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1. Introduction 

Some of our reasoning is strictly deductive; we conclude that the available evidence 
supports a certain claim as a matter of logical necessity. For example, the following 
reasoning is deductive, since it is not possible for the conclusion to be false if both 
premises are true.  

(1) Every F is G, and x is F. Therefore, x is G. 

Often, however, we are not in a position to produce a deductive argument; often we 
can only establish that the evidence supports the conclusion to a high degree of 
probability. Such inductive reasoning, as it is normally called, is in turn divisible 
into two types, according to whether or not it presupposes that the universe or some 
relevant aspect of it is law-like, or rule-governed. Reasoning that does not require 
this presupposition may be classified as statistical, since the evidence described by 
the premises supports the conclusion for purely mathematical reasons. For example, 
the following inductive reasoning is statistical:  

(2) Almost every F is G, and x is F. Therefore, x is G. 

Here it is rational to reach the conclusion even though it does not follow as a matter 
of logical necessity, for the probability of x’s being G is, given the facts, much 
higher than the probability of x’s not being G (other things being equal). The sec-
ond type of inductive reasoning is generally classified as Humean, after the phi-
losopher who first studied it thoroughly, and corresponds to those arguments that do 
require the presupposition of law-likeness. The following is an example: 

(3) Every F previously observed was G, and x is F. Therefore, x is G. 

Again, the conclusion does not follow as a matter of logical necessity, so the argu-
ment is nor deductive. Yet the available evidence gives excellent reasons to believe 
in the conclusion rather than in its negation. Unless the relationship between being 
F and being G is random, the evidence strongly suggests the existence a law to the 
effect that every F is G. 
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Humean arguments are of great practical utility, since we often need to reach 
conclusions and make decisions on the basis of evidence that is neither conclusive 
(thus preventing us from reasoning deductively) nor complete (preventing us from 
reasoning statistically). The presupposition of law-likeness, however, plays a cru-
cial and controversial role, and figuring out exactly what role it plays is no straight-
forward business.  

2. The Game of the Rule 

Consider the following familiar game. X thinks of a certain sequence (say, a se-
quence of numbers) and Y must figure out what the sequence is. To get started, X 
gives an initial fragment of the sequence. Y must look at it carefully and, on the ba-
sis of what she sees, she must try and figure out how the sequence continues. Which 
is to say: she must figure out the underlying pattern, uncover the rule by means of 
which the sequence is generated.  

For example, let us focus on (infinite) number sequences. If X’s initial segment 
looks like this: 

(A) 1, 3, 5, 7, 9, 11, … 

then Y is likely to come up with a quick and reasonable guess: The sequence must 
consist of the positive odd integers, in their natural order. If the initial segment 
looks like this: 

(B) 1, 2, 3, 5, 7, 11, … 

then, again, Y may easily figure out how to continue—hence the rule by means of 
which the sequence is generated: This is the ordered sequence of the prime num-
bers, i.e., the positive integers that do not have any other integer factors except for 1 
and themselves. If Y guesses the rule within the allotted time, she wins the game. 
Otherwise X wins. 

Now, some cases are more challenging than others, of course, and this is where 
the game gets interesting. For instance, consider the segment 

(C) 1, 3, 6, 10, 15, 21, 28, … 

This is the beginning of the sequence of the so-called triangular numbers, namely, 
those numbers that equal the sum of consecutive integers beginning with 1. More 
precisely, the rule underlying this sequence is that the nth element, Sn, is the sum of 
the first n positive integers: 

(C*) Sn = 1 + 2 + 3 +… + n. 
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(For example, the fourth triangular number is 10 = 1 + 2 + 3 + 4.) One may want to 
run a test and see how people actually perform, but a good guess would be that in 
this case it takes more thinking to figure out the solution. Y might even object that 
she has never heard of the triangular numbers—whereas she had heard of even and 
prime integers—so how could she figure out the rule? Still, X may just answer that 
one need not know what a triangular number is in order to see the pattern. With 
some patience, Y could still figure out that the sequence obeys the rule defined in 
(C*). Or she could figure out the rule under a different, more intuitive description. 
For example, Y might realize that the numbers in the sequence correspond to the 
different ways in which we can form a triangular array of dots, or bowling pins, or 
billiard balls, as in the following diagram: 

 
1 3 6 10 15 21 28  

So Y could describe the sequence in terms of this intuition: 

(C**) Sn+1 = the smallest number of dots (pins, balls) that are needed to form a trian-
gular array of size greater than Sn, starting from S1 = 1. 

(This is actually why these numbers are called triangular, in analogy with the 
square numbers, which correspond to the different ways in which we can form a 
square array of dots.) How one comes up with the rule and how one describes it—X 
may insist—is not important in order to win the game. It is only important in a 
derivative sense, namely insofar as it makes the game playable by people with 
different backgrounds. The game is interesting precisely because the mental process 
whereby the rule is uncovered may involve different sorts of cognitive insight. 

In fact, it is worth noting that although in these examples the rule by means of 
which the sequence is generated is essentially determined by its number-theoretic 
properties, it need not be so in general, even if the sequence consists of numbers. 
For instance, suppose X offers the following segment: 

(D) 1, 22, 333, 4444, 55555, … 

This is the beginning of an obvious sequence and, as it turns out, there is a mathe-
matical key to this sequence, corresponding to the equation 

(D*) Sn = n · 
(10n – 1)

 9  . 

But of course Y is more likely to describe the sequence on the basis of a different cri-
terion, which reads the rule directly off the visual pattern exhibited by its elements: 
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 1 One 1 
22 Two 2s 
333 Three 3s 
4444 Four 4s 
55555 Five 5s 
M M 

In that case, Y’s rule would not be (D*) but rather something like this: 

(D**) Sn = the string consisting of the number n repeated n times. 

X himself, in giving the initial segment, may have thought of the sequence in terms 
of (D**), not (D*), so the fact that there is a number-theoretic description of this se-
quence is entirely irrelevant. And in some cases there is no number-theoretic de-
scription at all, as in 

(E) 1, 3, 4, 5, 7, 8, 9, 12, 14, 17, 18, … 

Here X may be thinking of a rule that can be defined with reference to a linguistic 
property and that concerns the numerals, not the numbers: 

(E*) Sn = the nth integer whose name in English has an even number of vowels. 

A favorite example of this sort is actually one that does not depend on purely lin-
guistic considerations, just as it does not depend on purely arithmetical considera-
tions, and is due to the American mathematician John Conway:1 

(F) 1, 11, 21, 1211, 111221, 312211, 13112221, … 

Is there a rule behind this sequence? If we look for a purely arithmetical or linguis-
tic key, we won’t find any. We must look at the sequence from a different perspec-
tive. Exactly what perspectives one may consider is of course hard to tell. But if we 
start reading the sequence aloud we might get a clue. Let’s not read it like this: 

 1 One       
11 Eleven        
21 Twenty-one      
1211 One thousand, two hundred, eleven  
111221 One hundred eleven thousand, two hundred, twenty-one 
312211 Three hundred twelve thousand, two hundred, eleven 
13112221 Thirteen million, one hundred twelve thousand, …  
M M 

                                                
1 J. H. Conway, ‘The Weird and Wonderful Chemistry of Audioactive Decay’, Eureka 46 (1986): 5-16. 
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Let us read it like this: 

 1 1        
11 One 1        
21 Two 1s       
1211 One 2 and one 1       
111221 One 1, one 2, and two 1s      
312211 Three 1s, two 2s, and one 1     
13112221 One 3, one 1, two 2s, and two 1s     
M M 

Then we suddenly realize what is going on: this is a “self-describing” sequence. It 
begins with 1 and then goes on to describe itself, in the sense that each subsequent 
term gives an “audioactive” description of its predecessor. The rule can be put thus, 
where ‘di|ri’ designates the string obtained by repeating ri times the digit di: 

(F*) If Sn is the string d1|r1 … dk|rk (di ≠ di+1 for all i < k), then Sn+1 is the string 
r1d1 … rkdk, starting with S1 = 1. 

3. The Rules of the Game 

So much for this familiar game. It takes a moment now to realize that the game is a 
good model of what goes on when we engage in Humean inductive reasoning. For 
the game of the rule is a familiar one, not only insofar as it is often played for fun, 
or for pedagogical purposes (elementary school teachers often rely on it to ex-
plain—for instance—certain basic arithmetical concepts and operations); it is also 
familiar precisely because we find ourselves playing it all the time in our daily in-
teractions with the world around us. We are constantly trying to figure out the rules 
or laws that govern the natural world, or the social world, or the stock market. We 
look at the facts and we try to figure out the underlying pattern, so as to predict 
what will happen next, exactly as we try to figure out the pattern of a sequence of 
numbers on the basis of an initial segment. We look at our history so far—that’s the 
initial segment—and we try to figure out the underlying rationale, so as to know 
what to expect next. It may sound metaphorical, but it wouldn’t be so far-fetched to 
claim that science as a whole is engaged in a game of this sort. Every F observed 
thus far is G (every number in the visible portion of the sequence is prime, for in-
stance), so we think that there is a law-like connection between being F and being 
G: we think that being F goes hand in hand with being G and we conclude that the 
next F in the sequence must be G, too That is precisely the idea behind Humean 
inductive reasoning. And there are researchers who would claim that being able to 
reason that way—to play such a game—is a distinctive trait of rational behavior. 
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Douglas Hofstadter and his research group, for instance, believe that this trait is 
close to the core—if not the core—of human intelligence, and that designing com-
puter programs capable of playing the game of the rule is the deepest and most fas-
cinating challenge that so-called “artificial intelligence” must face.2  

To fully appreciate the import of these claims, however, it is important that we 
now be explicit about a few things that we have so far been taking for granted. 
There are, in fact, two crucial implicit assumptions that must be satisfied in order 
for the game to be played correctly—two tacit Rules (with the capital ‘R’) that the 
players must observe.  

The first tacit Rule is that the initial segment by means of which the sequence 
is introduced should provide enough information for Y to figure out the solution. 
For instance, with  

(G) 1, 11, … 

rather than (F) as the sole piece of evidence, Y would hardly come up with the Con-
way sequence, simply because this initial segment is compatible with many other, 
more plausible solutions. The sequence could in fact continue in several ways, each 
of which corresponds to a different solution that “fits the data” equally well insofar 
as the data are fixed by (G). For example, it could continue in any of the following 
three ways: 

(Ga) 1, 11, 121, 1331, 14641, 161051, … 
(Gb) 1, 11, 111, 1111, 11111, 111111, … 
(Gc) 1, 11, 1, 11, 1, 11, 1, 11, 1, 11, … 

and each way would correspond to a completely different rule: 

(Ga
*) Sn = 11(n–1)  

(Gb
*) Sn = 1|n  

(Gc
*) Sn = 1 if n is odd, and Sn = 11 if n is even. 

There are obviously lots of possibilities, and for this reasons Y would be entitled to 
complain if all X gave her as a starter was just the small bit in (G). For the problem 
is not merely that one can come up with different answers; we have already seen 
that sometime the same sequence can be generated or described in accordance with 
more than one rule, as with (D*) and (D**). The problem is that in the present case 
the different answers would not be equivalent: they would describe different se-
quences, not the same sequence in different ways. 

                                                
2 Hofstadter’s views and early results in this area are documented in his book Fluid Concepts and 
Creative Analogies, New York: Basic Books, 1995. 
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So this is the first tacit Rule of the game, which we can approximately formu-
late as follows: 

R1 The initial segment must uniquely identify the sequence. 

The interesting question, of course, is whether this Rule can be successfully imple-
mented, or even whether it can be implemented at all. We shall come back to this 
question shortly. First let us mention the second tacit Rule of the game, which is 
equally important. This second Rule says that the sequence in question cannot be a 
random sequence. For example, it would be strange if X said that the sequence in 
(G) continued thus: 

(Gd) 1, 11, 3, 4, 5, 10, 7, 8, 9, 9, 10, 12, 12, … 

It would be strange because, on the face of it, this sequence appears to continue in a 
totally arbitrary fashion and there seems to be no way of subsuming it under a rule, 
hence no way for Y—or for anybody—to describe the sequence other than by lay-
ing out each term that compose it, one after the other. For the same reason, of 
course, it would be strange if Y insisted that (Gd) is on equal footing with (Ga)–(Gc). 
For (Ga)–(Gc) do exhibit a pattern, or so it seems, whether (Gd) does not. So, as a 
first approximation, the second Rule of the game can be put as follows: 

R2 The sequence must not be random, i.e., it must be rule-governed. 

In a way, R2 follows from R1. For if a sequence were random, then no proper ini-
tial segment could uniquely identify it. Hence, by contraposition, if there is a proper 
initial segment that uniquely identifies the sequence, as per R1, the sequence cannot 
be random. In fact, this is how randomness is often defined, at least since the pio-
neering work of Ray Solomonoff, Andrei Kolmogorov, and Gregory Chaitin in the 
mid 1960s: a sequence is random if it cannot be described more efficiently than by 
laying out the whole sequence itself.3 However, as we said, R1 may not be entirely 
in order as it stands, so it is convenient to formulate R2 independently. And again, 
we shall come back shortly to the important question—whether this second Rule 
can be properly implemented, or taken for granted. Right now the point is just that 
R1 and R2 are standardly assumed to hold whenever two players engage in a game 
of this sort, for otherwise there is no way one can succeed in guessing the sequence. 

                                                
3 The seminal works are R. J. Solomonoff, ‘A Formal Theory of Inductive Inference. Part I’, Infor-
mation and Control 7 (1964): 224–254; A. Kolmogorov, ‘Three Approaches to the Quantitative De-
finition of Information’, Problems of Information Transmission 1 (1965): 1–17; G. J. Chaitin, ‘On 
the Length of Programs for Computing Finite Binary Sequences: Statistical Considerations’, Journal 
of the ACM 16 (1969): 145–159.  
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4. Too Good to Be True 

So, are R1 and R2 in order? Not quite, unfortunately. Let us begin with R1. On 
closer look, this rule turns out to be just as crucial as it is unsatifiable—upsetting as 
this might sound to the players of the game. Let us first illustrate this negative fact 
with reference to the sort of cases that we have considered so far; then we may turn 
to generalizations.  

Consider again the example with which we began—the sequence correspond-
ing to the segment 

(A) 1, 3, 5, 7, 9, 11, … 

Surely we can all see a pattern here: the odd numbers. But how do we know that 
this is the pattern? How does Y know that this is the sequence X had in mind? Y 
doesn’t know it. She sees that every number in (A) is odd, and she sees that no odd 
number is missing, and since she is assuming that this initial segment uniquely 
characterizes the whole sequence, she concludes that the dots must be filled in by 
the odd numbers. That is, she concludes that the underlying rule must be this: 

(A*) Sn = 2n–1. 

Strictly speaking, however, she doesn’t know that this is the rule any more than she 
knows the truth of any generalization based on a limited amount of data. The gener-
alization is justified precisely because she is assuming that R1 is being observed. 
But how can that be right? How can the initial segment by means of which the se-
quence is introduced provide enough information for anybody to figure out the so-
lution and continue the sequence by filling in the dots accordingly? As Wittgenstein 
famously put it: “Whence comes the idea that the beginning of a series is a visible 
section of rails invisibly laid to infinity?”4  

Suppose Y says that the sequence in question consists of the odd numbers and 
X says: “No, it doesn’t. It consists of the odd digits repeated once, then repeated 
twice, then repeated three times, and so on. Here is what it would look like if I con-
tinued a little longer: 

(A') 1, 3, 5, 7, 9, 11, 33, 55, 77, 99, 111, … 

If you want me to be more precise, I can even spell out the rule in mathematic terms: 

(A**) Sn = 2n–1 mod 10, repeated (2n div 10) + 1 times, 

                                                
4 L. Wittgenstein, Philosophische Untersuchungen / Philosophical Investigations, ed. by G. E. M. 
Anscombe and R. Rhees, with an Eng. trans. by G. E. M. Anscombe, Oxford: Basil Blackwell, 1953, 
§ 218. 
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where mod is the function that returns the remainder of the division (of the first ar-
gument by the second) and div the function that returns the division without the re-
mainder.” Is Y entitled to complain?  

In a way she is: If that is the rule X had in mind, then X did not comply to R1 
because (A) does not amount to a uniquely identifying segment. In particular, it 
does not uniquely identify the sequence described in (A**), for the dots can be filled 
in in conformity to that rule as also in conformity to the rule that Y originally sug-
gested, (A*). Of course, this means that (A) does not uniquely identify the sequence 
of the odd numbers, either, so Y’s complaint is self-defeating. But never mind that. 
It is a fact that relative to (A**)—the rule that X had in mind and that B was sup-
posed to figure out—the segment in (A) is not informative enough, just as the short 
segment in (G) would not have been informative enough to identify the rule of the 
Conway sequence, (F*). So Y’s complaint is right on the mark. 

On the other hand, what is X to make of this complaint? What would count as 
an appropriate, uniquely identifying segment for the rule he had in mind? Suppose 
X gives the longer segment in (A') rather than (A). Would that be enough? It would 
not. It would be enough to rule out the hypothesis that his sequence consists of the 
odd integers. But many other sequences would still be compatible with that initial 
segment. The sequence might continue in conformity to the pattern X actually have 
in mind, but it might also continue according to a different pattern. For example, the 
sequence could consist of the perfect palindromic odds, i.e., those numbers that 
consist exclusively of odd digits and that are the same when written forwards or 
backwards. All the numbers in (A') are perfect palindromic odds. But whereas X’s 
sequence would continue thus: 

(A'a) …, 333, 555, 777, 999, 1111, … 

the rest of the sequence of the palindromic odds would contain several additional, 
intermediate elements: 

(A'b) …, 131, 151, 171, 191, 313, 333, … 

Needless to say, even (A'a) would be ambiguous as an input for guessing X’s rule, 
for one may still think of different ways of continuing the series. The more we go 
on —the longer the initial segment is—the more the alternatives look convoluted 
and, in some way, “unnatural”. But this is precisely the point. It is not R1 by itself 
that imposes a plausible constraint on the game, for R1 can never be satisfied: any 
finite segment can be continued in an infinite number of ways, just as any line-
segment drawn on a sheet of paper can be extended in an infinite number of ways. 
Rather, the constraint comes from R1 together with the additional implicit assump-
tion that the sequence in question must be a “natural” sequence. And sad as it might 
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sound, it is a fact that what looks “natural” to Y may very well not coincide with 
what looks “natural” to X—and vice versa.  

It takes a moment now to realize how important this is when it comes to play-
ing the game for real—when the player to issue the initial segment is not just some-
one like us but the world itself. A sequence of observed events may suggest that a 
certain pattern is in place and we—playing the role of player Y—eventually come 
to think of that pattern as revealing a corresponding law of nature. But this is not to 
say that the observed events uniquely identify that law. And if the next observed 
event is not what we expected, we can hardly voice a complaint on the grounds that 
the resulting sequence looks “unnatural”. We must simply admit that we were 
wrong, and learn to live with the possibility that out next guess will be off the mark, 
too. Such is the limit of our inductive practices, when they are not merely statistical 
but strictly Humean.5 

Let us now look at our second meta-Rule, R2. Indeed, it might be thought that 
this is precisely the point where R2 enters the picture. This second Rule says that 
the sequence to be guessed must not be random, i.e., it must be rule-governed. And 
for all that has been said so far, the fact that any initial segment can be continued in 
many different ways does not mean that it can be continued in many rule-governed 
ways. The segment in (A) can, as also the longer segment in (A'). But perhaps a 
sufficiently longer segment could be provided that will admit only one rule-
governed extension. If so, then the impasse that we have just reached in connection 
with R1 would dissolve as soon as we plug in R2: it would be possible to uniquely 
identify a sequence by means of an initial segment (a sufficiently long one) on ac-
count of the fact that all the alternative ways of continuing the sequence would 
qualify as random and would therefore be unacceptable by R2. In fact that is pre-
cisely the intended role of this second Rule: earlier we said that R2 follows from 
R1, but now we see that R1 is empty unless some further constraint is added— and 
R2 provides such a constraint. 

Unfortunately, R2 turns out to be just as useless as R1. There are two ways of 
making the point. The first way goes back at least as far as Leibniz, who in the Dis-
course of Metaphysics addressed the question of whether and how one could dis-
criminate a world in which science applies from one in which it does not.6 Imag-
ine—he said— that someone jots down a quantity of ink spots upon a sheet of paper 
helter skelter (“as do those who exercise the ridiculous art of Geomancy”). Regard-

                                                
5 D. Hume, Enquiries Concerning Human Understanding, Sec. IV. The connection between Witt-
genstein’s views on rule following and Hume’s skepticism has been made explicit by S. A. Kripke 
in his book, Wittgenstein on Rules and Private Language, Cambridge (MA): Harvard University 
Press, 1982. 
6 G. W. Leibniz, Discourse of Metaphysics, Section VI.  
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less of the particular configuration that we get, Leibniz claimed that there will al-
ways be a continuous function whose graph passes through this finite set of points, 
a “geometrical line whose concept shall be uniform and constant, that is, in accor-
dance with a certain formula”. As far as we can tell, the existence of such a function 
was purely conjectured by Leibniz, but today we know that he was absolutely right. 
Many good ways to construct a function that does the job are now known. For ex-
ample, so-called Lagrangian polynomial interpolation will do.7 This is the sort of 
function that is implemented in most computer graphics programs: we click the 
mouse on each spot as we go over them, and the function returns a normalized 
curve that connects them all—like this: 

ink spots Lagrangian curve  

Now, if we take it that the existence of a suitable function is an indication of the 
fact that the pattern is not random, then it follows that no such pattern is random. 
And since it is plausible to suppose that every finite sequence can be represented by 
a corresponding pattern of ink spots, it follows that no finite sequence whatsoever is 
random. So here is the problem: when playing the game of the rule, there is no way 
X can provide an initial segment that is “sufficiently long” to admit of only one 
rule-governed extension. Any finite extension of any initial segment, no matter how 
long, will be non-random. Which is to say that R2 does not impose any restriction 
of the desired sort, leaving R1 in the trashcan. 

The second way of making the point is this. Suppose we rely on a more austere 
definition of randomness. Indeed, suppose we stick to the definition of randomness 
mentioned earlier, which today is widely accepted: a sequence is random if (and 
only if) it cannot be described more efficiently than by giving the whole sequence 
itself. In other words, although every sequence can be described by some func-
tion—as Leibniz pointed out—in some cases the function in question is too com-
plex to do the job efficiently, and we can take that to be a sign of randomness. If we 
stick to this definition, then we can be assured that there are random sequences, so 
the above problem does not arise. This is obvious for infinite sequences, since the 
total number of such sequences is uncountable, whereas there are only countably 
many efficient, finite descriptions. But it is easy to prove that there are also infi-

                                                
7 See for instance H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics, Cambridge: 
Cambridge University Press, 1983, §9.011. (The label comes from the Italian mathematician Joseph-
Louis Lagrange, who discovered the method over a century after Leibniz’s conjecture.) 
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nitely many random sequences of finite length, at least if the language in which the 
sequences are coded is the same as the language available to describe them. (Re-
gardless of the alphabet, the number of sequences consisting of n symbols is always 
greater than the number of all sequences consisting of fewer symbols, hence greater 
than the number of all descriptions of length less than n.8) Does this help? 

Unfortunately it doesn’t. The problem is not that this more austere definition of 
randomness depends on a notion of “efficient” description that appears to be vague. 
We could make that more precise. Rather, the problem is that this more austere no-
tion of randomness turns out to be undecidable. That is, it can be proved that there 
exists no effective decision procedure (intuitively: no procedure that can be imple-
mented as a computer program) that will always deliver a definite answer to every 
question of the form: Is this a random sequence? 

9 Sometimes we can deliver a 
negative answer. The sequence of the odd numbers, for example, or even a rea-
sonably long finite initial segment thereof, is not random because we can efficiently 
describe it by means of a rule such as (A*). Ditto for the sequence of the repeated 
odds, the sequence of the palindromic odds, and many other sequences considered 
above. However, in general we may not be in a position to determine whether a 
given sequence (finite or infinite) is random. All we can say, if we cannot come up 
with a corresponding rule, is that the sequence is random to the best of our knowl-
edge—and that is not enough. For example, at first sight the initial segment of the 
Conway sequence given in  

(F) 1, 11, 21, 1211, 111221, 312211, 13112221, … 

looks pretty random. Y might have tried to come up with an algorithm to describe it 
and she might have failed. So Y might have been inclined to conclude that the seg-
ment is the beginning of a random sequence, when in fact it isn’t. Likewise for 
(Gd): we have said that the series  

(Gd) 1, 11, 3, 4, 5, 10, 7, 8, 9, 9, 10, 12, 12, … 

looks random, but who knows—maybe one can come up with a way of describing it 
that does the job. This is particularly pressing in view of the fact that there are many 
ways of describing a sequence: as we have seen, the description need not be num-

                                                
8 If the alphabet contains k > 1 symbols, the number of all sequences consisting of n symbols from 
the alphabet is kn, which is greater than k1 + k2 + … + kn–1 for all n ≥ 1. Of course, if we only allow 
for certain sequences, i.e., if the sequences are coded in a language (say, the numerals) of lesser ex-
pressive power than the language available to describe them (say, English plus the language of num-
ber theory), then the result may not hold.  
9 See e.g. G. J. Chaitin, Information, Randomness and Incompleteness, Singapore, World Scientific, 
1987. 
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ber-theoretic, and it need not be in the format that comes to us most naturally. That 
is the lesson of the Conway sequence. (In fact, coming to think of it, even (Gd) may 
very well be the beginning of a non-random sequence. The rule  

(Gd
*) Sn = n if the English name for this integer has an even number of vowels, oth-

erwise Sn = (n mod 5) + 9 

fits the data perfectly well…) 
Now, why is this a problem? After all, Y knows that X is not thinking of a ran-

dom sequence, at least if X is playing in accordance with R2, so Y knows that the 
sequence she has to guess does admit of a suitable description. Well, the problem is 
that Y cannot do much of this piece of knowledge. She knows that X is not thinking 
of a random sequence, but she doesn’t know what this amounts to. Y doesn’t know 
what sequences are ruled out because she doesn’t have any effective procedure for 
telling what are the good candidates. She might believe that a certain way of con-
tinuing the initial segment is out because she might not be able to bring it under a 
rule—but she might just be wrong. Y might just be incapable of seeing the underly-
ing pattern, so she might treat that as a random sequence when in fact it isn’t. It 
might be precisely the sequence X is thinking about. 

So here is the picture in a nutshell. If we stick to a generic notion of random-
ness as lawlessness, no sequence is random and R2 is perfectly useless. If, on the 
other hand, we stick to the more austere definition of randomness as incompressi-
bility, then there are random sequences and R2 is fine as a matter of principle. Yet 
it is still useless when it comes to matters of practice. We may fully convince our-
selves that a given sequence complies with the no-randomness requirement. But we 
may not be in a position to determine with certainty whether a given sequence com-
plies with it. 

5. Playing the Game for Real 

So what are we left with? The “game of the rule”—it turns out—cannot be safely 
played. But why should that be a worry? After all, there are many other games that 
we can play, so why bother?  

Well, there are indeed many other games we can safely play, but as we have 
already pointed out, this one is a game that we cannot dismiss so easily. The game 
of the rule is a game that we play all the time, whenever we engage in Humean 
inductive reasoning. We play it whenever we try to figure out the mechanisms of 
the world we live in, the laws of nature and the laws of society. We don’t play it 
with number sequences but with the sequences of events that make up our history, 
when we try to make sense of them and see where they are leading to. And to say 
that this game cannot be played safely is not to say that we can stop playing it 
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game cannot be played safely is not to say that we can stop playing it altogether. 
At this point we have come to full circle and our story becomes a familiar one 

in the philosophy of science. Some think that the sort of skepticism that we have 
illustrated must be taken very seriously. For all we know, the world might not even 
be trying to play the game in accordance with R1 and R2, in which case our 
Humean inductive practices would just rest on a false presupposition. But even if 
the world were trying to play by the rules—even if the events with which we have 
to deal were fully in agreement with the presupposition of law-likeness—the fact 
that randomness phenomena cannot be effectively identified would be enough to 
justify a merely pragmatic attitude towards the endeavors of science. There is no 
way we can hope to “break the code”. We can only hope to play the game in such a 
way that we find satisfaction in the laws that we envision, just as we find satisfac-
tion in the social and political laws with which we try to regiment our daily interac-
tions with our peers. Others feel differently. Not only do they think that we should 
play the game on the assumption that the world is issuing its challenges in compli-
ance with R1 and R2; they also believe that we should not give up our hopes to get 
things right. After all, when we play the game for fun, we often win. We often suc-
ceed in uncovering the hidden pattern in spite of the difficulties that have been 
mentioned. Even if the initial segment that we are given does not uniquely identify 
the intended sequence, and even if we are not in a position to keep randomness un-
der control, we often hit the correct rule because the other options are just too far-
fetched to deserve serious consideration. So why not suppose that the same can 
happen when we play the game with the world of nature? All we have to do is to 
make sure that the world and we are on the same wavelengths, so to say—that what 
looks natural or far-fetched to us is indeed natural or far-fetched simpliciter. The 
history of science shows that sometimes we make mistakes, but that has never 
blocked scientists from pursuing their research with increased determination. On 
the contrary, the general thought has been that we can learn from such mistakes, 
and that we are getting closer and closer to winning the game at the next try.  

This is no place to dwell upon this controversial dialectics. We may choose our 
party as we see fit. But the underlying predicament is something that can be best 
appreciated once we begin to see this familiar dialectics from the standpoint we 
have been suggesting here. For, on the one hand, we should not overlook one im-
portant sense in which playing the game with the world of nature may be easier 
than playing it inter nos. When both X and Y are people like us, each will try to win 
the game; in particular, X will try to issue his challenge in such a way as to make it 
difficult for Y to come up with the right guess—he will make every effort to design 
a rule that would be very hard, if not impossible, to discover in real time. By con-
trast, there is no reason to suppose that this is how the world out there issues its 
challenges. The world is not an intentional agent and does not care about “beating” 
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us in the game, or so we may assume. In this sense, the practice of scientific induc-
tion need not be as hard as playing the game of the rule against a clever opponent 
trying to be smarter than we are, and the thought that we should try to be on the 
same wavelengths as the world is all but unreasonable. (That was indeed the main 
rationale behind Keynes’s principle of “limited variety”, a principle whose roots 
can be traced back to the philosophy of Francis Bacon:10 an object of inductive in-
ference should not be infinitely complex, nor determined by an infinite number of 
generators, and if we are assuming that the world is playing by the rules, we may 
well suppose that it is playing according to this additional principle, too.) On the 
other hand, there is also an important sense in which playing the game with the 
world of nature is not as easy as playing it inter nos. When we play, one player 
gives the beginning of the sequence and the other must figure out the rest. That may 
be tough, for the reasons that we have seen, but at least the input is clear—the first 
player is giving it explicitly. When we play with the world, by contrast, we must be 
careful. Not any series of events is on equal footing. We may witness the rising of 
the sun every morning and take that as an input for a law that we may reasonably 
formulate as a Humean inductive generalization. We might even think that it’s 
worth looking at the series of events that we get by tossing a coin, for it might not 
be a random sequence after all. But when we zap channels during a commercial 
break, for example, the series of events that follow one another on our TV screen is 
not worth looking at. When we check the sky every time we hiccup, the series of 
events that we thereby collect is not worth any serious study. This is not to say that 
such series are random; there might even be a pattern, surprising as that might be. 
(“Every time I watch the Yankees they lose.”) It’s just that such series are not inter-
esting. They don’t count, so to speak. And they don’t count because they would be 
there even if it turned out that we live in a totally deterministic world, a world 
where nothing is random and everything happens for a reason. To put it briefly, 
when we play with the world we have got to figure out which sequences to consider 
before we can start figuring out what they are, for the world does not tell us that. 
The world does not issue its challenges as explicitly as people do when they play 
with one another.  

Now, precisely this is the main difficulty with Humean inductive reasoning. 
We can live with randomness and we can live with the fact that randomness is un-
decidable. Science has learned to cope with that, one way or the other. We can even 
assume that the world—unlike clever human players—has no interest in beating us. 
But we must be careful because our cognitive make-up is such that we constantly 

                                                
10 See J. M. Keynes, A Treatise on Probability; New York: Macmillan, 1921, Ch. 22. Compare 

the beginning of Bacon’s Magna Instauratio and Book II of his New Organon. 
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look for patterns and trends even where there may be none. And there may be none, 
not because we may be dealing with random sequences, but because maybe there is 
no sequence to deal with. Maybe we are just exercising “the ridiculous art of Geo-
mancy”, as Leibniz put it, and that’s not a way to play the game. For in the end, 
when it comes to playing the game for real, the one tacit Rule that we can never 
rely on is also the most obvious and important of all: 

R3 The initial segment of the sequence must be given explicitly. 


