2 -  27j £ „ - 1((A i/„ A S n) + 7j£ n - i ( A S „ A S jb n .

This expression takes the minimum value when 7„ — 7 *.
Furthermore, since {//„ — c -  ơn (7 )} is an {Fn}- integrable square martingale under Q,

E q ( H n - c - G n (j ) ) 2 =  E q

N

N
f f o - c - £ ( A f f „ - 7 nAS„)

n=l

-  I n A S n )
‘ N Ý

= {Hũ - cÝ  + E q £ ( A t f n - 7nAs n )
.n=l

N
=  (Ho -  c)2 + E ọ ( A H n -  7nA5„)2 (for AH n -  7„A5n being a martingale diíĩerence)

n=l
N

_ í II ~\2 I F» r  ( A ư A c \2
N

= (#0 -  c)2 + £q -  7nA5„)
n=l
N

> (Ho -  c)2 + (Atfn -  7;ASn)
n=l
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N
(Ho -  c)2 + E q  £ ( A H n -  YnA S n ) 2

n=l 
N

£ ( A  H n -  7; a  sn)
n= 1

=  ( Ì / 0 - c ) 2 +  £ q  _

,n = l

> -  Ho -  ơ„(7*))2.

So E q ( H n  -  c -  G A/(7))2 > E q ( H n  -  Ho  -  ứ n(7*))2 and the inequality becomes the equality if
c =  H q and 7 = 7 *.

3. Martingale represcntaỉion ỉheorem

Theorcm 2. Let { H n, n  = 0,1, 2,...}, {Sn, n = 0,1, 2,...} ốe arbitrary integrable square random
variables defìned on the same probability space {Í2,ữ, P}> F% = ơ (S o , . . . ,  s n). Denoting by
n(S, P) rôe set o f  probability measures Q such that Q ~  p  ữrtí/ {Sn} w {F,f } integrable square
martingale under Q, then i f F  =  v ^=0 Fn 1 £ Í/2(Ọ) i/{#n} «  a martingale under
Q we have:

1. H n = Họ + ' y Ị A S k  + c n a.s., (9)
fc=i

w/i<?re {C„} ứ a {F„} -Q -m artinga le  orlhogonal to the martingale { S n }, i.e. En_i((AC„AS„) = 0, 
fo r  all n  =  0, 1 ,2 , . . ,  whereas {7„} is { ! } -  predictable.

n

2. Hn = Ho +  Y ,  r f ASk :=  H° +  Gn p-a"s- ( 10)
k = 1

fo r  all n  jìn ite  i f f  the set n(S, P )  comists o f  only one element.
Proof. According to the proof of Theorem 1, Putting

n

Ac k =  AHk -  7fcTASk, c n = £  Ackt Co = 0, (11)
fc=i

then ACfc±ASfc, by (8).
Taking summation of (11) we obtain (9).
The conclusion 2 folIows from the íùndamental theorem of íinancial mathematics.

Remark 3.1. By the íundamental theorem of íĩnancial mathematics a security market has no arbitrage 
opportunity and is complete ifF U (S ,P )  consists of the only element and in this case we have (10) 
with 7  defmed by (4). Furthermore, in this case the conditional probability distribution of S n given 
Frf_1 concentrates at most d + 1 points of R d (see [2], [3]), in particular for d. = 1, with exception of 
binomial or generalized binomial market models (see [2], [7]), other models are incomplete.

Remark 3.2. We can choose the risk neutral martingale probability measure Q  so that Q  has minimum 
entropy in n(S, p ) as in [2] or Q  is near p  as much as possible.
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Example 1. Let us consider a stock w ith the discounted price So at t =  0, S\  at t =  1, vvhere

Í4So/3 vvith prob. P i,

So  w ith  p rob . P2 ) P i ,P 2 ,P 3 > 0 , P i + P 2 +  P3 =  l

5 5 o /6  with prob. P3 .

Suppose that there is an option on the above stock with the maturity at t — 1 and with strike price 
K  =  So- We shall show that there are several probability measures Q  ~  p  such that {S o .S i}  is, 
under Q, a martingale or equivalently E q ( A S \ )  = 0.

In fact, suppose that Q is a probability measure such that under Q s  1 takes the values 
4So/3, So> 25o/3  vvith positive probability q i, Ợ2 , Ọ3 respectively. Then E q (A S i)  =  0 <=>
So(<?i/3 -  Ọ3 / 6 ) =  0  <=> 2qi = qz, so Q is deíĩned by (ợi, 1  -  3ợi, 2qi), 0  <  qi < 1 /3 .

In the above market, the payoff o f the option is

H = {Si -  K)+ = (A S i)+ =  max(ASi.O).

It is easy to get an Q-optimal portfolio

7 * =  E q Ì H & S M E q Ì A S ! ) 2 =  2 /3 ,  E q { H )  =  9 1 S 0 / 3 ,

E q \H -  E q (H)  -  7 * A 5 i]2 =  9 l502( l  -  3<7i)/9 -  0 as qx -  1/3.

However we can not choose qi = 1 /3 , because q — (1 /3 , 0, 2 /3 )  is not equivalent to p . It is better 
to choose <5>1 =* 1 /3  and 0 <  qi < 1/3.
Exam ple 2. Let us consider a market with one risky asset deíìned by :

S n =  So Z ị , o r S n  =  S n - 1 Z n , n  =  1 , 2 , . . . ,  N ,  
i=i

where Z \, Z 2 , ■ . Z s  are the sequence o f i.i.d. random variables taking the values in the set f i =
{di,(Ỉ2 , . . .  ,<ỈM) and P(Zi =  dk) = Pk > 0, k = 1, 2 , . . M.  It is obvious that a probability mcasure
Q is equivalent to p  and under Q {S n } is a martingale i f  and only i f  Q{Zi  =  dk) = Qk > 0, k =
1 , 2 , and E q (Z ì) = 1 , i.e.

q \ đ \  +  92^2 H----------1- q M & M  —  1.

Let us recall the integral Hellinger o f two measure Q and p  deíined on some measurable space

H(P,Q)= í  (dPAQ)1'2.
Jíì’

In our case we have

H ( P , Q ) — ^2 ,{P {Z \  = dii, z <2 = di2, . . . , Z n  = ( I ìnỴ Q (Z i  = dji, Z 2 = di2 , ■ ■ Z s  = d i s Y ^ 2

-  P i 2 < i i 2  • • •PiNqiN}l/2
w herethe summation is extendedoverall di\,d i2 , . ■ .,diH  in n  o ro v era ll ii, i 2, . . .  ,ÍN  in { 1 ,2 , . . . ,  M ). 
Thereíore

' M
H (P , Q) =  «

. i = l
We can defme a distance betvveen p  and Q by

\ \ Q - p \ \ 2 =  2 ( 1 - H ( P , Q ) ) .
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Then we vvant to choose Q * in 11(5, P)  so that IIQ* -  p\\  =  in f { | |Q  -  P || : Q e  n (5, P ) }  by solving 
the fo llow ing  programming problem:

M

E l /2  1/2 
Vi Qi — max

i = l

with the constraints :

i) qidị + q2d2 +  • ■ • +  qMẩM = 1 .
i i )  91 +  92 +  • • ■ +  9 a/  — 1-

iii) 91, <72, • • M q\í > 0.
Giving P i, P2> • • •> Pm we can obtain a numerical solution o f the above programming problem. It is 
possible that the above problem has not a solution. However, we can replace the condition (3) by the 
condition

i i i ’ ) Ĩ1, «72, - - . ,  Qd > 0,
then the problem has alvvays the solution q* = (qỊ, Í 2 i •• - I 9m) aní* we can choose the probabilities 
q i , (72, • • •, qst > 0  are suíTiciently near to q*, Í 2>• • •» q*xf ■

4. Semi-continuous m arket model (discrcte in time continuous in State)

Let us consider a íìnancial market with two assets:
+ Free risk asset {£?„, n  =  0 , 1 , . . N }  vvith dynamics

B n =  exp r jk j  , 0 <  r n <  1. (12)

+ Risky asset {Sn, n  =  0 , 1 , . . N }  vvith dynamics

s n = Sbexp ị^ 2 \n ( S k - 1 ) +ơ (S fc_i)5 fe]  ̂ , (13)

vvhere {<?„, n  =  0 , 1 , . N }  is a sequence o f i.i.d. normal random variable A ^ o ,1). It follows from
(13) thait

Sn =  Sn-I  exp(n{Sn- i )  + ơ(Sn-i)gn), (14)

where So is given and ụ.(Sn- 1 ) :=  a (Sn- 1 ) -  <72(S „_ i) /2 ,  w ith a (x ), ơ(x)  being some íiinctions
deíìned on [0 , oo) .
The discounted price o f risky asset 5„  =  Sn/B n is equal to

ổ n =  50 exp ị ỵ 2 \ ụ ( S k - 1 ) -  r fc +  ơ (5 fc-i)ỡ ik ]J  . (15)

We try to fmd a martingale measure Q for this model.
It is easy to see that Ep(exp( \gk ))  = exp(A2/2 ) , for gk ~  AT(0,1), hence

E e x p ị f2[(3k(Sk-i)9k -  Pk(Sk-1)2/2 ]^  =  1 (16)

for a ll random variable P k{Sk- 1 ) .
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Thereíòre, putting

Ln =  exp ^ ^ [ / 3fc(Sfc-i)5 fc - A ( 5 f c - i ) 2 /2 ]^  , n  =  l , . . . , J V  (17)

and if  Q is a measure such that dQ — L tfdP  then Q is also a probability measure. Furthermore,

- ặ -  =  e xp (/i(5 n_ i)  -  r n +  ơ(Sn-i)gn)-  (18)
* > n -1

Denoting by E ° , £  expectation operations corresponding to p , Q ,
£ „( .)  =  J5 [(.)ih fl and choosing

0n -  <19)^  W n—1 )
then it is easy to see that

E ^ỊS n /S n -i] = ^ [ L n5n/5 „'-1| í f ] / L n_1 = 1

which implies that {£„} is a martingale under Q.
Furthermore, under Q, Sn can be represented in the form

s n = Sn- 1  exp((/i*(S„-i) +  ơ(Sn-i)g^). (20)

Where ụ.*(Sn- 1 ) =  Tn -  ơ2(Sn- 1 ) / 2 , 3 * =  - /? „  + gn is Gaussian N (0 ,1 ) . It is not easy to show the
structure o f n (S , P)  for this model.

We can choose a such probability measure E  or the vveight íiinction L/v to find a Q- optimal 
portíblio.
Rem ark 4.3. The model (12), (13) is a type o f discretization o f the fo llow ing điíĩusion model:

Let us consider a íìnancial market with continuous time consisting o f two assets:
+Free risk asset:

B t =  exp ( /  r(u)di?j . (21)

+Risky asset: dSt = St[a(St)dt  +  ơ(St)dWt] ,  So is given, where
a (.) , <t(.) : (0, oo) -+ R  such that x a (x ), x ơ (x ) are Lipschitz. It is obvious that

St = exp ư [a(Su) -  <T*(Su)/2]du + Ị  ơ (5 u) d ^ u |  , 0 <  t < T.  (22)

Putting

Ịi{S) = a(S)  -  ơ2(S ) /2 ,  (23)

and dividing [0, T] into N  intervals by the equidistant d ivid ing points 0, A , 2 A , N  A  with 
N  = T / A  suíĩiciently great, it follows from (21), (22) that

í  ' ĩ  , 1SnA = 5 („_ i)A ex p  < 1 ụ.(Sn)du+ Ị  ơ (S u)dW u >

l( n -l) A  ( n -l)A  J
-  ‘5(n_ i)A exp{ /i(S (n_ 1)A)A  +  (S („ - i)a )[W „ a  -  W (n -1 )A]}

-  S ( » - 1 )A  e x P Í / J( V l ) A ) A  +  Ơ( 5 ( n - 1 )A )  A 1 / 2 p n }
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with g n =  [Wn& — W ( n - i ) a ] /A ^ 2i n  =  1 , . . AT, being a sequence o f the i.i.d. normal random 
variabỉes o f the law /v ( 0 , 1 ), so we obtain the model :

S nA = S (n-1)A exp{/x(5(n_ 1)A)A  +  cr(5^n _ 1 )A)A 1/2ỡn}- (24)

Similarly we have

K a  -  B (n-l)A  exP(r (n -l)A A ). (25)
According to (21), the discounted price o f the stock St is

St = =  So exp | y  ln(Su) -  r u]du + Ị  ơ (S u)dW u j  . (26)

By Theorem Girsanov, the unique probability measure Q under vvhich {St , F f,  Q} is a martingale
is defined by

(dQ /dP )\F ệ  =  exp Q  0udW u -  ị  Ị  :=  L T (u), (27)

where
fí _  ((« (& ) -  r «)

<r(S3) ’
and ( d Q /d P ) |F ^  denotes the Radon-Nikodym derivative o f  Q vv.r.t. p  limited on F ^ . Furthermore, 
under Q

= W t +  í  0udu
J 0

is a W iener process. It is obvious that LT can be approximated by

L n  :=  exp Ị j 2 / 3 kA 1/2gk -  A p Ị /2 ^  (28)

whcre
R -  Ỉa (^ (n - 1 )A) ~  rnA] ÍỌQ*
^  * ( S ( „ - i )a ) ( ]

Therefore the weight íunction (25) is approximate to Radon-Nikodym derivative o f the risk unique 
neutral martingale measure Q w.r.t. p  and Q is used to price derivatives o f  the market.

Remark 4.4. In the market model Black- Scholes we have Lfif =  Lt . We want to show now that for 
the W'eight íunction (28)

E q {H - H o -  G n { 7 * ) ) 2  —► O a s N —» o o o r A —>0.

where 7 * is Q-optimal trading strategy.

P rcposition . Suppose thai H  = H (S t ) is a integrable square discounted contingent claim. Then

E q (H  - H o -  G n ( 7 * ) ) 2  -»  0 as N  -»  oo or A  -  0, (30)

proviided a, r  and ơ are constant ( in this case the model (21), (22) is the model Black-Scholes ). 
Prcof. It is well knovvn (see[4], [5]) that for the model o f complete market (21), (22) there exists a trad- 
ing strategy tp = (ipt =  S(t)), 0 =  t =  T ), hedging
H, W'here ip : [0, T\ X (0, oo) —» R  is continuously derivable in t and s ,  such that

H (S t)  = H0 + [ T <ptdS(t) 
J 0

a.s.
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On the other hand we have

EQu [ h  -  Ho -  

<  E q n  -  Ho

=  e Q ( [  'Ptdẳự) -  I L n / L t

2

—♦ 0 as A  —> 0.

(since L n  = L t  and by the deíinition o f the stochastic integral Ito as o and ơ are constan t) . 

Appendix A

Let Y , x  1 , X 2 ,- ■■,Xd be integrable square random variables defined on the same probability 
space {Q, F, p }  such that E X 1 =  • • • =  E X d  =  E Y  =  0 .

We try to find a coefficient vector b = ( ò i , . . . ,  bd)T so that

E { Y -  b ịX x ---------- bdX dÝ  = E (Y  -  bTX ) 2 = m i_n(y -  aTX ) 2. (A l)
aeRd

Let us denote E X  = (E X U E X d)T , V ar(X ) =  [ C o v ^ i ,  X j) ,  i ,  j  =  1 , 2 , . . d] = E X X T.

Proposition. nghiêng The vector b minimizing E (Y  — aTX ) 2 is a solution o f the folIowing equation 
system :

V ar(X )6 =  E (X Y ) .  (A2)

Putting u  = Y  - b TX  = Y  - Ỳ ,  with Ỳ  = bTX , then

E (c/2) =  E Y 2  -  bTE {X Y )  >  0. (A3)

E{Ư Xi) =  0 for all i =  1 , . . . ,  d. (A4)

E Y 2  =  E U 2  +  E Ỳ 2. (A5)

E Y Ỳ  (  E Ỳ 2\  1 / 2  

p ~ [EY2EỲ2)1/2 -  \ E Y 2)
(p is called multiple correlation coeữicient o f Y  relative to X ).
Proof. Suppose at íìrst that Var(X) is a positively deíinite matrix. For each a € R d We have

F{a) = E {Ỵ  -  aTX ) 2 =  E Y 2 -  2aT E {X Y )  +  aT E X X Ta (A7)

V F (fl) =  - 2  E {X Y )  +  2V ar(X )a.

1 ^ 1 ,  i , j  =  1 ,2 , . . . , d  = 2Var(X).

It is obvious that the vector b minimizing F(a) is the unique solution o f the following equation:

V F (o )  =  0 or (A2)
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and in this case (A2) has the unique solution :

6  =  ỊV ar(A ')]-1 E (A 'K ).

We assume novv that 1 <  Rank(Var(A ')) = r < d.
We denote by e \ , e2 , . . . ,  e<f the ortho-normal eigenvectors vv.r.t. the eigenvalues Ai, À2 , . . . ,  \d  

o f V ar(X ) , where Ai >  A2  >  • • • >  Ar >  0 =  Ar + 1  =  • • • =  \ d and p  is a orthogonal matrix with 
the columns being the eigenvectors e i ,  e2 , . . . ,  e<i, then we obtain :

V ar(X ) =  P A P t , with A =  Diag(Ai, A2, . . . ,  Ad).

Putting
Z  = P T X  = [ e 'Ỉ X ,e ĩX , . . . ,e 'Ỉ X } T, 

z  is the principle component vector o f  X ,  we have

Var(Z) =  P t \ỉb i{X )P  =  A =  Di*g(\u  Aa, . . Ar, 0 , . . . ,  0).

Thereíòre

Then

E Z f_ ị_J — • • • — E — 0, so Zr+ 1  — ■ ■ ■ — 2 d — 0 P- a.s.

F (o )  =  E (Y  -  aT X ) 2 =  E (Y  -  (aT P )Z )2

= E ( Y - a \ Z l ----------   a'dz d)2
=  E { Y - a \ Z x ----------- a*rzr)2.

where

a T =  ( a ĩ , . . . , a j )  =  aT P, Var(Zị,. . zr) = Diag(A!, À2 , . . Ar ) >  0 .

According to the above result (6 Ị , . . . ,  i>*)r  minimizing E (Y  — a \ Z \ ------ — a* Z r ) 2  is the solution o f

A i  . . .  0

(A 8 )
0

or
( Ai . . 0 0 . . 0

0 . . Ar 0 . .  0
0 . .  0 0 . .  0

v °  • .  0 0 . .  0

ì
( b ì )

1
'E Z ÌY \

j U / [ E X rY  )

\ ( b\ > ( E Z XY \ (  E Z lY  \

K E Z rY E Z rY
K +1 0 E Z r+ìY

/ K Ú ) V 0 ) K E Z dY  /

(A9)

vvith ò* + 1  arbitrary .
Let 6  =  (6 1 , ,  bd)T be the solution o f  bTp  =  b*T, hence b = Pb* with 6 * being a solution o f (A9). 
Then it is follows from (A9) that

V a r(Z )P r 6  =  E (Z Y )  = PT E { X Y )

or

or

P T\ữ í(X )P P Tb = P t E ( X Y ) ( since Var(Z) =  P TVar{X)P )

Var(X)fe =  E (X Y )
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which is (A2). Thus we have proved that (A2) has alvvays a solution ,which solves the problem (A l). 
By (A7) , we have

F(b) = m in E {Y  -  aTX ) 2

=  E Y 2  -  2bTE {X Y )  +  bTVar{X)b 

=  E Y 2 -  2bTE (X Y )  +  bTE { X Y )

=  £ y 2  -  bTE (X Y )  > 0.

On the other hand
=  E (X iF )  -  E{XibTX )  = 0, (A10)

since b is a solution of (A2) and (A10) is the ith equation o f the system (A2).
It follows from (A 1 0 ) that

E (U Ỳ ) = 0 and E Y 2 = E{U + Ỳ )2 = E ư 2 + E Ỳ 2 +  2E (U Ỳ ) = E U 2  +  E Ỳ 2.

R em ark. We can use Hilbert space method to prove the above proposition. In fact, let H  be the set o f
all random variables £’s such that E ị  =  0, E£2 < 0 0 , then H  becomes a Hilbert space with the scalar 
product (£, 0  =  E ^ ,  and with the norm ll^ll =  (E£2)1/2 . Suppose that X i, x 2}. . Xd, Y  e  H, L 
is the linear maniíòld generated by X ì, X z , . . Xd ■ We want to find a Ỳ  e  H  so that | | y  -  ỹ | |  
minimizes, that means Ỳ  — bTX  solves the problem (A l). It is obvious that Ỳ  is defined by

Ỳ  = ProịLY  = bTX  and u  =  Ỳ  -  Y  € L x .

Therefore (Y - b TX ,X i ) = 0 or E{bTX X ị)  = E (X iY )  for all i =  1, . . d or bTE ( X TX )  = E ( X Y )
which is the equation (A2). The rest o f the above proposition is proved similarly.
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