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Abstract

Conditional probability is often used to represent the probability of
the conditional. However, triviality results suggest that the thesis that
the probability of the conditional always equals conditional probability
leads to untenable conclusions. In this paper, I offer an interpretation
of this thesis in a possible worlds framework, arguing that the triviality
results make assumptions at odds with the use of conditional probability.
I argue that these assumptions come from a theory called the operator
theory and that the rival restrictor theory can avoid these problematic
assumptions. In doing so, I argue that recent extensions of the triviality
arguments to restrictor conditionals fail, making assumptions which are
only justified on the operator theory.

The most natural way to calculate the probability of a conditional sentence
‘If A, then B’ is to use the conditional probability of B given A. This is defined
using the ratio formula: the probability of B given A, denoted Pr(B|A), is the
probability that both A and B are true, normalized by the probability that A
is true:

Pr(B|A) =
Pr(A ∧B)

Pr(A)
.1

Conditional probability provides intuitive probability assignments in standard
examples in probability and statistics textbooks: the probability that, if the
die I rolled lands on an odd number, then it lands on 3 is 1/3; the probability
that, if John is an adult male, he is taller than 176 cm is 1/2; the probability
that a second coin will land heads, given that the first coin also landed heads, is
1/2. Extensive psychological evidence further supports the claim that people
compute the probabilities of conditionals using conditional probability.2

1This definition only applies if Pr(A) 6= 0. Throughout this paper, I will assume that the
antecedents of conditionals have non-zero probability.

2For experimental evidence, see Hadjichristidis et al. (2001), Oberauer and Wilhelm
(2003), Over and Evans (2003), Evans et al. (2007), Oberauer et al. (2007), Over et al.
(2007), and Douven and Verbrugge (2010). This evidence supports the conclusion that con-
ditional probability provides the best predictor of how people evaluate the probability of a

1



This motivates what is often called ‘The Thesis’ in the literature: if we
abbreviate the conditional sentence ‘If A, then B’ as A→ B, The Thesis states
that the probability of a conditional, Pr(A → B), is equal to the conditional
probability Pr(B|A):

Pr(A→ B) = Pr(B|A).

This thesis most famously received support in philosophy from Adams (1975)
and Stalnaker (1970). However, it is widely acknowledged that The Thesis
cannot be true, or at least is inconsistent with otherwise appealing principles
of conditional semantics and probability theory, due to the triviality results.
The first and most famous triviality result appeared in Lewis (1976), where
Lewis argued, making mild assumptions about the logic of conditionals, that a
probability assignment satisfying The Thesis must be trivial in the sense that
Pr(A→ B) = Pr(B). Lewis’s triviality result follows from three assumptions:

1. the law of total probability Pr(B) = Pr(B|A) Pr(A)+Pr(B|¬A) Pr(¬A),

2. the assignment Pr(A→ B|B) = 1, and

3. the assignment Pr(A→ B|¬B) = 0.

Lewis uses the law of total probability to expand Pr(A→ B) into

Pr(A→ B) = Pr(A→ B|B) Pr(B) + Pr(A→ B|¬B) Pr(¬B)

and then uses the two conditional assignments to compute that this equals

1 ∗ Pr(B) + 0 ∗ Pr(¬B) = Pr(B).

This produces the triviality result, that Pr(A → B) = Pr(B), showing that
the probability assignment to conditionals is trivial. This conclusion is clearly
problematic for the thesis that Pr(A → B) = Pr(B|A). If we consider the
example of rolling a fair die and let X be the proposition ‘the die lands on an
odd number’ and Y be the proposition ‘the die lands on 3’, then Pr(Y |X) =
1/3 but Pr(Y ) = 1/6. For someone committed to The Thesis, an explanation
is in order for why Lewis’s argument cannot be correct.

Many authors seeking to hold onto The Thesis have questioned the seman-
tic assumptions behind the triviality arguments. Adams (1975) and Edging-
ton (1995) argue that conditionals do not have truth values, Bradley (2002)
argues that conditionals sometimes have undefined truth values, and Kauf-
mann (2001) and Rothschild (2014) argue that conditionals sometimes take

conditional. However, the use of conditional probability is not universal: Over and Evans
(2003), for example, found that approximately 50% of people used conditional probability,
but over 40% used an alternative heuristic, the probability of the conjunction of the an-
tecedent and consequent Pr(A∧B). Nonetheless, conditional probability repeatedly appears
as the most commonly used heuristic, and Evans et al. (2007) provides evidence that those
using conditional probability performed better on a general intelligence test than those using
conjunctive probability.
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on an ‘intermediate’ truth value. Other authors argue, contrary to assump-
tions from the triviality arguments, that the conditional is context-sensitive
(Van Fraassen (1976), Bacon (2015), Khoo (2016)). Finally, Egré and Co-
zic (2011) argue against the assumption that the conditional is a ‘binary,
proposition-forming connective (p. 22),’ arguing instead for the adoption of
Kratzer’s (1986, 2012) restrictor theory of the conditional.

In this paper, I argue that the triviality arguments rely on a problematic
assumption of conditional semantics called the operator theory. I begin by
offering an interpretation of The Thesis in a probabilistic formalism grounded
in possible worlds (§1). I argue that the triviality results of Lewis (§2) and
Bradley (§3) both make assumptions which are at odds with this formulation
of The Thesis. In §4, I argue that these problematic assumptions follow from
an operator theory of the conditional. I argue that the operator theory directly
leads to triviality, following Hájek’s (1989, 2012) ‘Wallflower Argument’ and
Egré and Cozic’s undefinability argument, and that the restrictor theory offers
an alternative to the operator theory. In §5, I argue that recent arguments
to extend triviality results to the restrictor theory, such as that of Charlow
(2016), borrow assumptions from the operator theory which an advocate of the
restrictor theory need not accept. Many of the conclusions of this paper agree
with the restrictor theory of Egré and Cozic (2011), but this paper goes beyond
their account by (1) presenting the responses to triviality as a consequence of
The Thesis itself rather than the restrictor theory explicitly, (2) highlighting
a problematic assumption in Bradley’s triviality result, and (3) responding to
recent work aimed directly at establishing triviality for restrictor conditionals.

1 Formulating The Thesis

In possible world semantics, propositions are represented by the set of worlds
(or possible situations) in which the proposition is true.3 Probabilistic lan-
guage builds on the assumption that different possible situations can be as-
signed likelihoods of occurring, and propositions are more or less likely to be
true based on the relative likelihoods of these situations. We can formalize
this intuition by assuming that the set of possible worlds Ω has a probability
distribution Pr defined over worlds which assigns a likelihood to the different
possible worlds. Formally, a probability distribution over worlds is a tuple
(Ω,Σ,Pr) where Ω is the relevant set of possible worlds, Σ is some sigma-
algebra on Ω representing which sets of possible worlds are measurable, and
Pr is a probability measure on Σ; I will call such a tuple a probabilistic context.

When Ω is finite, as will be the case in all examples in this paper, we can
ignore Σ and think of Pr as assigning a probability Pr(ω) to each world ω in
Ω. It is sufficient for a finite (Ω,Pr) to be a probabilistic context that:

(i) for all ω ∈ Ω, Pr(ω) ∈ [0, 1]
(ii)

∑
ω∈Ω Pr(ω) = 1.

3For more on possible world (intensional) semantics, see Von Fintel and Heim (2011).
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A probabilistic context allows us to calculate the probability that a proposition
A is true. Let A be the set of propositions: for any proposition A, A is either
true or false in each world, so it determines an indicator function χA : Ω →
{0, 1} which assigns χA(ω) = 1 if A is true in ω and χA(ω) = 0 if A is false in
ω for each ω ∈ Ω. We can then calculate the probability that A is true in a
probabilistic context (Ω,Pr):

Pr(A) =
∑
ω∈Ω

Pr(ω)χA(ω).

This is just the expected value of the random variable χA over the space of
possible worlds: it yields the expected probability that A is true, given that
ω is chosen from Ω according to Pr.4

We can see how this framework works in a specific example: tossing a fair
six-sided die. The probabilistic context used here involves six possible states of
the world, {ω1, ..., ω6}, corresponding to rolling the numbers 1, ..., 6, each with
equal probability 1/6 of occurring. We can then evaluate the probability of any
proposition involving these outcomes using the above formula. For example,
if X is the proposition that the die lands on an odd number, the probability
of X is given by: Pr(X) =

∑
ω∈Ω Pr(ω)χX(ω) = Pr(ω1) + Pr(ω3) + Pr(ω5) =

1/6 + 1/6 + 1/6 = 1/2. This gives the intuitive result that the probability of
a die landing on an odd number is 1/2.

The best cases for applying this framework are those where a commonly
accepted statistical model determines the set of outcomes and the probabil-
ity distribution: this includes basic examples from statistics like games of
chance, quantitative datasets in fields like medicine, political science and eco-
nomics (i.e., human height and weight statistics), and theoretical models for
expected distributions, like particle decay or asset prices. However, there is
good reason to believe this probabilistic model extends beyond these cases:
the psychological evidence cited above supports the view that people ascribe
coherent probabilities to different outcomes, even when real-world knowledge
is involved, and this kind of probabilistic analysis underlies the Bayesian ap-
proach to epistemology.5

So far, we have only considered assigning probabilities to non-conditional
propositions, and we face a choice in determining how to model probabilities
of conditionals. One natural thought is to treat the conditional as no different
from other propositions, computing its probability as above, since we have

4When Ω is infinite, an assignment Pr : Ω → [0, 1] satisfying (i) and (ii) is not sufficient to
generate a probabilistic context (Ω,Σ,Pr). Here, we need Σ to be a sigma-algebra of subsets
of Ω and Pr : Σ → [0, 1] to satisfy (i) Pr(Ω) = 1 and (ii) ∀Ai ∈ Σ,Pr(∪∞

i=1Ai) =
∑∞

i=1
Pr(Ai).

In the infinite case, we can calculate Pr(A) =
∫

Ω
χA(ω) Pr(ω).

5Bayesian epistemology assumes that there is a field of propositions A and that people
have a credence function P : A → [0, 1] such that (i) for every tautology A, P (A) = 1 and
(ii) for mutually exclusive A and B, P (A∨B) = P (A) + P (B). It is not hard to see that, if
every proposition in A is a set of possible worlds, a probabilistic context (Ω,Σ,Pr) induces
a credence assignment Pr : A → [0, 1] which satisfies the axioms of Bayesian epistemology.
For more on Bayesian epistemology, see Hartmann and Sprenger (2010).
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a number of semantic theories providing possible world truth conditions for
the conditional. One problem with this approach is that it will never be
able to explain the evidence from the introduction that people compute the
probability of conditionals as conditional probability; in §4, I will refer to
this as the operator theory and show how it leads to the triviality results.
Another option, and the one I will follow here, involves taking The Thesis as
primitive. On this view, the probability of a conditional A→ B, Pr(A→ B),
is directly associated with the conditional probability Pr(B|A), so Pr(A →
B) = Pr(B|A) = Pr(A∧B)

Pr(A) .6

Note that the conditional probability Pr(−|A), in attributing a probability
to all propositions B over Ω, defines a new probability distribution over Ω.
This means that Pr(−|A) associates a probability to all measurable subsets in
Σ and obeys the Kolmogorov axioms for probability distributions.7 We can
see this clearly in the case of a finite Ω: for any ω ∈ Ω, we get Pr(ω|A) =
Pr(ω∧A)

Pr(A) = Pr(ω)χA(ω)
Pr(A) , and we can verify that this satisfies the two conditions

introduced in the previous section. To simplify notation, we will use PrA to
refer to the conditional probability distribution Pr(−|A).

In the formulation of The Thesis, we have assumed that A and B are
non-conditional propositions, representing measurable subsets of Ω. There are
many challenges to extending The Thesis to include more complex propositions
incorporated in a conditional sentence, such as modals, probability operators,
or other conditionals. Here we discuss one such case: right-nested conditionals.
For a nested conditional A→ (B → C), it is sometimes thought that repeated
iterations of The Thesis by itself cannot offer a prediction for the interpretation
of the probability Pr(A → (B → C). Applying The Thesis to the outer
conditional tells us Pr(A → (B → C) = Pr(B → C|A), but then it appears
that there is no easy way to reduce this expression further. This is because
applying The Thesis twice would yield an expression like Pr((C|B)|A), which is
not mathematically well-defined. However, thinking of conditional probability
in terms of the new distribution PrA on Ω can resolve this issue. The Thesis
states that Pr(A → B) = PrA(B), where PrA is a new distribution over Ω.
When the consequent is also a conditional, we get that Pr(A → (B → C)) =
PrA(B → C) = PrA(C|B). This is well defined: PrA is a distribution over
Ω and B is a proposition defined over Ω, so we can define the conditional
probability distribution PrA(−|B).

Note that this leads to the principle known as probabilistic export-import
(PEI): according to The Thesis, Pr(A → (B → C)) = PrA(B → C) =

6Note that this proposal leaves unspecified how we interpret the expression Pr(A → B).
Two common approaches to this are found in Adams (1975), where the probability of a
conditional represents the degree to which a conditional is assertible, and Stalnaker (1970),
where the probability of a conditional is the probability that the conditional proposition is
true; this question will be addressed in greater depth in §4.

7For a more detailed discussion, see Capinski and Kopp (2013).
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PrA(C|B), and

PrA(C|B) =
PrA(B ∧ C)

PrA(B)
=

Pr(A ∧B ∧ C)

Pr(A)
∗ Pr(A)

Pr(A ∧B)

=
Pr(A ∧B ∧ C)

Pr(A ∧B)
= Pr((A ∧B)→ C).

This shows that, if we permit multiple applications of The Thesis to right-
nested conditionals, PEI holds: Pr(A → (B → C)) = Pr((A ∧ B) → C). It is
worth defending this principle in greater depth because it has been controver-
sial in the literature on triviality: Kaufmann (2001), Douven and Verbrugge
(2013), and Fitelson (2014) all argue that the triviality arguments rely on PEI
being true; Kaufmann and Douven and Verbrugge recommend rejecting PEI
in response to this. These arguments against PEI derive triviality from the
combination of PEI, The Thesis and the operator theory (discussed below),
concluding that we should reject PEI. However, this paper and Adams (1975)
show that one can maintain PEI while avoiding triviality by denying the oper-
ator theory, as recommended both here and by Adams. Regarding the status
of PEI, there have been some attempts to pose counterexamples, though these
counterexamples are contested.8 Douven and Verbrugge offer empirical ev-
idence against PEI, providing experimental results that suggest that people
ascribe different probabilities to the propositions ‘If A, then if B, C’ and ‘If A
and B, then C.’ van Wijnbergen-Huitink et al. (2015), however, provide evi-
dence in favor of PEI, suggesting that people report similar probabilities and
truth conditions for right-nested conditionals in both iterated and imported
form.9 Since PEI is a plausible extension of the logical export-import principle
with experimental support and no clear grounds for rejection, we shouldn’t be
concerned that it is a consequence of the Bayesian approach.

2 Lewis’s Triviality Result

The last section introduced The Thesis, Pr(A → B) = PrA(B), for simple
conditionals and right-nested conditionals. For right-nested conditionals, we

8Kaufmann attempts to provide a counterexample to PEI: consider ‘If a match lights,
then if you strike it, it will light’ and ‘If a match lights and you strike it, then it will light.’
Kaufmann argues that the latter is necessarily true, but the former may not be true: if you
throw a match into a fire, then it is not necessarily true that ‘If you strike it, it will light.’
Khoo and Mandelkern (2018) offer a compelling response to this, arguing that Kaufmann
ignores the temporal properties introduced by ‘will’: this leads Mandelkern (2018, p. 4)
to conclude ‘the subsequent literature has not produced a convincing counterexample to
[Export-Import], at least for indicative conditionals.’

9van Wijnbergen-Huitnik et al note that the conditionals in their experiments rely on
less real-world knowledge than those used in Douven and Verbrugge’s experiment, offering a
potential explanation for the divergence in results. Given the complexity of evaluating nested
conditionals, one would expect people to assign conditional probabilities more accurately in
simpler scenarios involving less real-world knowledge.
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saw that allowing multiple iterations of The Thesis entails probabilistic export-
import (PEI). This puts us in a position to evaluate Lewis’s triviality result.

Recall that Lewis’s triviality result proceeds as follows: Lewis uses the law
of total probability to expand Pr(A→ B) into

Pr(A→ B) = Pr(A→ B|B) Pr(B) + Pr(A→ B|¬B) Pr(¬B)

and then computes that this equals

1 ∗ Pr(B) + 0 ∗ Pr(¬B) = Pr(B).

This produces the triviality result, that Pr(A→ B) = Pr(B). Recall also that
the conclusion of this argument does not hold. Let X be the event of rolling
an odd number on a fair die and Y be the event of rolling a three. Evaluating
conditional probability, we see that Pr(X → Y ) = Pr(X∧Y )

Pr(X) = 1/6
1/2 = 1/3, but

Pr(Y ) = 1/6. Since Pr(X → Y ) 6= Pr(Y ), the conclusion of Lewis’s argument
clearly does not hold.

If the conclusion of triviality does not apply to real assignments of condi-
tional probability, that means something must have gone wrong in Lewis’s ar-
gument. To figure out where the problem arises, we can reconsider his three as-
sumptions: (1) the law of total probability, (2) the assignment Pr(A→ B|B) =
1, and (3) the assignment Pr(A → B|¬B) = 0. Note that the ability to iter-
ate The Thesis for right-nested conditionals entails that (2) and (3) are true:
PrB(A → B) = Pr(B|A ∧ B) = 1 and Pr¬B(A → B) = Pr(B|A ∧ ¬B) = 0.
This means that the error must lie with Lewis’s application of the law of total
probability. In fact, I will argue that Lewis’s conditional version of the law
of total probability does not follow from the axioms of probability theory and
is instead a substantial assumption beyond what would be plausible to an
advocate of The Thesis.

Before discussing how the law of total probability interacts with condi-
tional probability, it will be useful to revisit the rule for non-conditional
propositions. For any A and B, the law of total probability states that
Pr(B) = Pr(B|A) Pr(A) + Pr(B|¬A) Pr(¬A). We can prove this using the
ratio definition of conditional probability:

Pr(B|A) Pr(A)+Pr(B|¬A) Pr(¬A) =
Pr(B ∧A)

Pr(A)
Pr(A)+

Pr(B ∧ ¬A)

Pr(¬A)
Pr(¬A)

= Pr(B ∧A) + Pr(B ∧ ¬A) = Pr(B).

Lewis’s argument, however, relies on a conditional law of total probability:
Pr(A → B|C) Pr(C) + Pr(A → B|¬C) Pr(¬C). This rule, however, is not a
simple consequence of the axioms of probability theory as the non-conditional
rule is. Instead, Lewis’s conditional law of total probability relies on the
extra assumption of the operator theory, which I discuss in §4 and argue is
incompatible with The Thesis.
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We can use The Thesis to derive an alternative expression for the law of to-
tal probability for conditionals.10 Since B is a non-conditional proposition, the
law of total probability must hold with respect to the conditional distribution
PrA, so for any C:

PrA(B) = PrA(B|C) PrA(C) + PrA(B|¬C) PrA(¬C).

We can then apply The Thesis for non-conditional propositions to re-write
this:

PrA(B) = PrA(C → B) PrA(C) + PrA(¬C → B) PrA(¬C).

Using probabilistic export-import and The Thesis, we can expand this to an
expression involving only the original probability distribution Pr:

Pr(A) Pr(A→ B) = Pr(A∧C → B) Pr(A∧C)+Pr(A∧¬C → B) Pr(A∧¬C).

Note that this expression follows simply from The Thesis and the laws of prob-
ability theory. The rule used in Lewis’s argument, on the other hand, depends
on further assumptions about how conditionals behave under probability op-
erators and is not a consequence of the rules for probability.

Using this version of the law of total probability for conditionals, we can
see that the triviality result does not go through. The triviality result followed
from setting C = B in the conditional law of total probability. If we do this,
we get

Pr(A) Pr(A→ B) = Pr(A∧B → B) Pr(A∧B)+Pr(A∧¬B → B) Pr(A∧¬B) =

Pr(A ∧B → B) Pr(A ∧B) + Pr(A ∧ ¬B → B) Pr(A ∧ ¬B) =

1 ∗ Pr(A ∧B) + 0 ∗ Pr(A ∧ ¬B) = Pr(A ∧B),

which is just the ratio definition of conditional probability, Pr(A → B) =
Pr(A∧B)

Pr(A) .
This shows that Lewis’s triviality result makes an assumption which is at

odds with The Thesis. While The Thesis entails a natural way to calculate
total probability for a conditional, Lewis uses an alternative calculation which
does not follow from The Thesis or the laws of probability. This casts doubt on
Lewis’s assumption, which will be revisited as a consequence of the operator
theory of conditionals in §4.

3 Bradley’s Triviality Result

I have argued that Lewis’s triviality result is at odds with The Thesis because
of the version of the conditional law of total probability it relies on. It is nat-
ural to wonder whether a similar explanation can be given for other triviality
results. One of the most popular such triviality arguments is that of Bradley

10Note that this expression, as well as a criticism of Lewis’s argument along these lines, is
also found in Egré and Cozic (2011).
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(2000). Bradley argues that any probability distribution which satisfies the
preservation condition is subject to triviality, where the preservation condition
states that if Pr(A) > 0 and Pr(B) = 0, then Pr(A → B) = 0. The Thesis
actually entails the Preservation Condition: if Pr(B) = 0, then Pr(A∧B) = 0,

so Pr(B|A) = Pr(A∧B)
Pr(A) = 0, provided Pr(A) > 0.

Bradley’s argument suggests that ascribing probabilities to conditionals
allows us to contradict the preservation principle.11 He assumes that we have
a language with propositions A, B and A → B such that A 6|= B and
A → B 6|= B. From this, he concludes that there must be a probability
distribution Pr such that Pr(A) > 0, Pr(A → B) > 0, and Pr(B) = 0, vio-
lating the preservation principle. This follows from a standard view of logical
consequence, where X |= Y iff Y is true in every world where X is true, so
if X 6|= Y , there must be a world where X is true and Y is not, and we can
choose a Pr assigning positive probability to this world but zero probability
to all Y worlds.

However, this argument again makes an assumption at odds with The
Thesis. Even though A→ B 6|= B, every world which contributes probability
to A → B is a world where both A and B are true, so it also contributes
probability to B. To see this more directly, suppose Pr(A → B) > 0, where
Pr(A → B) = PrA(B) =

∑
ω∈Ω PrA(ω)χB(ω). Since this sum is greater

than 0, there is a world ω such that χB(ω) = 1 and PrA(ω) > 0. Since

PrA(ω) = Pr(ω)χA(ω)
Pr(A) and PrA(ω) > 0, Pr(ω) > 0. Then since Pr(ω) > 0

and χB(ω) = 1, ω contributes probability to Pr(B) =
∑
ω∈Ω Pr(ω)χB(ω), so

Pr(B) > 0. Thus, we cannot conclude from the fact that A → B 6|= B that
there is some Pr such that Pr(A → B) > 0 but Pr(B) = 0, as required in
Bradley’s argument.

Thus, Bradley’s argument assumes that, since A→ B 6|= B, there must be
a world in Ω which we can assign probability to that contributes to Pr(A→ B),
but not to Pr(B). If we accept The Thesis as formulated in the possible
worlds framework, however, this is not the case. Like Lewis’s result, Bradley’s
argument relies on an assumption at odds with The Thesis. In the next section,
I argue that this is not a coincidence; both of these principles follow from the
operator theory of conditionals, which is incompatible with The Thesis.

4 The Operator Theory and Triviality Results

I have argued that the triviality results of both Lewis and Bradley make as-
sumptions which are not supported by The Thesis. These assumptions, how-
ever, follow from a semantic picture of conditionals which I call the operator
theory. According to the operator theory, the conditional connective → joins
two propositions, A and B, to form a new proposition A → B. The opera-
tor theory assumes not just that A → B is a new proposition, but also that
A→ B embeds under other operators as a stand-alone proposition. The main

11My presentation here follows Khoo and Santorio (2018).
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competing approach to the operator theory is the restrictor theory, which ar-
gues that the antecedent of the conditional serves to restrict other operators
rather than to combine with the consequent to form a stand-alone proposition.
The restrictor theory does not, however, entail that a bare conditional is not
a proposition: for Kratzer (1986, 2012), for example, bare conditionals have a
covert necessity modal ‘must’ which serves as the operator that the antecedent
restricts, allowing for a propositional account of bare conditionals.

We can understand the difference between the two theories by considering
the logical form of sentences of interest in this paper:

(1) The probability that if A, then B is α.

Here, the conditional expression ‘If A, then B’ is embedded under a prob-
ability operator, ‘the probability of P is α’, which applies to some proposition
P .12 According to the operator theory of the conditional, the conditional ‘If
A, then B’ embeds as a proposition PA→B, so the logical form of (1) is:

(2) The probability that PA→B is α.

On the restrictor theory of the conditional, however, the antecedent of the
conditional functions to restrict the domain of a modal operator rather than
to join with the consequent to form a proposition. In the case of (1), the
modal operator is the probability operator, so the logical form is:

(3) The probability, given A, of B is α.

The difference between the operator and restrictor theories becomes clearer
if we write down the probability operator more explicitly, following the discus-
sion in §1. For a proposition B and a probability distribution over accessible
worlds (Ω,Pr), the probability ofB is α iff Pr(B) =

∑
ω∈Ω Pr(ω)χB(ω) = α; we

can write this as [[Pr(B) = α]]w,Ω = 1. Then, assigning a probability to condi-
tionals, or interpreting the semantics of (1), requires specifying the truth condi-
tions of [[Pr(A→ B) = α]]w,Ω. On the operator theory, the conditional A→ B
is a proposition PA→B with characteristic function χA→B, so [[Pr(A → B) =
α]]w,Ω = [[Pr(PA→B) = α]]w,Ω = 1 iff Pr(PA→B) =

∑
ω∈Ω Pr(ω)χA→B(ω) = α.

On this approach, the conditional embeds under probability operators as any
other proposition does; the probability of the conditional is given by the ex-
pected value of the associated characteristic function.

On the restrictor theory, however, the conditional does not function as
a stand-alone proposition; in fact, the language does not even have a proper
conditional connective. Instead, we can treat the antecedent if-clause as adding
an extra argument which restricts the domain of the probability operator.
In this case, we can write the semantics of (1) as [[Pr(if A)(B) = α]]w,Ω =

12For more on modal operators in general, see Kratzer (1981, 2012), and on probability
operators specifically, see Yalcin (2007, 2010).
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[[Pr(B) = α]]w,Ω+A, where Ω+A is the probabilistic context (or modal domain)
updated by A. We expect the updated probabilistic context to be restricted to
those worlds where A is true, ΩA, with the probability distribution Pr updated
to the distribution PrA.13 Thus, [[Pr(B) = α]]w,Ω+A = [[PrA(B) = α]]w,ΩA ,
which is equal to [[PrA(B) = α]]w,Ω since PrA is the same over both Ω and ΩA.
Therefore, on the restrictor theory, [[Pr(if A)(B) = α]]w,Ω = 1 iff PrA(B) =
α. Abusing notation, we can use the conditional symbol Pr(A → B) as a
placeholder for Pr(if A)(B); in this case, the probability of the conditional
Pr(A → B) is given by the conditional probability PrA(B). Thus, on this
approach to probability operators and domain restriction, the restrictor theory
entails The Thesis.

This shows that, on this approach to probability operators and domain
restriction, the restrictor theory entails The Thesis. For the operator theory
of the conditional, on the other hand, The Thesis is a substantial assump-
tion which may be false. In fact, the triviality results show that the operator
theory is incompatible with The Thesis. First, I will argue that the two prob-
lematic assumptions highlighted for Lewis’s and Bradley’s results follow from
the operator theory. Then, using Hájek’s (1989, 2012) ‘Wallflower Argument’
and following Egré and Cozic’s undefinability argument, I will provide a more
direct argument that the operator theory is inconsistent with The Thesis.

For Lewis’s result, the problematic assumption is the conditional law of to-
tal probability, Pr(A→ B) = Pr(A→ B|C) Pr(C) + Pr(A→ B|¬C) Pr(¬C).
On the operator theory, A → B embeds under probability operators as a
proposition, so Pr(A → B|C) = Pr(PA→B|C). Using the definition of condi-

tional probability, this becomes Pr(PA→B∧C)
Pr(C) , which is just Pr((A→B)∧C)

Pr(C) . This
consequence of the operator theory validates Lewis’s conditional law of total
probability:

Pr(A→ B|C) Pr(C) + Pr(A→ B|¬C) Pr(¬C) =

Pr(C ∧ (A→ B))

Pr(C)
Pr(C) +

Pr(¬C ∧ (A→ B))

Pr(¬C)
Pr(¬C) =

Pr(C ∧ (A→ B)) + Pr(¬C ∧ (A→ B)) = Pr(A→ B).

Thus, the operator theory of conditionals validates this assumption of Lewis’s
triviality argument.

Similarly, the operator theory confirms the principle needed for Bradley’s
triviality result: if A 6|= B and A→ B 6|= B, then there must be a probability
distribution Pr such that Pr(A) > 0, Pr(A→ B) > 0, and Pr(B) = 0. To see
that this is true, assume A 6|= B and A → B 6|= B. Then we can find worlds
ω1 and ω2 such that χA(ω1) = 1 and χA→B(ω2) = 1 but χB(ω1) = 0 and
χB(ω2) = 0. Let π be a probability distribution assigning positive probability
to both ω1 and ω2 and 0 to all other worlds. Then π(A) > 0 and π(B) = 0,
and the operator theory specifies that π(A→ B) =

∑
ω∈Ω π(ω)χA→B(ω) > 0.

13An argument for why conditional probability is natural to use for the restrictor theory
is given in Egré and Cozic (2011).
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Thus, π is a distribution satisfying π(A) > 0, π(A → B) > 0, and π(B) = 0,
violating the preservation condition and leading to the conclusion of Bradley’s
triviality result.

These arguments show that the operator theory of conditionals validates
the principles underlying Lewis’s and Bradley’s triviality results which conflict
with The Thesis. However, it is worth noting that both Lewis’s and Bradley’s
arguments make additional assumptions: Lewis assumes the probability as-
signments Pr(A → B|B) = 1 and Pr(A → B|¬B) = 0 and Bradley assumes
the preservation condition. Since I argued that these assumptions follow di-
rectly from The Thesis, this suggests that the operator theory and The Thesis
are incompatible.

However, we can provide a more direct line of argument to show that the
operator theory and The Thesis are incompatible, even without these addi-
tional assumptions; this is Hájek’s (1989, 2012) ‘Wallflower’ argument. For
a simple version of the argument, consider Hájek’s example of a fair three-
ticketed lottery. Since there is one winning ticket, there are three possible
worlds ω1, ω2, ω3 corresponding to each of the three tickets winning, and each
world has probability Pr(ωi) = 1/3. According to The Thesis, the proba-
bility that ‘If ticket 1 or 2 wins, then ticket 1 wins’ is 1/2, but 1/2 is not
attainable as the probability that some proposition is true; assuming the op-
erator theory, the only possible probabilities for the conditional proposition
are sums of Pr(ωi): 0, 1/3, 2/3, and 1. This shows that, if the operator the-
ory is correct, there is some probability space (Ω,Pr) such that The Thesis
Pr(A → B) = Pr(B|A) is untenable on (Ω,Pr), so The Thesis cannot hold
universally. In fact, Hájek’s argument extends further: for any finite (Ω,Pr)
with non-trivial Pr and |Ω| > 2, there is a conditional probability value which
cannot be attained as the probability of any proposition. Hájek’s Wallflower
argument shows that the operator theory is incompatible with The Thesis
without any additional assumptions. Note, in addition, that neither The The-
sis nor the restrictor theory impose the requirement that the probability of the
conditional is the probability that a proposition is true, so Hájek’s argument
is not applicable without assuming the operator theory.

5 Restrictor Conditionals Without Triviality

I have argued that The Thesis only gives rise to triviality under the assump-
tions of the operator theory: the results of Lewis, Bradley, and Hájek all rely
on assumptions which are at odds with The Thesis, but which follow from the
operator theory. I have also argued that the restrictor theory is a competitor
to the operator theory which entails The Thesis and, without the assumption
of the operator theory, can avoid the triviality results. However, Charlow
(2016) provides new interpretations of the triviality results intended to apply
to the restrictor theory.

Charlow’s results, however, do not succeed in establishing triviality for re-
strictor conditionals. This is because his arguments make use of assumptions
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from the operator theory which are at odds with the restrictor interpretation.
Charlow follows Kratzer in interpreting a bare conditional as a restricted ne-
cessity modal, so the conditional ‘If A, then B’ is interpreted as the modal
must(A)(B), which requires that B must be the case when A is added to the
body of information. Using→ to represent the conditional and Ω to represent
the body of information, this means that [[A → B]]w,Ω = [[must(A)(B)]]w,Ω =
[[must(B)]]w,Ω+A, representing a standard interpretation of conditional seman-
tics on the restrictor theory.

However, Charlow takes the restrictor theory to define a conditional propo-
sition, or a set of possible worlds in which the conditional is true, and embeds
the conditional under probability operators as if it were a stand-alone proposi-
tion. While the first assumption, that the conditional defines a proposition, is
true on many restrictor theories, the second assumption utilizes the operator
theory rather than the restrictor theory. Charlow makes use of the operator
theory in his arguments by invoking the two principles identified as problem-
atic in the arguments of Lewis and Bradley. In applying Lewis’s triviality
argument to restrictor conditionals, Charlow (2016, p. 547) assumes Lewis’s
version of the conditional law of total probability:

Pr(must(A)(B)) = Pr(must(A)(B)|B) Pr(B) + Pr(must(A)(B)|¬B) Pr(¬B).

However, this implicitly makes the assumption that any propositional account
of the conditional also requires that conditionals embed under probability
operators as stand-alone propositions. Furthermore, this assumption is one
which the restrictor theory of conditionals is designed to challenge: condition-
als do not embed under modal operators as stand-alone propositions, with
the antecedent instead serving to restrict the modal domain over which the
consequent is evaluated. The same problem arises for Charlow’s extension of
Bradley’s triviality result to restrictor conditionals, which relies on the condi-
tion identified as problematic in §3, which Charlow refers to as the Existence
Lemma (p. 554).

Charlow could respond by claiming that a probability function need not
always represent an overt probability operator. While such an overt operator
is clearly present in a sentence like ‘The probability that if A, then B is p,’
it would not be present if the probability represents an agent’s credence or
subjective probability in the conditional ‘If A, then B.’ In this case, it may be
natural to think that, even on the restrictor theory, the agent’s credences must
target the conditional proposition must(A)(B). In this case, the conditional
would embed in the probability function (no longer conceived of as a modal
operator) as a proposition, allowing one to make use of the assumptions from
Lewis’s and Bradley’s triviality results and to prove that triviality also applies
to the restrictor semantic theory.14 This seems to be Charlow’s approach: ‘if
the conditional expresses a proposition, we may (indeed, should) flatly insist
that the probability of that proposition must, e.g., obey the Law of Total

14This objection to the restrictor analysis of triviality is raised explicitly in Rothschild
(2013).

13



Probability’ (p. 538, n.6). This assumption is also perfectly consistent with
the restrictor semantics: if there is no overt probability operator, the restrictor
semantics does not specify how one must interpret a conditional within the
scope of a credence or subjective probability function.

However, this becomes problematic if we adopt a more general restrictor
principle: whenever a conditional is evaluated within a set of possible worlds,
the antecedent restricts the domain of worlds rather than combining with
the consequent to produce a stand-alone proposition. A consequence of this
principle is that, whenever we evaluate the probability of a conditional ‘If A,
then B’ within a probabilistic context (Ω,Pr), we do so by restricting the
context by the antecedent A to (ΩA,PrA) and evaluating the probability of
the consequent in this context. In the last section, I argued that the restrictor
semantics for overt probability operators is a special case of this: the modal
domain of the probability operator supplies the probabilistic context and the
restrictor semantics tells us to evaluate the conditional by restricting this
context.

If the probability function represents subjective probability rather than
an overt modal, we can develop an analogous restrictor epistemology of con-
ditionals from the restrictor principle. Generalizing both Stalnaker’s (1984)
model where an agent’s beliefs are represented by a set of possible worlds and
Bayesian epistemology where an agent’s beliefs are represented by a credence
function (Hartmann and Sprenger, 2010), we can represent an agent’s beliefs
by a probabilistic context (Ω,Pr). Then, when an agent evaluates his or her
credence in a conditional ‘If A, then B,’ the restrictor principle tells us that
the agent should restrict the probabilistic context to (ΩA,PrA) and evaluate
B in this context. This is reminiscent of the suppositional approach to the
conditional (Edgington, 1995), which can be summarized by Ramsey’s sugges-
tion that agents evaluate a conditional p → q by ‘adding p hypothetically to
their stock of knowledge and arguing on that basis about q’ (Ramsey, 1990,
p. 155). On this epistemology, applying a credence function to a conditional
yields the same result as embedding a conditional under an overt probability
operator: the probability of the conditional is not calculated as the likelihood
that the conditional proposition is true, but rather as the likelihood that the
consequent is true on the supposition of the antecedent. As before, this en-
tails The Thesis and is at odds with the problematic assumptions of Lewis’s
and Bradley’s triviality results, which follow from an operator epistemology
of conditionals.

The restrictor principle is a plausible generalization of restrictor seman-
tics and leads to a compelling and familiar epistemology for the probability of
conditionals. Furthermore, such an alternative to the operator theory is nec-
essary for The Thesis to hold without triviality. As soon as one introduces an
operator interpretation of the conditional within a probabilistic context, any
attempt to implement The Thesis results in triviality. This is what happens in
Charlow’s results: while he utilizes a restrictor semantics of the conditional,
he assumes that the conditional interacts with the probabilistic context as
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an operator rather than as a restrictor. If one adopts the general restrictor
principle, this assumption fails to hold and Charlow’s triviality arguments no
longer apply to the restrictor theory.

This shows that Charlow’s arguments that the restrictor theory is subject
to triviality rely on an operator interpretation of conditionals. While this op-
erator interpretation is not explicitly ruled out by the restrictor semantics, it is
likely an assumption many advocates of the restrictor theory would take issue
with. This challenge also arises for other recent triviality results which may
be thought to apply to the restrictor theory. Korzukhin (2014), for example,
develops a triviality result aimed at context-sensitive conditionals which also
relies on the version of conditional total probability which follows from the
operator theory (p. 182). One can avoid these triviality results by adopting
the general restrictor principle, where conditionals restrict any set of worlds
they are evaluated within.

6 Conclusion

In this paper, I provided an interpretation of The Thesis that Pr(A → B) =
Pr(B|A) in a possible worlds formalism and argued that the triviality results
make assumptions which are at odds with The Thesis. I showed how these
assumptions follow from the operator theory of conditionals and how rejecting
the operator theory in favor of the restrictor theory can avoid the triviality
results. Furthermore, I argued that recent attempts to attribute triviality
to restrictor conditionals fail insofar as they make assumptions which follow
from the operator theory. The plausibility of The Thesis and its relationship
with the restrictor theory of conditionals provides evidence for abandoning the
operator theory as a way of evaluating conditionals in a probabilistic context.
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