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Abstract. In this paper some conditions are given to ensure that for a jump homoge-

neous Markov process {X(t), t ≥ 0} the law of the integral functional of the process:

T−1/2
∫ T

0 ϕ(X(t))dt, converges to the normal law N(0, σ2) as T → ∞, where ϕ is a

mapping from the state space E into R.

1. Introduction

The central limit theorem is a subject investigated intensively by many well-
known probabilists such as Linderberg, Chung,.... The results concerning cen-
tral limit theorems, the iterated logarithm law, the lower and upper bounds of
the moderate deviations are well understood for independent random variable
sequences and for martingales but less is known for dependent random variables
such as Markov chains and Markov processes.

The first result on central limit for functionals of stationary Markov chain
with a finite state space can be found in the book of Chung [5]. A technical
method for establishing the central limit is the regeneration method. The main
idea of this method is to analyse the Markov process with arbitrary state space by
dividing it into independent and identically distributed random blocks between
visits to fixed state (or atom). This technique has been developed by Athreya -
Ney [2], Nummelin [10], Meyn - Tweedie [9] and recently by Chen [4].

The technical method used in this paper is based on central limit for mar-
tingales and ergodic theorem. The paper is ogranized as follows:

In Sec. 2, we shall prove that for a positive recurrent Markov sequence
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{Xn, n ≥ 0} with Borel state space (E,B) and for ϕ : E → R such that

ϕ(x) = f(x) − Pf(x) = f(x) −
∫

E

f(y)P (x, dy)

with f : E → R such that
∫

E
f2(x)Π(dx) < ∞, where P (x, .) is the transition

probability and Π(.) is the stationary distribution of the process, the distribution
of n−1/2

∑n
i=1 ϕ(Xi) converges to the normal law N(0, σ2) with σ2 =

∫
E

(ϕ2(x)+
2ϕ(x)Pf(x))Π(dx).

The central limit theorem for the integral functional T−1/2
∫ T

0
ϕ(X(t))dt of

jump Markov process {X(t), t ≥ 0} will be established and proved in Sec. 3.
Some examples will be given in Sec. 4.
It is necessary to emphasize that the conditions for normal asymptoticity

of n−1/2
∑n

i=1 ϕ(Xi) is the same as in [8] but they are not equivalent to the
ones established in [10, 11]. The results on the central limit for jump Markov
processes obtained in this paper are quite new.

2. Central Limit for the Functional of Markov Sequence

Let us consider a Markov sequence {Xn, n ≥ 0} defined on a basic probability
space (Ω,F , P ) with the Borel state space (E,B), where B is the σ-algebra
generated by the countable family of subsets of E. Suppose that {Xn, n ≥ 0} is
homogeneous with transition probability

P (x,A) = P (Xn+1 ∈ A|Xn = x), A ∈ B.
We have the following definitions

Definition 2.1. Markov process {Xn, n ≥ 0} is said to be irreducible if there
exists a σ- finite measure μ on (E,B) such that for all A ∈ B

μ(A) > 0 implies
∞∑

n=1

Pn(x,A) > 0, ∀x ∈ E

where
Pn(x,A) = P (Xm+n ∈ A|Xm = x).

The measure μ is called irreducible measure.

By Proposition 2.4 of Nummelin [10], there exists a maximum irreducible
measure μ∗ possessing the property that if μ is any irreducible measure then
μ� μ∗.

Definition 2.2. Markov process {Xn, n ≥ 0} is said to be recurrent if
∞∑

n=1

Pn(x,A) = ∞, ∀x ∈ E, ∀A ∈ B : μ∗(A) > 0.

The process is said to be Harris recurrent if

Px(Xn ∈ A i.o.) = 1.
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Let us notice that a process which is Harris recurrent is also recurrent.

Theorem 2.1. If {Xn, n ≥ 0} is recurrent then there exists a uniquely invariant
measure Π(.) on (E,B) (up to constant multiples) in the sense

Π(A) =
∫

E

Π(dx)P (x,A), ∀A ∈ B, (1)

or equivalently

Π(.) = ΠP (.). (2)

(see Theorem 10.4.4 of Meyn-Tweedie, [9]).

Definition 2.3. A Markov sequence {Xn, n ≥ 0} is said to be positive recurrent
(null recurrent) if the invariant measure Π is finite (infinite).

For a positive recurrent Markov sequence {Xn, n ≥ 0}, its unique invariant
probability measure is called stationary distribution and is denoted by Π. Here-
after we always denote the stationary distribution of Markov sequence {Xn, n ≥
0} by Π and if ν is the initial distribution of Markov sequence then Pν(.), Eν(.)
are denoted for probability and expectation operator responding to ν. In par-
ticular, Pν(.), Eν(.) are replaced by Px(.), Ex(.) if ν is the Dirac measure at
x.

We have the following ergodic theorem:

Theorem 2.2. If Markov sequence {Xn, n ≥ 0} possesses the unique invariant
distribution Π such that

P (x, .) � Π(.), ∀x ∈ E, (3)

then {Xn, n ≥ 0} is metrically transitive when initial distribution is the station-
ary distribution. Further, for any measurable mapping ϕ : E×E :→ R such that
EΠ|ϕ(X0, X1)| <∞, with probability one

lim
n→∞n−1

n−1∑
k=0

ϕ(Xk, Xk+1) = EΠϕ(X0, X1) (4)

and the limit does not depend on the initial distribution. (See Theorem 1.1 from
Patrick Billingsley [3]).

The following notations will be used in this paper: For a measurable mapping
ϕ : E → R we denote

Πϕ =
∫

E

ϕ(x)Π(dx), Pϕ(x) =
∫

E

ϕ(y)P (x, dy) = E(ϕ(Xn+1)|Xn = x),

Pnϕ(x) =
∫

E

ϕ(y)Pn(x, dy) = E(ϕ(Xn+m)|Xm = x).
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For the countable state space E = {1, 2, ...} we denote

Pij = P (i, {j}) = P (Xn+1 = j|Xn = i), P (n)
ij

= Pn(i, {j}) = P (Xm+n = j|Xn = i)

πj = Π({j}), P = [Pij , i, j ∈ E], P (n) = [P (n)
ij , i, j ∈ E] = Pn.

Then

Πϕ =
∑
j∈E

ϕ(j)πj , Pϕ(j) =
∑
k∈E

ϕ(k)Pjk , P
nϕ(j) =

∑
k∈E

ϕ(k)P (n)
jk .

If the distribution of random variable Yn converges to the normal distribution
N(μ, σ2) then we denote L−→ N(μ, σ2). The indicator function of a set A is
denoted by 111A, where

111A(ω) =
{

1, if ω ∈ A

0, else.

Finally, the mapping ϕ : E = {1, 2, ...} −→ R is denoted by column vector
ϕ = (ϕ(1), ϕ(2), ...)T .

The main result of this section is to establish the conditions for

n−1/2
n∑

k=1

ϕ(Xk) L−→ N(μ, σ2).

We need a central limit theorem for martingale differences as follows

Theorem 2.3. (Central limit theorem for martingale differences) Suppose that
{uk, k ≥ 0} is a sequence of martingale differences defined on a probability
space (Ω,F , P ) corresponding to a filter {Fk, k ≥ 0}, i.e., E(uk+1|Fk) = 0, k =
0, 1, 2, · · · Further, assume that the following conditions are satisfied

(A1) n−1
n∑

k=1

E(u2
k|Fk−1)

P−→ σ2,

(A2) n−1
n∑

k=1

E(u2
k111[|uk|≥ε

√
n]|Fk−1)

P−→ 0, for each ε > 0 (the conditional Lin-

derberg’s condition).
Then

n−1/2
n∑

k=1

uk
L−→ N(0, σ2). (5)

(see Corollary of Theorem 3.2, [7]).

Remark 1. Theorem 2.3 remains valid for {uk, k ≥ 0} being a m-dimensional
martingale differences where the condition (A1) is replaced by

n−1
n∑

k=1

Var (uk|Fk−1)
P−→ σ2 = [σij , i, j = 1, 2, · · · ,m]
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with
Var (uk|Fk−1) = [E(uikujk|Fk−1), i, j = 1, 2, · · · ,m].

We shall prove the following theorem.

Theorem 2.4. (Central limit theorem for functional of Markov sequence) Sup-
pose that the following conditions hold:

(H1) The Markov sequence {Xn, n ≥ 0} is positive recurrent with the transition
probability P (x, .) and the unique stationary distribution Π(.) satisfying the
condition (3).

(H2) The mapping ϕ : E → R can be represented in the form

ϕ(x) = f(x) − Pf(x), x ∈ E, (6)

where f : E → R is measurable and Πf2 <∞.
Then

n−1/2
n∑

k=1

ϕ(Xk) L−→ N(0, σ2) (7)

for any initial distribution, where

σ2 = Π(f2 − (Pf)2) = Π(ϕ2 + 2ϕPf). (8)

Proof. We have

n−1/2
n∑

k=1

ϕ(Xk) = n−1/2
n∑

k=1

[f(Xk) − Pf(Xk)]

= n−1/2
n∑

k=1

[f(Xk) − Pf(Xk−1)] + n−1/2
n∑

k=1

Pf(Xk−1) − n−1/2
n∑

k=1

Pf(Xk)

= n−1/2
n∑

k=1

uk + n−1/2[Pf(X0) − Pf(Xn)],

where
uk = f(Xk) − Pf(Xk−1) = f(Xk) − E(f(Xk)|Xk−1)

are martingale differences with respect to Fk = σ(X0, X1, · · · , Xk), whereas

n−1/2[Pf(X0) − Pf(Xn)] P−→ 0

by Chebyshev’s inequality. Thus, it is sufficient to prove that

Yn := n−1/2
n∑

k=1

uk
L−→ N(0, σ2)

and the convergence does not depend on the initial distribution. For this pur-
pose, we shall show that the martingale differences {uk, k ≥ 1} satisfy the con-
ditions (A1), (A2).

According to assumption (H2) we have
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EΠ[E(u2
1|F0)] = EΠ(u2

1) = EΠ[f(X1) − Pf(X0)]2 = EΠf
2(X1) − EΠ[Pf(X0)]2,

thus
EΠ(u2

1) = Πf2 − Π(Pf)2 <∞. (9)

Therefore, by the ergodic Theorem 2.2, for any initial distribution with proba-
bility one

n−1
n∑

k=1

E(u2
k|Fk−1) −→ EΠu

2
1 = σ2.

Thus the condition (A1) of Theorem 2.3 is satisfied.
On the other hand, by (9) we have

EΠ(u2
1111[|u1|≥t]) −→ 0, (10)

as t ↑ ∞. Again by the ergodic Theorem 2.2, for any initial distribution, with
probability one

n−1
n∑

k=1

E(u2
k111[|uk|≥t]|Fk−1) −→ EΠ(u2

1111[|u1|≥t]) (11)

for each t > 0. By (11) and then (10) we have with probability one

0 ≤ lim
n→∞n

−1
n∑

k=1

EΠ(u2
k111[|uk|≥ε

√
n])

≤ lim
n→∞n−1

n∑
k=1

EΠ(u2
k111[|uk|≥t])

= EΠ(u2
1111[|u1|≥t]) −→ 0 as t ↑ ∞.

Thus condition (A2) is satisfied, hence by the central limit theorem for martin-
gale differences {uk, k ≥ 1} (7) holds. �

Remark 2. If the series
∞∑

n=0

Pnϕ(x) =
∞∑

n=0

∫
E

ϕ(y)Pn(x, dy)

converges, then we always have

ϕ(x) = f(x) − Pf(x)

with

f(x) =
∞∑

n=0

Pnϕ(x).

In fact, it is obvious that
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f(x) = ϕ(x) +
∞∑

n=1

Pnϕ(x) = ϕ(x) + P

∞∑
n=0

Pnϕ(x) = ϕ(x) + Pf(x).

Furthermore, in this case

σ2 = Π
[
ϕ2 + 2

∞∑
n=0

ϕPnϕ
]
.

Remark 3. If ϕ = f − Pf holds, then

Πϕ = Πf − ΠPf = 0. (12)

So the condition (12) is necessary for ϕ = f − Pf . Furthermore, in addition if
we have

lim
n→∞Pnf(x) = Πf, ∀x ∈ E

then f(x) is also given by

f(x) =
∞∑

n=0

Pnϕ(x) + Πf.

In fact, we have

ϕ(x) = f(x) − Pf(x)

Pϕ(x) = Pf(x) − P 2f(x)
· · ·

Pnϕ(x) = Pnf(x) − Pn+1f(x).

Summing the above equalities we obtain
n∑

k=0

P kϕ(x) = f(x) − Pn+1f(x) −→ f(x) − Πf.

Remark 4. Function f given by (6) is defined uniquely up to an additional
constant if limn→∞ Png(x) = Πg for all g Π- integrable.

In fact, suppose that f1, f2 are the functions satisfying (6). Then g = f1−f2
is a solution of the equations:

g(x) = Pg(x), g(x) = P (Pg(x)) = P 2g(x) = · · · = Png(x), ∀x ∈ E

for all n = 1, 2, · · · . Thus there exists the limit

g(x) = lim
n→∞Png(x) = Πg (a constant).

It also follows from Remark 4 and from (8) that if f satisfies the equation (6)
then σ2 is defined uniquely, i.e., σ2 does not change if f is replaced by f + C
with C being any constant, since
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Π[ϕ2 + 2ϕP (f + C)] = Π[ϕ2 + 2ϕPf ] + 2CΠϕ = Π[ϕ2 + 2ϕPf ].

Remark 5. If Πϕ 
= 0 we can replace ϕ by ϕ∗ = ϕ− Πϕ.

Corollary 2.1. Assume that a Markov chain {Xn, n ≥ 0} is irreducible, ergodic
with the countable state space E = {1, 2, · · · } and with the ergodic distribution
Π = (π1, π2, · · · ) and the following condition is satisfied
(H3) The mapping ϕ : E → R takes the form

ϕ(x) = f(x) − Pf(x), ∀x ∈ E

with f : E → R being measurable such that Πf2 <∞. Put

σ2 = Π[f2 − (Pf)2] = Π[ϕ2 + 2ϕPf ].

Then

n−1/2
n∑

k=1

ϕ(Xk) L−→ N(0, σ2) as n→ ∞.

3. Central Limit for Integral Functional of Jump Markov Process

3.1. Jump Markov Process

Let {X(t), t ≥ 0} be a random process defined on some probability space
(Ω,F , P ) with measurable state space (E,B).

Definition 3.1. The process {X(t), t ≥ 0} is called jump homogeneous Markov
process with the state space (E,B) if it is a Markov process with transition prob-
ability

P (t, x, A) = P (X(t+ s) ∈ A|X(s) = x), s, t ≥ 0

satisfying the following condition

lim
t→0

P (t, x, {x}) = 1, ∀x ∈ E. (13)

We suppose also that {X(t), t ≥ 0} is right continuous and the limit (13) is
uniform in x ∈ E.

By Theorem 2.4 in [6] the sample functions of {X(t), t ≥ 0} are step functions
with probability one, and there exist two q− functions q(.) and q(., .) being Baire
functions where q(x, .) is finite measure on Borel subsets of E \ {x}, q(x) =
q(x,E \ {x}) is bounded. Further

lim
t→0

(1 − P (t, x, {x})
t

= q(x),

lim
t→0

P (t, x, A)
t

= q(x,A)
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uniformly in A ⊂ E \ {x}.
If q(x) > 0 ∀x ∈ E then the process has no absorbing state. We assume also

that q(x) is bounded from 0.
Since {X(t), t ≥ 0} is right continuous and step process, the system starts

out in some state Z1, stays there a length of time ρ1, then jumps immediately
to a new state Z2, stays a length of time ρ2, etc. Therefore there exist random
variables Z1, Z2, · · · and ρ1, ρ2, · · · such that

X(t) = Z1, if 0 ≤ t < ρ1,

X(t) = Zn, if ρ1 + · · · + ρn−1 ≤ t < ρ1 + · · · + ρn, n ≥ 2.

ρn’s are all finite because we have assumed that q(x) > 0 ∀x ∈ E.
Let ν(t) be the random variable defined by

ν(t) = max{k : ρ1 + · · · + ρk < t}
then ν(t) is the number of jumps which occur up to time t.

It follows from the general theory of discontinuous Markov process (see [6],
p.266) that {Zn, n ≥ 1} is a Markov chain with transition probability

P (x,A) =
q(x,A)
q(x)

, (14)

furthermore

P (ρn+1 > s|ρ1, · · · , ρn, Z1, · · · , Zn+1) = e−q(Zn+1)s, s > 0 (15)
P (Zn+1 ∈ A|ρ1, · · · , ρn, Z1, · · · , Zn) = P (Zn, A). (16)

The function q(., .) is called the transition intensity.
It follows from (15), (16) that {(Zn, ρn), n ≥ 1} is a Markov chain on the

cartesian product E×R
+, where R

+ = (0,∞). This chain is called the imbedded
chain with the transition probability

Q(x, s, A×B) = P (Zn+1 ∈ A, ρn+1 ∈ B|Zn = x, ρn = s)

=
∫

A

P (x, dy)
∫

B

q(y)e−q(y)udu,

A × B ∈ B × B(R+), where B(R+) denotes the Borel σ- algebra on R
+. This

transition probability does not depend on s and we rewrite it by Q(x,A×B) or
formally by

Q(x, dy × du) = P (x, dy)q(y) exp(−q(y)u)du.

Definition 3.2. The probability measure Π∗ on (E × R
+,B × B(R+)) is called

the stationary distribution of the imbedded chain {(Zn, ρn), n ≥ 1} if

Π∗(A×B) =
∫

E×R+
Π∗(dx × ds)Q(x,A×B), A×B ∈ B × B(R+). (17)
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Letting B = R
+, then Π∗ is the stationary distribution of the imbedded

chain if and only if

Π(.) = Π∗(.× R
+) (18)

is the one of {Zn, n ≥ 1} with the transition probability P (x,A) = Q(x,A×R
+)

and

Π∗(A×B) =
∫

E

Π(dx)Q(x,A ×B).

Since ΠP (.) = Π(.), we have

Π∗(A×B) =
∫

E

Π(dx)
∫

A

P (x, dy)
∫

B

q(y) exp(−q(y)u)du

=
∫

A

(
∫

E

Π(dx)P (x, dy))
∫

B

q(y) exp(−q(y)u)du

or

Π∗(A×B) =
∫

A

Π(dy)
∫

B

q(y) exp(−q(y)u)du (19)

or in differential form

Π∗(dy × du) = Π(dy)q(y) exp(−q(y)u)du. (20)

Thus we have the following proposition:

Proposition 3.1. If the Markov chain {Zn, n ≥ 1} with the transition probabil-
ity P (x,A) has the stationary distribution Π then the imbedded chain possesses
also the stationary distribution Π∗ defined by (19) or (20).

Proposition 3.2. If P (x, .) � Π(.) ∀x ∈ E, where Π is the stationary distribu-
tion of {Zn, n ≥ 1} then the transition probability Q(x, .) of the imbedded chain
is also absolutely continuous with respect to the stationary distribution Π∗, i.e.

Q(x, .) � Π∗(.), ∀x ∈ E.

(see [3], p.66).

Here and after we shall denote by Π,Π∗ the stationary distributions of
Markov chain {Zn, n ≥ 1} and the imbedded chain {(Zn, ρn), n ≥ 1}, respec-
tively.

3.2. Functional Central Limit Theorem

We have the following ergodic theorem for the imbedded chain

Theorem 3.1. (Ergodic theorem for the imbedded process) If Markov chain
{Zn, n ≥ 1} with the transition probability P (x, .) having the stationary distri-
bution Π such that
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P (x, .) � Π(.) ∀x ∈ E,

and if ϕ(Z1, ρ1;Z2, ρ2) is the random variable possessing the finite expectation μ
w.r.t. the probability measure PΠ∗ , then for any initial distribution

lim
n→∞n−1

n∑
k=1

ϕ(Zk, ρk;Zk+1, ρk+1) = μ ; a.s. (21)

In particular, if Πq−1 <∞ then

lim
n→∞n−1

n∑
k=1

ρk =
∫

E

Π(dy)(q(y))−1 = Πq−1 a.s. (22)

Furthermore

lim
t→∞

ν(t)
t

= (Πq−1)−1 =: α > 0 a.s. (23)

and (21), (22) remain valid if in the limits n is replaced by ν(t), then limits are
taken as t→ ∞.

Proof. (21) follows from the ergodic theorem for Markov chain {(Zn, ρn), n ≥ 1},
and (23) follows from (22) by the same argument as in the renewal theory. �

Applying Theorem 2.4 for the imbedded chain {(Zn, ρn), n ≥ 1} we obtain
the following theorem.

Theorem 3.2. (Central limit theorem for the imbedded chain) Assume that the
following conditions (C1), (C2) are satisfied:

(C1) The jump Markov process {X(t), t ≥ 0} has the imbedded chain {(Zn, ρn),
n ≥ 1} such that the Markov chain {Zn, n ≥ 1} has the transition probability
P (x, .) with the stationary distribution Π satisfying the following condition

P (x, .) � Π(.) ∀x ∈ E.

(C2) The function ψ : E × R
+ → R takes the form

ψ(x, s) = f(x, s) −Qf(x, s),

where f : E × R
+ → R is B × B(R+)- measurable and

Qf(x) = Qf(x, s) =
∫

E

P (x, dy)
∫

R+
f(y, u)q(y) exp(−q(y)u)du.

Furthermore, the function f has the following property

Π∗f2 =
∫

E

Π(dy)
∫

R+
|f(y, u)|2q(y) exp(−q(y)u)du <∞. (24)

Then we have

n−1/2
n∑

k=1

ψ(Zk, ρk) L−→ N(0, σ2) (25)
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for any initial distribution, where

σ2 = Π∗(f2 − (Qf)2) = Π∗(ψ2 + 2ψQf). (26)

The goal of this section is to investigate the limit law of the integral functional
T−1/2

∫ T

0 ϕ(X(t))dt as T → ∞.
Let us at first notice that

∫ T

0

ϕ(X(t))dt =
ν(T )∑
k=1

ϕ(Zk)ρk + ϕ(Zν(T )+1)(T − τν(T )), (27)

where
τ1 = ρ1, τ2 = ρ1 + ρ2, · · · , τn = ρ1 + ρ2 + ...+ ρn, · · ·

are the jump times of the process {X(t), t ≥ 0}.
In what follows we suppose always that the condition (C1) is satisfied.
We need the following lemmas.

Lemma 3.1. If Πϕ2q−2 <∞ then
1√
T
ϕ(Zν(T )+1)(T − τν(T ))

P−→ 0 (28)

for any initial distribution.

Proof. Noticing that for ψ(x, s) = ϕ(x)s we have

Π∗ψ2 =
∫

E

Π(dy)ϕ2(y)
∫

R+
u2q(y) exp(−q(y)u)du

= 2
∫

E

ϕ2(y)q−2(y)Π(dy) = 2Πϕ2q−2 <∞

and ν(T ) → ∞ a.s. as T → ∞ by (23). By those and by the ergodic Theorem
3.1

(ν(T ) + 1)−1

ν(T )+1∑
k=1

|ϕ(Zk)ρk|2 −→ Π∗ψ2 a.s.

as T → ∞. Hence with probability one

(ν(T ) + 1)−1|ϕ(Zν(T )+1)ρν(T )+1|2 −→ 0

and (28) follows from

1√
T
|ϕ(Zν(T )+1)(T−τν(T ))| ≤ (

ν(T ) + 1
T

)1/2(ν(T )+1)−1/2|ϕ(Zν(T )+1)ρν(T )+1| → 0

a.s. �

Lemma 3.2. Suppose that {uk,Fk, k ≥ 1} defined on (Ω,F , P ) are the square
integrable martingale differences such that
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sup
n,m≥1

(n−1
m+n∑
k=m

Eu2
k) = C <∞ (29)

and that {ν(t), t ≥ 0} is a random process valued in {1, 2, · · · } such that {ν(t) =
k} ∈ Fk ∀t ≥ 0 and

lim
t→∞

ν(t)
t

= α > 0 a.s. (30)

Then

T−1/2
∣∣∣

ν(T )∑
k=1

uk −
[αT ]∑
k=1

uk

∣∣∣ P−→ 0 as T → ∞. (31)

Proof. It follows from condition (30) that: for all ε > 0, and T sufficiently large
we have

P (|ν(T )
T

− α| > ε3) < ε

or
P ((α− ε3)T < ν(T ) < (α+ ε3)T ) ≥ 1 − ε. (32)

Putting
Aε = {α− ε3)T < ν(T ) < (α+ ε3)T },

we have

P
(
T− 1

2

∣∣∣
ν(T )∑
k=1

uk −
[αT ]∑
k=1

uk

∣∣∣ > ε
)
≤ P (Ac

ε) + P
({
T− 1

2

∣∣∣
ν(T )∑
k=1

uk −
[αT ]∑
k=1

uk

∣∣∣ > ε
}
∩Aε

)

≤ ε+ P
(
T− 1

2 max
|l−[αT ]|<ε3T

∣∣∣
l∑

k=1

uk −
[αT ]∑
k=1

uk

∣∣∣ > ε
)

≤ ε+ P
(

max
a≤l≤b

∣∣∣
l∑

k=a

uk

∣∣∣ > εT
1
2

2

)
(33)

where a = [αT ] − [ε3T ], b = [αT ] + [ε3T ] with [r] denoting the integer part of
the number r.

By Kolmogorov’s inequality for a martingale

P
(

max
1≤n≤N

∣∣∣
n∑

k=1

uk

∣∣∣ > λ
)
≤ 1
λ2
E

[ N∑
k=1

uk

]2

=
1
λ2

N∑
k=1

Eu2
k,

we have

P
(

max
a≤l≤b

∣∣∣
l∑

k=a

uk

∣∣∣ > εT
1
2

2

)
≤ 8ε

1
2ε3T

E
[ 2[Tε3]+a∑

k=a

u2
k

]
≤ 8εC. (34)

It follows from (33), (34) that (31) holds. �
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Corollary 3.1. Assume that the martingale differences {uk, k ≥ 1} take the
form

uk = f(Xk) − E(f(Xk)|Xk−1), k = 1, 2, . . .

where {Xk, k ≥ 0} is a Markov chain with the stationary distribution Π such
that Πf2 <∞. Then (31) holds for any initial distribution.

Proof. It is obvious that

EΠu
2
k ≤ EΠf

2(Xk−1) = Πf2 <∞,

therefore

EΠ(n−1
m+n∑
k=m

u2
k) ≤ Πf2 = C, ∀m,n.

Denoting the quantity in the left-hand side of (31) by ηT , by Lemma 3.2 we
obtain

lim
T→∞

PΠ(|ηT | ≥ ε) = 0 ∀ε > 0

or

lim
T→∞

∫
E

Px(|ηT | ≥ ε)Π(dx) = 0 ∀ε > 0.

It follows that there exists a subset Λ ⊂ E such that Π(Λ) = 0 and

lim
T→∞

Px(|ηT | ≥ ε) = 0 ∀x ∈ E \ Λ.

Since P (x, .) � Π(.) ∀x, P (x,E \ Λ) = 1 ∀x ∈ E.
On the other hand, letting AT = {|ηT | ≥ ε}, we observe that AT ∈ ∪n≥n0Fn

with n0 > 1, where Fn = σ(Xk, k ≥ n). Then by Markov property:

Px(AT ) = E(1AT |X0 = x) = E[E(1AT |X1)|X0 = x]

=
∫

E

E(1AT |X1 = y)P (x, dy) =
∫

E\Λ
Ey(1AT )P (x, dy).

Therefore

0 ≤ lim sup
T→∞

Px(AT ) = lim sup
T→∞

∫
E\Λ

Py(AT )P (x, dy)

=
∫

E\Λ
lim

T→∞
Py(AT )P (x, dy) = 0.

So
lim

T→∞
Px(AT ) = 0 ∀x

and hence

lim
T→∞

Pν(|ηT | ≥ ε) = lim
T→∞

∫
E

Px(|ηT | ≥ ε)ν(dx) = 0.
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This implies (31). �

Lemma 3.3. Assume that the following equation has a solution g(x)

(I − P )g(x) = Pϕq−1(x). (35)

Then, putting

f(x, s) = ϕ(x)s + g(x), (36)

we have the representation

ϕ(x)s = f(x, s) −Qf(x), (37)

where Qf(x) = g(x).

Proof. At first let us notice that for ψ : E × R
+ → R given by ψ(x, s) = ϕ(x)s

we have

Qg(x) =
∫

E

g(y)P (x, dy)
∫

R+
q(y) exp(−q(y)u)du

=
∫

E

g(y)P (x, dy) = Pg(x),

Qψ(x) =
∫

E

ϕ(y)P (x, dy)
∫

R+
uq(y) exp(−q(y)u)du

=
∫

E

ϕ(y)q−1(y)P (x, dy) = Pϕq−1(x).

In order to prove (37) we shall prove that if g(x) is a solution of (35) then
g(x) = Qf(x). In fact, by (36)

Qf(x) = Qψ(x) +Qg(x) = Pϕq−1(x) + Pg(x) = g(x). �

Remark 6. A necessary condition for the existence of a solution of (35) is

Πϕq−1 = 0. (38)

In fact, applying operator Π on both sides of (35) we have Πg − ΠPg = 0 =
Πϕq−1.

Let us notice that the condition (38) is satisfied if the function ϕ is repre-
sented in the form

ϕ(x) = ϕ∗(x) − αΠϕ∗q−1

where ϕ∗ : E → R, α is given by (23).

Lemma 3.4. Assume that the following equation has a solution g

(I − P )g(x) = Pϕq−1(x)

and that Πϕ2q−2 <∞,Πg2 <∞. Furthermore, if the condition (C1) of Theorem
3.2 are satisfied then
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T−1/2

ν(T )∑
k=1

ϕ(Zk)ρk
L−→ N(0, αδ2) (39)

for any initial distribution, where α is given by (23) and

δ2 = 2Π(ϕ2q−2 + ϕq−1g).

Proof. By Lemma 3.3, we have the representation

ψ(Zk, ρk) = ϕ(Zk)ρk = f(Zk, ρk) −Qf(Zk)
= f(Zk, ρk) −Qf(Zk−1) +Qf(Zk−1) −Qf(Zk)
= uk + g(Zk−1) − g(Zk)

where {uk = f(Zk, ρk)−Qf(Zk−1), k ≥ 1} are martingale differences. Therefore

T−1/2

ν(T )∑
k=1

ϕ(Zk)ρk = T−1/2

ν(T )∑
k=1

uk + T−1/2

ν(T )∑
k=1

(g(Zk−1) − g(Zk))

= T−1/2

ν(T )∑
k=1

uk + T−1/2(g(Z0) − g(Zν(T ))). (40)

Since Πg2 < ∞, by the same argument as in the proof of Lemma 3.1, we can
show that

T−1/2(g(Z0) − g(Zν(T )))
P−→ 0 (41)

for any initial distribution.
Furthermore, we have by (36)

Π∗f2 ≤ 2Π∗(ψ2 + g2) = 2(Πϕ2q−2 + Πg2) <∞,

hence by Corollary 3.1, (31) holds for any initial distibution.
Applying Theorem 3.2 for the imbedded chain {(Zk, ρk), k ≥ 1} we obtain

T−1/2

[αT ]∑
k=1

uk
L−→ N(0, αδ2) (42)

with

δ2 = Π∗(f2 − (Qf)2) = Π∗(f2 − g2)
= Π∗(ψ2 + 2ψg) = 2Π(ϕ2q−2 + ϕgq−1).

Finally, it follows from (40), (31), (41). (34), (42) that (39) holds for any initial
distribution. �

Now we state and prove the main theorem as follows
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Theorem 3.3. Assume that the condition (C1) of Theorem 3.2 and the following
condition (C3) are satisfied

(C3) (i) Πϕ2q−2 <∞ and, (ii) The following equation has a solution g

(I − P )g(x) = Pϕq−1(x)

with Πg2 <∞.
Then

T−1/2

∫ T

0

ϕ(X(t))dt L−→ N(0, αδ2)

for any initial distribution, where

δ2 = 2Π(ϕ2q−2 + ϕgq−1).

Proof. The conclusion of Theorem 3.3 follows from Theorem 3.2 and Lemmas
3.1, 3.4. �

4. Examples

Example 1. Assume that the jump Markov process {X(t), t ≥ 0} with the state
space E = {1, 2, 3} has the transition intensity matrix

Q =

⎡
⎣−1 0.5 0.5

0.4 −1 0.6
0.8 0.2 −1

⎤
⎦ .

Then the Markov chain {Zk, k ≥ 1} has the transition probability matrix

P =

⎡
⎣ 0 0.5 0.5

0.4 0 0.6
0.8 0.2 0

⎤
⎦ .

It is easy to see that {Zk, k ≥ 1} possesses the ergodic distribution as follows

Π = [ 0.38596 0.26316 0.35088 ] ,

whereas the sequence {ρk, k ≥ 1} is the sequence of independent, exponentially
indentically distributed random variables with the parameter q = 1 (i.e., q(x) =
1 for all x ∈ E) and hence α = 1.

Let us consider ϕ∗ = [1, 2, 4]T , i.e. ϕ∗(1) = 1, ϕ∗(2) = 2, ϕ∗(3) = 4. Then

Πϕ∗ = 2.3158, ϕ = ϕ∗ − Πϕ∗ = [−1.3158 −0.3158 1.6842 ]T .

We shall prove that as T → ∞
1√
T

∫ T

0

(ϕ∗(X(t)) − 2.3158)dt L−→ N(0, σ2). (43)

For this purpose, we try to find a function g = [g1, g2, g3]T satisfying the following
equation
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(I − P )g = Pϕq−1 = Pϕ

or in detail ⎡
⎣ 1 −0.5 −0.5
−0.4 1 −0.6
−0.8 −0.2 1

⎤
⎦

⎡
⎣ g1g2
g3

⎤
⎦ =

⎡
⎣ 0.6842

0.4842
−1.1158

⎤
⎦ .

The above algebraic equation has the following solution

g = [ 1.15788 0.94735 0 ] .

Since E has a finite number of elements, Πg2 and Πϕ2 are finite. By Theorem
3.3 we have (43) with

σ2 = δ2 = 2Π(ϕ2 + ϕg) = 2.046.

Example 2. Let us consider the integral functional of the jump Markov process
with the state space E = {1, 2, · · · } defined by:

Ti =
∫ T

0

111{X(t)=i}, i ∈ E.

This integral is the total time length during which the process visits the state i.
Assume that this process satisfies the condition (C1).

For each state i, put ϕ∗(x) = 111{x=i} then αΠϕ∗q−1 = απiq
−1
i . Let us

consider ϕ(x) = ϕ∗(x) − απiq
−1
i .

Suppose that the equation

(I − P )g(x) = Pϕq−1(x) (44)

has a solution g such that Πg2 <∞. Then by Theorem 3.3

1√
T

∫ T

0

ϕ(X(t))dt =
1√
T

∫ T

0

(111{X(t)=i} − απiq
−1
i )dt L−→ N(0, αδ2)

where δ2 = 2Π(ϕ2q−2 + ϕq−1g).
In particular, for the case where

E = {1, 2}, Q =
[−q1 q1
q2 −q2

]
, P =

[ 0 1
1 0

]
, q1, q2 > 0,

we have the stationary distribution Π = (1/2, 1/2) and

α = (Πq−1)−1 =
(1

2

( 1
q1

+
1
q2

))−1

=
2q1q2
q1 + q2

.

Put ϕ∗(x) = 111{x=1}, then

αΠϕ∗q−1 = απ1q
−1
1 =

q2
q1 + q2

, ϕ(x) = 111{x=1} − q2
q1 + q2

,

and
1√
T

∫ T

0

(
111{X(t)=1} − q2

q1 + q2

)
dt

L−→ N(0, αδ2) (45)
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for any initial distribution. In order to find δ2 we have to solve the equation
(44) for i = 1, i.e. [ 1 −1

−1 1

]
;
[
g1
g2

]
=

[
Pϕq−1(1)
Pϕq−1(2)

]
(46)

with notice that

[
Pϕq−1(1)
Pϕq−1(2)

]
=

[ 0 1
1 0

] [ (1 − q2/(q1 + q2))q−1
1

−(q2/(q1 + q2))q−1
2

]
=

[−1/(q1 + q2)
1/(q1 + q2)

]
.

(46) has a solution g1 = −1/(q1+q2), g2 = 0. Hence, by Theorem 3.3, we obtain
(45) with

δ2 = 2Π(ϕ2q−2 + ϕq−1g) =
1

(q1 + q2)2
.

We obtain from (45)
√
T

(T1

T
− q2

(q1 + q2)

) L−→ N
(
0,

2q1q2
(q1 + q2)3

)
.
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