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The Mathematical Theory of Categories 
in Biology and the Concept of Natural 

Equivalence in Robert Rosen
Franck VARENNE*

Abstract: The aim of this paper is to describe and analyze the episte
mological justification of a proposal initially made by the biomathe
matician Robert Rosen in 1958. In this theoretical proposal, Rosen  
suggests using the mathematical concept of “category” and the cor
relative concept of “natural equivalence” in mathematical modeling  
applied to living beings. Our questions are the following: According to 
Rosen, to what extent does the mathematical notion of category give 
access to more “natural” formalisms in the modeling of living beings? 
Is the socalled “naturalness” of some kinds of equivalences (which the 
mathe matical notion of category makes it possible to generalize and 
to put at the forefront) analogous to the naturalness of living systems? 
Rosen appears to answer “yes” and to ground this transfer of the concept 
of “natural equivalence” in biology on such an analogy. But this hypo
thesis, although fertile, remains debatable.
Finally, this paper makes a brief account of the later evolution of Rosen’s 
arguments about this topic. In particular, it sheds light on the new role 
played by the notion of “category” in his more recent objections to the 
computational models that have pervaded almost every domain of bio
logy since the 1990s.

Keywords: theory of categories; theoretical biology; Robert Rosen; 
Nicolas Rashevsky; computational models.

Résumé : L’objectif de cet article est de rendre compte de la justification 
épistémologique de la proposition faite, dès 1958, par le biomathémati-
cien Robert Rosen d’introduire le concept mathématique de « catégo-
rie » et celui – corrélatif – d’« équivalence naturelle » dans la modélisation 
mathématique appliquée au vivant. Nos questions sont les suivantes : en 
quoi la notion mathématique de catégorie permet-elle, selon Rosen, de 
donner accès à des formalismes plus « naturels » pour la modélisation du 
vivant ? La naturalité de certaines équivalences (que la notion mathéma-
tique de catégorie sert justement à généraliser et à mettre en évidence) 
est-elle analogue à la naturalité des systèmes vivants ? Rosen semble faire 
fond sur cette dernière hypothèse, féconde, mais pourtant discutable.

 *  Franck Varenne, Université de Rouen, UFR LSH, Département de philosophie, rue 
Lavoisier, 76821 MontSaintAignan France, GEMASS, UMR 8598 (CNRS – Paris
Sorbonne université). Email: franck.varenne@univrouen.fr
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II

Franck VARENNE

Cet article propose ensuite de mesurer l’évolution des arguments de 
Rosen à ce sujet, en particulier dans ses conséquences apparemment 
décisives pour la critique des modèles computationnels du vivant, mo-
dèles aujourd’hui en pleine expansion. 

Mots-clés : théorie des catégories ; biologie théorique ; Robert Rosen ; 
Nicolas Rashevsky ; modèles computationnels.

Introduction
The mathematical concepts of “category” and “natural equiva
lence” have recently been closely linked. A part of theoretical 
biology has been rapidly overtaken by the mathematical concept 
of category, with the precise aim of defending the naturalness of 
a particular form of mathematical modeling of theoretical type 
in biology,1 and of fighting against what was seen as the artificial 
nature of modeling by calculation automata, and, more broadly, 
computer modeling, which had already begun its development in 
biochemistry, in physiology (metabolism), and in developmental 
biology (morphogenesis). In this, for some theoretical biologists, it 
was already a question of confronting the heart of the ontological 
and epistemological assumptions that implicitly underpin compu
tational approaches to formalized and quantitative biology.

1    In our specific context, and leaving aside the many characterizations and often com
peting epistemic functions of models, such as description, prediction, explanation, 
data reduction, and so forth, I will materially characterize a formal “model” as any 
kind of formal construct presenting a form of unity, simplicity, and homogeneity. For 
a review, see JeanMarie Legay, L'Expérience et le modèle (Paris: INRA, 1997) and 
Franck Varenne, “Fragmenter les modèles: Simulation numérique et simulation infor
matique,” in Biologie du xxie siècle: Évolution des concepts fondateurs, ed. Paul
Antoine Miquel (Brussels: De Boeck, 2008), 265–295. A glance at the literature on 
formal modeling—see Franck Varenne, “What Does a Computer Simulation Prove? 
The Case of Plant Modeling at CIRAD” in Simulation in industry’2001: 13th European 
Simulation Symposium, ed. Norbert Giambiasi and Claudia Frydman (Ghent, Belgium: 
SCS Europe, 2001), 549–554—quickly shows that even if, materially, two models may 
be similar (developing an identical mathematical formalism, for example), their epis
temic roles may vary depending on the degree and variety of ontological commitment 
they enjoy. We qualify a model as theoretical when it refuses to be only predictive or 
phenomenological (descriptive at the level of observables) or even mechanistic (having 
only local interpretation and applicability) and makes no claim to directly formulate 
laws, fundamental axioms, or rules of formal deduction valid for a whole field of rea
lity, as theoretical biologists believe that a theory of life will eventually do, but when 
it commits itself nonetheless ontologically at this level and claims to provide a first 
approximation of such principles or such laws for the entire domain. The morphoge
netic models proposed by René Thom are of this type, for example. See René Thom, 
Structural Stability and Morphogenesis (Reading, MA: W. A. Benjamin Inc., 1975).
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Revue d’histoire des sciences I Volume 66-1 I January-June 2013 III

The Mathematical Theory of Categories in Biology…

For the philosophy of biology in general and the epistemology of 
models in particular, as well as for the epistemology of what is 
known today as “computational biology,” this attempt to imple
ment the concepts of the mathematical theory of categories there
fore merits wider understanding and discussion. Long before 
contemporary revivals (notably due to the newly favorable con
text of postgenomic and neosystemic biology) and the everde
veloping trajectory of mathematized theoretical biology (which 
it might be more appropriate to term, more modestly, mathema-
tized conceptual biology) occurring since the 1950s, a number 
of theorists in biology were already attempting to make use of 
very abstract mathematics indeed. They did so in such a way as 
to at least make explicit, in contrast, the reductionist constraints 
imposed by the formalization of the living world in computational  
systems.2

The overall objective of this article, which is primarily historically 
oriented, is to ask whether this particular critique, on the concep
tual level, remains pertinent at a time when computational bio logy 
is expanding exponentially and appears to dominate the entire 
spectrum of modeling in biology. Despite the difficulties it has 
encountered, could an adaptation of mathematical categories to 
biology still be a source of inspiration for a mathematized concep
tual biology in our time?

We can’t hope to achieve this overall goal if we do not first try to 
reach a more accessible and particular objective, which we shall 
seek out in this article. It concerns the question of the true nature of 
this naturalness that theorists in biology of the 1950s believed they 
had recognized in the mathematical concepts of the theory of cate
gories, to the point of seeing therein an ideal for any type of mathe
matical modeling of theoretical type in biology. What naturalness 
are we actually discussing, when talking about the mathematical 

2    These constraints (and others) are highlighted today in the work of Giuseppe Longo and 
Francis Bailly, for example. See Francis Bailly and Giuseppe Longo, Mathematics and 
the Natural Sciences. The Physical Singularity of Life (London : Imperial College Press, 
2011)); Giuseppe Longo, “Des sciences exactes aux phénomènes du vivant, à partir 
de Schrödinger: Mathématiques, programme et modèles;” this article was originally 
published in 2008 in a book that is now out of print, but it has since been reprinted 
in Franck Varenne and Marc Silberstein, eds., Modéliser & simuler: Épistémologies et 
pratiques de la modélisation et de la simulation (Paris: Éditions Matériologiques, 2013), 
1:83–111.
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concept of categories, such as it seems to be applied to formal 
modeling in biology? Does natural equivalence, in the mathema
tical sense, have same nature as a modeling of life deemed “natu
ral” by these theoretical biologists? If not, what is the nature of the 
difference? We will see, in this case, that the theory of categories 
could have been more than a repository of formalisms—as is com
monly the case in most areas of mathematics when implemented 
as applied mathematics—and that it might have played a role as a 
veritable epistemological infrastructure for all future modeling in 
biology.

The opportunity to reflect on the applicability of the mathematical 
notion of categories to biology will therefore involve illuminating 
the link (or lack thereof) between mathematical naturalness as it is 
strictly defined in the context of this mathematical theory, and the 
judgment of greater or lesser naturalness which can be made by 
the modeling biologist on the subject of any given type of mathe
matical formalization he or she may implement to describe a bio
logical phenomenon.

In this paper, in order to narrow the question to the study of a 
specific corpus, we shall explore the pioneering work of Robert 
Rosen (1934–1998), who, in 1958, echoed an article by Samuel 
Eilenberg and Saunders MacLane.3 To contextualize events, 
the first section looks briefly at the evolution of the epistemo
logy of Nicolas Rashevsky (1899–1972), Rosen’s colleague and 
predecessor in theoretical biology. The second section presents 
Rosen’s first approach, based on notions of systems and graphs. 
The third section provides a review of some of the concepts of 
the theory of categories. The fourth section explains how Rosen 
came via these to his second approach, precisely that which 
brings into play the concepts of the mathematical theory of cate
gories and the notion of natural equivalence. The final section 
presents more recent developments of Rosen’s thought on these  
issues.

3    Samuel Eilenberg and Saunders MacLane, “General Theory of Natural Equivalences,” 
Transactions of the American Mathematical Society 58, no. 2 (September 1945):  
231–294.
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The “Biotopology” of Nicolas Rashevsky
In earlier work,4 I explained how and why the theoretical biolo
gist Nicolas Rashevsky gradually developed his epistemology of 
formalizations of the living world from molecular biophysics and 
population studies, inspired in the 1930s by Lotka,5 towards a 
topology of life—his biotopology—in the 1950s, passing through 
an intermediate stage in which he worked on an epistemology of 
formalization advocating direct mathematical modeling of biolo
gical functions in the 1940s.

From 1933 onwards, Rashevsky’s epistemology was clearly inspired 
by Lotka’s physicalism,6 along with that of D’Arcy Thompson. In his 
famous book On Growth and Form (1917),7 Thompson had tried to 
fight against the hegemony of biometric and statistical approaches 
to the morphogenesis of living beings. Through his notion of struc-
tural transformation, he brought to light the structural affinities 
between the morphologies of different species. In this, he empha
sized an idea that Rashevsky wished thereafter to relay and expand 
further, namely the idea that there is a unity to life beyond the 
full range of its structural manifestations. Rashevsky’s goal was 
to achieve the conception of a general theory of biology and the 
“organism as a whole.” In his first period, Rashevsky therefore 
attempted to go beyond the mechanicism of D’Arcy Thompson, 
taking physicalism seriously in all its generality—generalizations 
of physical theories other than the purely mechanical could be 
imagined, for example the electrical hypothesis of cell division, a 
hypothesis formulated and then explicitly rejected by Rashevsky 
when invalidated by experimental measurements. The epistemo
logical model for a mathematized biological theory is, then, that of 

4    Franck Varenne, “Le Destin des formalismes: Pratiques et épistémologies des modèles 
face à l’ordinateur” (PhD. diss, Université LyonII, 2004); Franck Varenne, “Nicolas 
Rashevsky (1899–1972): De la biophysique à la biotopologie,” Cahiers d’Histoire et de 
Philosophie des Sciences (2006): 162–163; Franck Varenne, Formaliser le vivant: Lois, 
théories, modèles? (Paris: Hermann, 2010), chapters 7, 14, and 15.

5    Alfred J. Lotka, Elements of Physical Biology (Baltimore: Williams & Wilkins Co., 1925); 
Lotka, Elements of Mathematical Biology, 2nd ed. (New York: Dover Publications, 
1956).

6    We can talk of physicalism in the sense that it is assumed here that the laws by which 
living things grow are—or will be—all reducible to the laws of physics.

7    D’Arcy Wentworth Thompson, On Growth and Form (Cambridge: Cambridge 
University Press, 1917), completely revised edition published in 1942 (Cambridge: 
Cambridge University Press), and reprinted in 1992 (New York: Dover).
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Einstein’s general relativity, with its revolutionary character in epis
temological terms. In biology, for Rashevsky, an extended mathe
matical physics was required to renew the concepts relevant to any 
formalization of living systems.

It was in the 1940s that Rashevsky eventually accepted that 
strict physicalism must be amended or, at least, coupled with an 
approach proceeding to a direct formalization of biological func
tions, for example ingestion, digestion, sensitivity, locomotion, 
and so forth. In the 1950s, coming to consider that the essence 
of a living being is not so much its particular physical structure, 
or even all of the biological functions it implements, but rather 
the system of dependency relationships between these functions, 
Rashevsky was led to call for the emergence of a relational bio-
logy.8 Relationships between functions are ultimately the essence 
of living forms because, according to him, they seem to present 
an invariance with respect to the diversity of the manifestations of 
these forms. An organization must be seen as a set of relationships 
between functions. And the unity of life is revealed by the fact 
that one can pass from the representation of one living system to 
another not by structural transformations, but rather, more gene
rally, by “functional transformations.”9 Functions can be replaced 
by groups of functions—represented as subgraphs in the oriented 
graph of functions—which globally have the same local function 
in the set of functions manifested by an organism. The graph of 
relations between functions of an organism is oriented, because 
some functions are necessary in order to ensure others—for exam
ple, ingestion always precedes digestion, from paramecium to 
mammal.

What matters, therefore, to characterize a living being, is the 
topology of the graph of its biological functions. This topological 
characterization, while being accurate and loaded with biologi
cal meaning, does not make it irreducible for other organisms and 
species of living things. According Rashevsky, this new characte
rization, along with the sum of empirical knowledge already accu
mulated in biology, logically leads us to formulate what he calls 

8    Nicolas Rashevsky, “Topology and Life: In Search of General Mathematical Principles 
in Biology and Sociology,” Bulletin of Mathematical Biophysics 16 (1954): 317–348.

9    Rashevsky, “Topology and Life,” 322.

   
   

   
   

   
   

   
   

D
oc

um
en

t d
ow

nl
oa

de
d 

fr
om

 w
w

w
.c

ai
rn

-in
t.i

nf
o 

- 
 -

   
- 

90
.3

.8
3.

49
 -

 1
0/

04
/2

01
8 

15
h3

1.
 ©

 A
rm

an
d 

C
ol

in
                         D

ocum
ent dow

nloaded from
 w

w
w

.cairn-int.info -  -   - 90.3.83.49 - 10/04/2018 15h31. ©
 A

rm
and C

olin 



Revue d’histoire des sciences I Volume 66-1 I January-June 2013 VII

The Mathematical Theory of Categories in Biology…

the principle of biotopological mapping, or the principle of epi-
morphism—there exist different mechanisms which furnish the 
same organic property, and which a single mathematical concept 
(type of node in a graph, type of subgraph, and so forth) must be 
able to describe. This principle partly anticipates the more recent 
idea of multirealizability, of the same biological functions being 
operated on a diversity of physical substrates. It nevertheless mixes 
without distinction the fact of multirealizability, wherein there 
is a relationship between function and variable structures, with 
the topological transformation of a graph into a series of other 
smaller or larger graphs, also variable, where this time a rela
tionship between the functions and the subgraphs of functions is 
found. A more stringent characterization of the principle of epi
morphism by Rashevsky removes the ambiguity. Here there is 
no suggestion of an anticipation of multirealizability in the strict 
sense, since there is no mention of structures—only relationships 
between organisms, notably from a genealogical, or phylogenetic,  
perspective.

We may now state somewhat more precisely the principle of bio
topological mapping: there exists one, or very few, primordial 
organisms, characterized by their graphs; the graphs of all other 
organisms are obtained from this primordial graph or graphs 
by a transformation, which contains one or more parameters. 
Different organisms correspond to the different values of those  
parameters..10

According to Rashevsky, the most important information here is 
that we can assume that this topological transformation is uniform. 
The relational graph of functions of all living beings can be derived 
from a single primordial graph using a single topological transfor
mation. And we can assume this from the moment we assume that 
life is sufficiently uniform. Henceforth it is only the parameters of 
this uniform transformation that change. According to Rashevsky, 
the transition to biotopology thus yields the language necessary to 
express the point in a sufficiently abstract manner for the unity of 
life to be accurately portrayed.

10  Rashevsky, “Topology and Life,” 329. 
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Robert Rosen’s First Approach:  
Systems and Graphs
In 1958, Robert Rosen took up the challenge of the Rashevskian 
“relational biology” project, although interpreting it in systemic 
terms—taken from the theory of systems—and adapting it to for
malization using “flow charts” and “block diagrams.”11 This repre
sentation itself developed out of circuit theory and the theory of 
automata. Each node in a diagram represents a block or “black 
box,” in the sense that we can only know its input and output 
properties, but not the processes that take place inside. Any orga
nism can be represented in its operation as a diagram connecting 
the inputs and outputs of blocks by oriented edges. According to 
Rosen, each block represents a systemic component. Each oriented 
edge is an oriented link—assuming that a flow of information or 
material occurs there—between the output of one component and 
the input of another. Rosen saw this as sufficient to represent any 
type of metabolism schematically and conveniently.12

To this, Rosen adds a consideration he deems critical. An organism 
is characterized not only by its metabolism13 but also by an activity 
of repair to certain (not all) parts of its system. This repair activity 
explains the sure evolvability of a biological system at the same 
time as its relative durability in the face of phenomena which may 
oppose it.

Rosen takes the example of the individual biological cell. Within 
it must necessarily subsist components that may reconstruct other 
components that have been destroyed or inhibited. For this to con
stitute a veritable repair, and thus guarantee the durability of the 
cell, it is necessary for these repaired components themselves to 
form a part of the ensemble of components involved in the meta
bolism of the cellular organism in question. And for this to be pos
sible in principle, Rosen continues, the only solution is that each 
of these metabolic components Mi is conjugated to a repair com
ponent Ri whose inputs are uniquely outputs of Mi and whose sole 

11  Robert Rosen, “A Relational Theory of Biological Systems,” Bulletin of Mathematical 
Biophysics 20 (1958): 245–260.

12  Rosen, “A Relational Theory of Biological Systems,” 246.
13  The metabolism summarized as anabolism and catabolism—molecular synthesis, mo

lecular degradation.
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output will be to provide a replica of Mi. No other relationships 
between Ri and other components are to be permitted. In addi
tion, this ad hoc repair component should itself not be involved in 
metabolism itself, because were it to be so, it would by definition 
be a component Mj requiring its own Rj, and so forth.

After the construction of a plausible minimal graph (M, R) on the 
basis of these theoretical considerations, Rosen raises the question 
of the topological constraints that must weigh on such a graph for 
the overall repair to be possible. This amounts to asking what the 
topological conditions are for a fully connected graph to give way, 
after more or less partial repair, to another graph, also fully con
nected and able to provide outputs similar to those in the original 
graph. One of Rosen’s results is that the system cannot always main
tain its original topology. Sooner or later it will collapse to one of 
its subsystems (or subgraphs) which is topologically less complex, 
or even be completely destroyed. Rosen also demonstrates the 
existence of a component which is central to any system—of a type 
able to be partially repaired before being completely destroyed—
the failure of which directly causes the failure of the entire system. 
He also shows the interest of having a topological segregation of a 
group of components dedicated to the reproduction of the entire 
system. This is, for Rosen, an a priori deduction of the advantage 
for a cell to be equipped with a nucleus, that is to say, to have a 
specific place—corresponding to a strongly connected subgraph—
which brings together all the cell’s reproductive material.

Having now broadly sketched Rosen’s first theoretical approach, as 
inspired by Rashevsky, it may be instructive to read the critique of 
it that Rashevsky himself published that same year:

In a recent paper, Robert Rosen applied topological considerations 
to the study of an organism as a whole. Those considerations have 
no direct relation to the principle of biotopological mapping. They 
rather represent a topological model of an organism, especially a 
model of the repair mechanisms which organisms possess for lost 
or impaired parts.14

14  Nicolas Rashevsky, “A Note on Biotopology of Reproduction,” Bulletin of Mathematical 
Biophysics 20 (1958): 275.
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For Rashevsky, Rosen uses, just as he had himself, an abstract 
repre sentation inspired by graph theory. However, the vertices of 
his graphs are not representations of biological functions—even if 
he had himself advocated such a use—but representations of mere 
parts of the organism. In chapter 33 of the third edition (1960) of 
his synthetic book Mathematical Biophysics,15 Rashevsky offered 
concrete examples—these parts may be the eyes, stomach, kidney, 
and so on. According to Rashevsky, therefore, Rosen is going back
wards. He only uses the topological tool of graphs to represent, 
in a different way, that which is but a local mechanistic model 
of the interactions between the components of the organism. We 
are far, here, from a veritable relational biology, as it is ultimately 
the relationship between structures—and not between functions—
that is the subject of Rosen’s block diagrams. Believing he was  
moving towards a renewed theory of life and its unity, that is to say, 
believing he was proposing a new theoretical model, Rosen was 
in fact doing no more than modeling the living world in mecha
nistic terms, thereby only managing to prove the local validity of 
his model.

According Rashevsky, Rosen was a victim of the mechanistic phy
sicalism which, at the end of the 1950s, seemed to be reawakening, 
helped on by the parallel development of automated approaches—
cybernetics—in other contexts,16 issuing mainly from the work of 
John von Neumann and Stanisław Ulam.17 Rashevsky remained 
convinced, however, of the interest of the mathematist and spe
cifically topological thread of thought that Kurt Lewin had already 
called for in psychology in 1936. Lewin had in fact made a clear 
distinction between direct mathematization and physicalist mode
ling. For Lewin, the fact that mathematics had hitherto mainly been 
used in physics did not mean that calling upon mathematics in the 
life sciences or the humanities would mean being guilty of physi
calism:

Like an illustration the working out of a model can have a cer
tain value. On the other hand it can, especially in psychology, 
involve serious dangers: a model usually contains much that is 

15  Nicolas Rashevsky, Mathematical Biophysics—Physico-mathematical Foundations of 
Biology, 2 vols. (Chicago: University of Chicago Press, 1938)

16  Although the overlap of the two is only very partial.
17  Varenne, Le Destin des formalismes; Varenne, Formaliser le vivant.
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purely arbitrary. One usually uses it like an illustration only in so 
far as the analogy holds, i.e., really only as long as it is convenient. 
As soon as consequences ensue which do not agree with the real 
facts, one evades the difficulty by asserting that it is after all only a 
model or an illustration. One says “A comparison is not an equa
tion”. How far one uses the model for explanation and at what 
point one discards it as no longer binding is purely arbitrary. In 
this respect model and illustration are sharply distinguished from 
the mathematical representation which we are trying to attain. If 
one decides to represent a real fact by a mathematical concept 
then one is forced to acknowledge all the consequences which are 
involved in this concept. This certainly makes the task a difficult 
one. On the other hand science will obtain the real benefit of the 
application of mathematical concepts only if it uses them in an 
absolutely binding way.18

For Rashevsky, as for Lewin, by directly using the concepts of 
mathematical topology—directly meaning without the mediation 
of a prior physical or mechanical model—we seek a general and 
impeccable structure of inference in a relational context, not a par
tial and approximate system of analogies. One is not representing 
a substrate but conceptualizing relations. In particular, recourse to 
concepts associated with topology (such as the graph) should not 
assume that physical space and its constraints will be taken into 
account, constraints to which the structures of the organism are 
certainly subject. The fact that topology was being used to repre
sent spatial forms—organizational structure—such as the segrega
tion of the components of repair into the cell nucleus, was there
fore deeply shocking to Rashevsky.

As we will see, Rosen’s response would be to move to a second, 
more radical theoretical and epistemological approach, which 
accentuated the mathematist thread in theoretical biology. It is in 
this context that concepts related to the mathematical theory of 
categories were introduced for the first time. Before presenting his 
second proposal, and taking the measure of the role it gave to the 
notion of category, it will be necessary to review some of the con
cepts of this theory.

18  Kurt Lewin, Principles of Topological Psychology (New York: McGraw Hill, 1936), 79.
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Concepts of Category Theory 
As noted at the beginning of the foundational article by Eilenberg 
and MacLane,19 one of the interesting results of algebra is the 
theorem that a vector space L, with real values and finite dimen
sions, is isomorphic to its conjugate T(L).20 However, to build an 
isomorphism between these two spaces, it is necessary each time 
to establish it on a particular vector basis of L. Thus no particular 
isomorphism may impose itself once it is known that its two struc
tures are isomorphic.

From this, however, comes a more interesting result—that the same 
cannot be said for the isomorphism that also exists between this 
vector space L and the conjugate of its conjugate, written T(T(L)):

For the iterated conjugate space T(T(L)), on the other hand, it is 
well known that one can exhibit an isomorphism between L and 
T(T(L)) without using any special basis in L. This exhibition of iso
morphism L ≅ T(T(L)) is “natural” in that it is given simultaneously 
for all finitedimensional vector spaces L.21

Simultaneity or naturalness here means that the same definition 
works for any vector space, so much so that often L is identi
fied with T(T(L)). The isomorphism is exhibited without need for 
recourse to anything but L alone and therefore without recourse to 
other parameters dependent on L.22 In the following part of their 
introduction, Eilenberg and MacLane specify: “A discussion of the 
‘simultaneous’ or ‘natural’ character of the isomorphism L ≅ T(T(L)) 
clearly involves a simultaneous consideration of all spaces L and 
all [linear] transformations λ connecting them.”23 Immediately 
after which they add, significantly: “This entails the simultaneous 
consideration of the conjugate spaces T(L) and the induced trans
formations T(λ) connecting them.”24

19  Eilenberg and MacLane, “General Theory of Natural Equivalences,” 231–232.
20  The conjugate of a vector space L is the vector space of all linear functions on L.
21  Eilenberg and MacLane, “General Theory of Natural Equivalences,” 232.
22  This explanation is provided by Wilfrid Hodges and Saharon Shelah, “Naturality and 

Definability,” Journal of the London Mathematical Society 33, no. 1 (1986): 2.
23  Eilenberg and MacLane, “General Theory of Natural Equivalences,” 233.
24  Eilenberg and MacLane, “General Theory of Natural Equivalences,” 233.
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This is why they first introduce (generically) the linear transforma
tions λ which transform any finite dimensional vector space into 
another space of finite dimension, and then the mappings induced 
between the conjugates. For two spaces (L1, L2), this is the linear 
transformation λ1:

λ1: L1 → L2

From this is drawn the induced mapping T (λ1):

T (λ1): T (L1) → T (L2)

In presenting it this way, Eilenberg and MacLane decided to denote 
two different functions with the same letter T: one function opera
ting on linear transformations and another function that operates 
on vector spaces. These two functions are the components of what 
they call a functor, the functor T.

To recap: between L1 and T2 (L1), there is a natural isomorphism, as 
there is between L2 and T2 (L2). Let them be called τ (L1) and τ (L2).

We therefore have:

Figure 1

Moreover, between L1 and L2, we have the identity functor I(λ).25 
Finally, between T2(L1) and T2 (L2), we have the induced transforma
tion T2 (λ). Hence the following full diagram:

Figure 2

25  Functor composed of two functions such as I(L) = L and I(λ) = λ.

Franck VARENNE

180

En la présentant ainsi, Eilenberg et MacLane décident de noter
avec la même lettre T deux fonctions différentesþ: une fonction
qui opère sur des transformations linéaires et une fonction qui
opère sur des espaces vectoriels. Ce sont ces deux fonctions qui
forment les composants de ce qu’ils appellent un foncteur, le
foncteur T.

Récapitulons. Entre L1 et T2 (L1), donc, il y a un isomorphisme
naturel, ainsi qu’entre L2 et T2 (L2). Notons-les chacun τ (L1) et
τ (L2).

On a doncþ:

Figure 1

Par ailleurs, entre L1 et L2, on a le foncteur identitéþ: I (λ) 25. Entre
T2 (L1) et T2 (L2), enfin, on a la transformation induite T2 (λ). D’où
le diagramme complet suivantþ:

Figure 2

Ce diagramme commuteþ: les deux chemins possibles de L1 à
T2 (L2) sont identiques. C’est cela que l’on peut appeler la condi-
tion de «þnaturalitéþ» ou de «þsimultanéitéþ» pour la famille des
isomorphismes naturels L → T (T (L)). On a aussi ce que l’on
peut appeler une «þéquivalence naturelleþ» entre le foncteur I et

25 - Foncteur composé par les deux fonctions telles que Iþ(L) =þL et Iþ(λ) = λ.

L1 T2 (L1)τ (L1)

τ (L2) T2 (L2)L2

L1 T2 (L1)

T2 (λ)I (λ)

τ (L1)

τ (L2) T2 (L2)L2

LivreSansTitre1.book  Page 180  Mercredi, 22. mai 2013  11:50 11

L1 T2 (L1)

T2 (λ)I (λ)

τ (L1)

τ (L2) T2 (L2)L2
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This diagram is commutative. The two possible paths from L1 to T2 

(L2) are identical. This is what we may call the condition of “natu
ralness” or “simultaneity” for the family of natural isomorphisms 
L → T (T (L)). We also have what one might call a “natural equiva
lence” between the functor I and the functor T2. This is a functor 
morphism which respects the composition of the morphisms.

Eilenberg and MacLane then noted that this condition of natural
ness can be generalized. It does not occur only between a vector 
space and its iterated conjugate but also between groups and their 
homomorphisms, or between topological spaces and their conti
nuous mappings, and so on.26

Considering this generality, it is proposed to introduce the concept 
of category. A category consists of this first set of data:

1  / A collection of objects to be designated by A, A’ . . . ; these 
objects can be sets.

2 / A function assigning to each pair (A, A’) of objects in the cate
gory, a set denoted H (A, A’), whose elements are termed mappings 
or transformations or morphisms or arrows. If f is an element of 
H (A, A’), we say that A is the domain or the source of f, and A’ is 
the range, or goal of f.

These first two properties constitute the minimum basis neces
sary to construct the theory of a set of mappings. Required are: 
1 / objects upon which the mappings act; 2 / the mappings them
selves. However the definition of the concept of category does not 
stop there, otherwise it would have zero operational interest. It is 
in fact necessary to introduce ways to “combine” or “compose” 
these mappings. We then construct an algebra on these mappings f 
to make comparisons between them, as well as the structures that 
emerge from them:

3 / Within a category, there must also be a function called a com-
position which assigns, to any pair of mappings (f, g) such as f ∈ 
H (A, A’) and g ∈ H (A’, A’’) a mapping gf in the set H (A, A’’). This 
gives a commutative diagram27 between A, A’, and A’’ (see figure 3).

26  Eilenberg and MacLane, “General Theory of Natural Equivalences,” 234.
27  It should be noted that Rosen was to identify precisely this diagram with his previous 

block diagram (see below).
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Figure 3

Finally, in order for the concept of category to be applicable to 
concepts we already recognize, three axioms must be added:28

C1 – Any category mapping has one and only one domain and 
one and only one range.

C2 – The composition of mappings is associative: h o (g o f)  
= (h o g) o f.

C3 – There is an identity mapping iA of any object A onto itself.29

The concept of subcategory can be defined. A subcategory pre
serves at once the identity mapping and the composition between 
mappings, as well as the domains and the ranges of its mappings.

Starting from the concept of category, we can also define the con
cept of the functor. If A and B are two categories, then a functor T 
of A onto B is a pair of mappings which, to any object of A associ
ates an object B, and to any mapping of A associates a mapping of 
B, and where T (g o f) = T (g) o T (f), and T (iA) = iT(A). Recall that iA is 
the identity mapping of any object A onto itself. A functor appears, 
then, as a generalization of the notion of a mapping.

28  This is Rosen’s annotation in Robert Rosen, “The Representation of Biological Systems 
from the Standpoint of the Theory of Categories,” Bulletin of Mathematical Biophysics 
20 (1958): 322.

29  More precisely, the identity mapping is a mapping iA ∈ H (A, A) such that for any ob
ject A’ of this category and for each pair of mappings (f, g) such that f ∈ H (A, A’) and  
g ∈ H (A’, A), then f o iA = f and iA o g = g. See Rosen, “The Representation of Biological 
Systems,” 322, and Eilenberg and MacLane, “General Theory of Natural Equivalences,” 
237.

f

gf
g

A A’

A”
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From this point of view, a functor is a type of correspondence 
between categories that preserves the category structure. This 
notion also generalizes homomorphisms (between groups) or con
tinuous mapping (between topological spaces), for example.

Rosen’s Second Approach:  
Categories and Living Organisms
Now let us ask the following question: How does Rosen justify his 
use of category theory to build a theory of the representation of 
living beings? He was undoubtedly hurt by Rashevsky’s criticisms, 
but his second article in 195830 answered them indirectly, by  
giving replies to a selfinterrogation, wherein Rosen emphasized 
other limits of his previous approach, using graphs.

First of all, in a real organism, one output of a component can be 
the input to several other components. Thus, for example, an endo
crine gland can secrete a hormone—a single output, which will 
affect many organs. Therefore a number of arrows can be shown 
exiting the formal representation of a single output of this gland 
(see figure 4).

Figure 4

Symmetrically, a same component can send several different out
puts to another component. This would be represented by a single 
arrow connecting the two, and information about this diversity will 
be lost. Thus, the particular endocrine gland, known as the pitui
tary or hypophysis, sends different hormones to the same organ. 
(See figure 5)

Figure 5
30  Rosen, “The Representation of Biological Systems,” 322.
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In this regard, Rosen shows that a living being is certainly a rela
tional entity, but adds that the internal relations manifested are in 
reality very rarely “binary,” that is to say bilateral, with a transmit
ter → receptor. They are most often multilateral.31 The approach 
by graphs may take into account this fact, but at the cost of some 
complication.

The representation of the organism by a block diagram has another 
drawback, according to Rosen. By introducing the “environment of 
the organism,” denoted E, a component is introduced that is not a 
real component of the organism but nevertheless sends inputs to a 
large number of components of the graph and receives all outputs 
not connected to the organism’s internal components. As its status 
is not well defined, and as it is also at the borders of other compo
nents, by its formal behavior at its limits during the demonstration 
of general theorems, it demands separate treatment, which com
plicates reasoning by particularizing and weakening any intuition 
that may be gained concerning them.

According to Rosen, it would be valuable to have a representation 
of the environment that would allow it to stand alongside other 
components.32 This choice indicates that Rosen wishes to chase 
away symbolic dispersion and is searching, like his master, for a 
unification and translation of intuition. He is on the path to the 
categories: “Although we may to a certain extent overcome the 
difficulties we have mentioned by the introduction of a number of 
technical devices, the theory which results will have lost the intui
tional clarity which constituted a large part of its appeal.”33

Having formulated these selfcriticisms, Rosen then presents a 
posi tive reason which justifies, in his view, the choice of using the 
mathematical theory of categories for the elaboration of a general 
theory of formal representations of life.

It will be seen that, although the theory which results seems at 
the outset to be considerably more complicated than our previous 
treatment, we can formulate our results, and even our definitions, 

31  Rashevsky emphasized this point later, especially in his article “Physics, Biology and 
Sociology: A reappraisal,” Bulletin of Mathematical Biophysics 28 (1966): 292.

32  Rosen, “The Representation of Biological Systems,” 318.
33  Rosen, “The Representation of Biological Systems,” 318.
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in a simpler, more intelligible and more precise fashion than is 
possible through any refinement of our other approach.34

Thus, paradoxically, at first sight, Rosen hopes that by raising the 
level of mathematical abstraction of the representation of life by 
another degree, we might regain the ability to intuit its beha vior 
in a manner that is at once formal, accurate, and biologically 
meaning ful. It is in this sense that he thinks this theoretical gesture, 
using the mathematical concept of “natural transformation” will 
give a certain naturalness to the formalisms of life. But what is the 
implicit hypothesis upon which Rosen builds?

Rosen notes first that the theory of categories shows the “natural
ness” of transformations of one functor to another, when they have 
the property of being commutative. They are called “natural” (in 
the mathematical sense) because they leave the “good mathemati
cal constructs” invariant.35

When Rosen announces that these mathematical concepts would 
be useful for a general theory of representations of biological 
systems, he seems to suppose that the approach of mathematics 
through the concept of categories is particularly well suited to the 
identification of mathematical naturalness of certain mathematical 
transformations—unlike other approaches, such as the one using 
set theory, for example—and at the same time provides evidence 
that the use of this concept of category, this time for formalizing 
life, ensures the naturalness of this formalization. It is not artificial, 
not built, not stitched on to real phenomena occurring in the living 
world.

34  Rosen, “The Representation of Biological Systems,” 319.
35  René Lavendhomme, Lieux du sujet: Psychanalyse et mathématique (Paris: Seuil, 2001), 

274. Lavendhomme states: “In general, we can say that a good mathematical construc
tion must be resistant to natural transformations [that is to say, a commutative transfor
mation from one functor to another, see Lavendhomme, Lieux du sujet, 273–274]. It 
must be ‘natural.’ It is with the idea of naturalness that Eilenberg and MacLane begin 
their reflections on categories. There are, in mathematics, structures that depend on 
certain choices in order to be executed, while others are, as they say, canonical, not 
being dependent on contingent decisions. It is these that give rise to natural transforma
tions, and it is to clarify this idea that the notion of natural transformation was created.” 
Lavendhomme, Lieux du sujet, 273–274. Confirmation of this remark can be found in 
Eilenberg and MacLane, “General Theory of Natural Equivalences,” 247.
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What is it exactly? How does he attempt to support this bold infer
ence? He continues his preamble by introducing the concept of the 
faithful functor, inspired once again by Eilenberg and MacLane. A 
functor T is faithful if:

1/ T (f) = T (g) implies that f = g;

2/ when g o f = iA, and T (A) = T (A′) and T (f) = iT(A), then A = A′.

In this latter case, f and g are called the equivalences of objects 
A and A’. In particular, if A is a category of groups, g and f are 
isomorphisms. If it is a category of topological spaces, they are 
homeomorphisms. He then clarifies the concept of the embedded 
category. A category A is embedded in another category B by a 
functor T, if T is a faithful functor from A to B. The image of A, 
denoted by T (A) is then a subcategory of the category B.

Rosen then recalls the formulation of a theorem he considers 
of great importance for his theory of representation of systems: 
“Theorem 1: Any abstract category A can be embedded as a sub
category of the category S, the objects of which consist of all sets36 
and the mappings of which are the totality of all settheoretical 
manyone mappings of sets.”37 By choosing a faithful functor of 
any category A onto S, we can embed it in S and we can there
fore consider the objects of this category A as ordinary sets, and 
its mappings as ordinary mappings as in set theory. Thus, we can 
also speak of the concepts of union, intersection, and Cartesian 
pro ducts between objects of any category.38 It is this point which 
directs formalism towards the intrinsic consideration of the multi
lateral relations subsisting in the organism.

It is also this last point which allows Rosen to pass on to the phase 
which he called the “construction of the representation itself.” He 
makes us see that with the theorem, it is possible, from an arbitrary 

36  Eilenberg and MacLane noted that while the notion of the “category of all sets” raises 
the paradoxes encountered in this respect in set theory, it does not add any extra para
doxes and can be treated, they say, either by deciding to adopt an intuitive approach 
or by using a logical foundation for avoiding just such paradoxes. See Eilenberg and 
MacLane, “General Theory of Natural Equivalences,” 246.

37  Rosen, “The Representation of Biological Systems,” 323.
38  Rosen, “The Representation of Biological Systems,” 324.

   
   

   
   

   
   

   
   

D
oc

um
en

t d
ow

nl
oa

de
d 

fr
om

 w
w

w
.c

ai
rn

-in
t.i

nf
o 

- 
 -

   
- 

90
.3

.8
3.

49
 -

 1
0/

04
/2

01
8 

15
h3

1.
 ©

 A
rm

an
d 

C
ol

in
                         D

ocum
ent dow

nloaded from
 w

w
w

.cairn-int.info -  -   - 90.3.83.49 - 10/04/2018 15h31. ©
 A

rm
and C

olin 



XX

Franck VARENNE

category A, to form an oriented graph (or diagram) by selecting a 
collection of objects Ai from the category and a collection of map
pings from the sets H (Ai, Aj). Two objects are said to be connected 
by an oriented edge if and only if there is a mapping that has one 
of them in his domain and the other in its range.

To generalize again and to adapt this representation to living 
orga nisms, Rosen notes that it is possible to weaken the con
straint weighing on the construction of an oriented edge. We may 
demand only that the objects in the diagram contain the domains 
and ranges of the mappings.39 We can see that in the perspective 
of a representation of life, the fact of considering the objects them
selves simply as sets having the property of containing the domains 
and ranges of the mappings has a decisive weight in this abstraction 
that aspires to “naturalization,” while not fundamentally changing 
the possibi lity of applying the general considerations in force for 
the categories to this representation.

Furthermore, Rosen considers that the “abstract block diagram”40 
(ABD) that we can build from there actually reverses previously 
adopted conventions: a vertex represented a physical component 
in the organism in his first representation by block diagram, when 
in fact it is now more convenient to consider the components as 
represented by the mappings,41 that is to say by the oriented edges 
of the abstract block diagram. Respectively, the ABD objects do 
not represent components, but the inputs and outputs thereof. This 
type of representation has the advantage not only of resolving the 
issue of the multilateralism of relations but also that of the envi
ronmental component. It is no longer incongruously hypostatized. 
Only the relationships in which it operates are included in the dia
gram, and with exactly the same status as the other components.

After this first phase of construction, therefore, Rosen showed that 
the mathematical concept of category was rich and flexible enough 
to formalize any type of oriented graph representing a living being. 

39  Rosen, “The Representation of Biological Systems,” 324.
40  “Abstract,” because not all these diagrams necessarily correspond to a physical system. 

See Rosen, “The Representation of Biological Systems,” 325.
41  Each component is now represented by a set of mappings. We thus escape the sup

posed physicalist reduction assumed to be necessary by Rashevsky as soon as one uses 
diagrams.
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After a long section in which Rosen shows that it is possible to find 
a canonical form for an ABD representing a given living system, 
the search for naturalness is explicitly extended as he recalls that 
the functors are conceived precisely as “natural means”42 to make 
comparisons between categories. He concludes:

Similarly, it follows that any structures formed from the objects 
and mappings in various categories may likewise be compared by 
functors. Thus, given an abstract block diagram (which we may 
denote by M) of objects and mappings in a category A, we may 
apply a functor T: A → B and obtain in the category B the col
lection of images under T of the objects and mappings of M. We 
may write the image of the abstract block diagram M as T (M). 
One of the natural questions to ask concerning a given functor T 
is whether the image of an abstract block diagram by T is again an 
abstract block diagram.43

The problem44 that Rosen explicitly raises is whether it can be 
demonstrated that equivalent biological systems have the same 
representation within this mathematical formalism and, conversely, 
if two mathematically equivalent representations actually corres-
pond to the same biological system.45 We will have then proved 
that the mathematical equivalence exhibited thanks to the formal 
technique of functors between categories corresponds to biolo
gical equivalence. And for Rosen, this would be one more sign 
in favor of the idea that the mathematical formalism of catego
ries, or “natural equivalences,” most naturally apply to the essence 
of that which is alive, its essence being demonstrated and mobi
lized here—at least by showing what it is not—in what is invariant 
between two biological systems deemed to be equivalent in view 
of their respective abstract block diagrams.

However, all that Rosen achieves in declaring in this article from 
1958 is this last theorem: “Let M be an abstract block diagram 

42  Rosen, “The Representation of Biological Systems,” 334.
43  Rosen, “The Representation of Biological Systems,” 334.
44  We note that it is considered itself “natural” by Rosen, but here in the sense that it 

is a traditional, almost reflex mathematical interrogation. This research tactic is often 
considered “natural” by mathematicians since it is usually so fertile and powerful. 
According to George Pólya, for example, whereas a mathematician is someone who 
sees analogies where others do not, a great mathematician is one who manages to see 
analogies between analogies.

45  Rosen, “The Representation of Biological Systems,” 336.
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which represents a definite biological system. Let T be a faithful 
functor. Then T (M) is an abstract block diagram which represents 
the system if and only if T is regular and multiplicative.”46 Ultimately 
it appears that it is not enough for the functor to be faithful in order 
to conserve structures imposed by operations of inclusion and 
intersection between sets. It must also allow conservation of the 
semiordered space, like that of the commutative semigroup (the 
Cartesian product) which the former possesses, in order to give rise 
to an ABD. It is necessary for the image by the functor to conserve 
the structure of set theory, the same which, through theorem 1, 
allowed the formalism of the diagrams to be transcribed into that 
of categories. Thus Rosen admits to not possessing the means to 
show if the biological equivalence between organisms is directly 
translatable in terms of mathematical categorical equivalence via a 
functor of this type. In other words, and contrary to his own expec
tation, Rosen does not know how to show if the hybrid diagram of 
biological and mathematical equivalences commutes.

From our point of view, we see that for mathematical equivalence 
between categories to effectively encompass within itself that which 
makes its own the equivalence in the biological sense (equivalence 
between biological systems from the relational point of view), and 
therefore that its property—at first sight impressive—of being cate
gorical seems to be able to transit by the effect of an equivalence 
between equivalences from the domain of mathematics to that of 
living beings, it is not sufficient in reality for mathematical equi
valence to be simply natural in the sense of the naturalness proper 
to the mathematical theory of categories. It is not sufficient for the 
functor to be only faithful. Highly constraining properties must 
be adjunct to it, which cause it to lose the character of genera
lity of the approach based on categories, largely collapsing back 
into an approach based on sets. Thus, once more in the history of  
science, and undoubtedly to the chagrin of theoretical biologists, it 
appears that mathematics will not divulge, from within itself, how 
it applies to anything outside of itself—meaning, in effect, empi
rical reality.

46  Rosen, “The Representation of Biological Systems,” 334–335. A functor is regular if it 
satisfies the following conditions: 1/ if A ∈ S and A ≠ ø, then T (A) ≠ ø; 2/ if A ⊂ B, then 
T (A) ⊂ T (B). A functor is multiplicative if for any pair of sets A1 and A2, we have T (A1 
x A2) = T (A1) x T (A2).
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At the end of the article, however, there are practical results which 
are nothing short of remarkable. Rosen offers a formal translation 
using the block diagram approach of the general and logical the
ory of automata of McCulloch, Pitts, and von Neumann. A general 
automaton in the von Neumannian sense, consisting of a network 
of automata—each with only one input—can be represented as a 
category mapping whose range is the space A = {0, 1} of the game 
of heads or tails and whose domain is the Cartesian product of A 
multiplied by itself as many times as there are inputs to the general 
automaton.47

Thus, a general automaton can always be represented by an 
abstract block diagram in a suitably defined category. For Rosen, 
von Neumann’s general automaton is a confirmation of his gen
eral theory of the representation of living systems. It is an illus
tration of it, in his words, because the graphical aspect—in the 
sense of graph theory—of von Neumann’s general and logical the
ory of automata is no more, according to Rosen, than a conse
quence of the more general formalism, therefore assumed to be 
more natural, that he adopted himself with the theory of catego
ries. For him, just like for Rashevsky, antibiotics could have been 
predicted by biotopology, and the general and logical theory of 
automata could have been derived entirely in the abstract from 
the categorical perspective he proposed. The automaton theory 
therefore appears to him neither necessary nor decisive, as it is not  
fundamental.

One lesson of this article is therefore epistemological, going as far 
as making a normativetype value judgment on the choices of for
malization to be made, rather than testing those choices in the light 
of empirical data.48 Category theory provides uniform criteria49 to 
biologists which will allow them to assess a priori the relevance of 
their formalism. This relevance is itself characterized only in terms 

47  Rosen, “The Representation of Biological Systems,” 337.
48  In this way, we see that theoretical biology remains fairly directly dependent on  

extreme philosophical positions. This dependence certainly remains, although it is pro
bably becoming less naively direct—becoming more interlaced with the empirical—in 
more advanced quantitative sciences.

49  That is to say, independent of the context and the stakes of formalization. This assump
tion is severely challenged today by practitioners of applied formalisms. This is seen by 
the success of the opposed pragmatists, contextualist and perspectival epistemologies 
of models, and formalizations for complex systems.
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of generality, this generality then itself being closely related to what 
Rosen wishes to consider as a “naturalness,” this naturalness being 
assumed to characterize, in absolute terms, certain formalisms, as 
distinct from others.50

Categories for Life in Rosen’s Life Itself (1991)
Faced with this rather underwhelming result, Rosen long hesitated 
before returning to category theory, although he never renounced 
his general epistemological discourse on the formalisms relevant 
to biology. In Essays on Life Itself (2000), for example, a book col
lated by his daughter after his death in 1998, the two foundational 
articles of 1958 are not even mentioned—for his family, or per
haps for himself, his bibliography only begins in 1959.51 It is, in 
fact, from this date onwards that he began to question the very 
idea that it might be possible to formally represent a biological 
system by an automaton, or indeed any mathematical mechanism. 
This radical thesis was to become his favorite claim until his death. 
Rosen would warmly echo the positions taken by René Thom on 
the refusal of the hegemony of discrete models and other related 
matters.

In this final section, we will briefly summarize the evolution of 
Rosen’s thoughts as reflected in Life Itself (1991) and the articles 
that followed. For the record, we note that the main argument 
of Life Itself is to be found in the conjunction of three consistent  
theses:

50  In other contexts, without reference to mathematical categories, but sometimes sim
ply to differential formalisms, other theoretical biologists will also claim this troubled 
idea of “natural formalisms” that is supposed to allow other formalisms to be con
demned. Alongside the work of René Thom we might note the lesserknown case of 
Brian C. Goodwin, Conrad H. Waddington’s student. See, on this point, Varenne, Le 
Destin des formalismes, 341: “In 1970 [Goodwin] published an article on biological 
stability which implicitly targeted Lindenmayer [inventor of Lsystems, today exten
sively present in computational approaches], openly criticizing the choice of forma
lism of automata in developmental biology. His argument amounts seeing, in what 
is presented as a formalization by automata, not a real formalization, that is to say 
an effective formal representation (‘natural’ in the sense given by his qualification of 
differential ‘natural models’) or even an approximate translation, but a simple analogy 
of the gene to the computer which, in certain critical cases, fails to take into account 
some essential biological phenomena. It would not, then, actually be a formalism, but 
a mere ‘formal analogy.’”

51  See Robert Rosen, Essays on Life Itself (New York: Columbia University Press, 2000), 
343.
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1/ Newton’s mechanistic approach—the hypothesis of states, 
the hypothesis of recursion—is to physics what logical forma
lization is to mathematics, that is to say, a reductionism.

2/ Mathematics had a Gödel to denounce this reductionism, 
while physics had no such iconoclast. For physics, we are 
awaiting new theoretical tools in the hope of achieving lucidity.

3/ These tools can come from mathematical biology.

According to Rosen, physics, along with all the natural sciences—
their computational developments being merely the most obvious 
example—had implicitly learned the habit of giving substantive 
content to the thesis of Alonzo Church, which asserts, with good 
reasons but no certainty, that any mechanism (in the mathematical 
sense) can be perfectly emulated by a universal Turing machine—a 
classic computer with infinite memory. It is often concluded, by 
sophistry and therefore wrongfully, that every phenomenon with 
a physical manifestation is, or will be, capable of being simulated 
by a computer.52

Rosen asserts that there is an implicit and false epistemological 
thesis in the computational development of contemporary science. 
This thesis is based on a fallacy which assumes that by being phy
sical, a phenomenon is reducible to a mechanism in the mathe
matical sense. Just as analytic philosophers since Gilbert Ryle have 
it, we can say that there is here a category error. Used to searching 
for equivalences between equivalences, Rosen rejects the founda
tional fallacy he perceives here, a fallacy that reduces us to a series 
of reductive formalisms.

Armed with this analysis, in his 1991 book, Rosen sought to reacti
vate his own proposition for the use of category theory. This brings 
us to certain theses concerning this subject that appear in Life Itself. 
Firstly, Rosen sees it as worthwhile to resist mechanistic reductio
nism because that standpoint requires a rejection of final cause in 
the Aristotelian sense. Rosen felt that final cause should be included 

52  Robert Rosen, Life Itself (New York: Columbia University Press, 1991), 204. For a partial 
explanation of this issue, see Franck Varenne, Qu’est-ce que l’informatique? (Paris: 
Vrin, 2009).
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in the formalization of life. Following this initial update, he pres
ents the mathematical theory of categories primarily as a rigorous 
manner for mathematics to model itself. It is a theory of modeling 
designed as a general analog relationship. A modeling relation
ship imposes representations with mutual implications. Rosen, as 
we have seen, assumes that in a living organism, both causal and 
inferential implications occur. Inferential implications are able to 
encompass final causes. The final cause of P requires both that 
its effect implies something, and that it implies the implication of 
P itself. However, he points out, this violation of temporal order 
shocks us only because it is something that seems to be prohibited 
in formalisms. But it is precisely that we only ever consider for
malisms under the sole Newtonian model that prohibits the future 
affecting the present, and imposes that they must always take a 
classic computational form. But who imposes this kind of forma
lism?53 Category theory gives us precisely the freedom necessary 
to break free and take charge of the implications of implications 
(arrows between arrows), and thus Aristotle’s final cause.

As a mathematical language that speaks of mathematical language, 
category theory also shows that there is no general formalism that 
would tell us how causal implications and inferential implications 
could always be analogous. As a consequence, we cannot reduce 
any and all models of living systems to an approach that can only 
proceed by automata. There is not only one single mode of impli
cation for understanding all things,54 either purely causal or purely 
inferential.

Moreover, category theory is used to compare formalisms with
out being able itself to be formalized. This is a property it shares, 
disturbingly, with “natural language.”55 Rosen concludes from this 
that the theory of categories tends to have the same naturalness as 
natural language. And hence, the mathematical notion of category 
is joined to Aristotle’s view in natural language (“The most general 
species of what is meant by a single word,” Categories 2).

53  Rosen, Life Itself, 48–49.
54  Rosen, Life Itself, 132.
55  Rosen, Life Itself, 45.
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Rosen provides initial evidence of this set of (negative) theses by 
construction. He conceives of an “augmented abstract block dia
gram,” that is to say taking into account “external implication”—a 
change of axiom in the formalism—and, hence, “finality.”56 
However, this last of Rosen’s projects was to remain a sketch only.

Conclusion
Let us form a rapid assessment of the evolution of the role given to 
mathematical categories in Rosen’s theoretical biology. In 1958, 
category theory was conceived by him as a general method of for
malization, including mechanistic formalization, that was legiti
mized but ultimately marginalized by that fact. It was seen as a 
suitable—“natural” in this sense—method of formalization for  
living systems, because it allowed a consideration of complex and 
multilateral relations. By practically illuminating, that is to say com
paring, the functional equivalences between living systems with 
mathematical equivalences between formalisms, it also seems to 
have invoked a radical epistemological and normative judgment 
on the most relevant types of formalizations for life.

By 1991, however, far from helping to infer the approach of for
malization of living systems by automated calculation, category 
theory instead primarily had shown the reductive nature of any 
computational formalization. It becomes a means of reintegrating 
finality into a formal language, judged more natural for descri
bing life, being closer to natural human language. Note here the 
likely influence of René Thom, often cited by Rosen. Concerning 
the rehabilitation of finality, Thom would ultimately advocate the 
gene rality of his own mathematical theory of catastrophes.

In the end, we see that Rosen’s work was built on durable philo
sophical convictions which were nonetheless refined over time. 
He himself admitted early on that he was unable to demonstrate 
that the hybrid diagram (living systems / / mathematical forma
lisms) was commutative, when considering the real system and its 
equivalent in the loop of the diagram. Mathematical equivalence 
does not encompass biological equivalence except to constrain it, 

56  Rosen, Life Itself, 138–139.
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artificially and therefore unnaturally, ultimately collapsing back 
into an entirely artificial modeling.

To my eyes, what Rosen’s work is successful in showing is that in 
this mathematized theoretical biology, despite the research being 
carried out tirelessly in this direction, mathematics remains unable 
to play the role to which it was called by Rashevsky, to have the 
same status it enjoys in theoretical—relativistic and quantum—
physics, to be constitutive, rather than merely regulative (bolted on, 
and therefore modeling, in this sense), of the constituent concepts. 
Through Rosen’s input, it appears that the goal—or perhaps the 
dream—of the theorist is not only, of course, to infer the real from 
the theory, but also, more radically, to seek to show that mathe-
matics is able to legitimize, by itself, and without the intervention of 
another cognitive instance, its own relevance and applicability to 
reality. Mathematics would then no longer need an external epis
temology. By advancing, independently, it would build unaided 
1 / the scope of its applicability, along with 2 / the norms of its 
applicability.

It is therefore understandable that the particularly loaded notion of 
“category” came to be involved in this somewhat directionless stra
tegy in contemporary theoretical biology. Not only would a certain 
mathematics be conceptually foundational for our knowledge of 
some parts of reality, but, moreover (and based on the assumption 
that at the limit a continuity would necessarily come about where 
the gap nevertheless lies57), it would be from the interior of mathe
matics which this conformity between reality and mathematics 
would be seen, a conformity thus supposed to be “natural,” in a 
sense which could ultimately be both mathematical and physical, 
arising from a hypothetical commutation in the hybrid diagram.

Yet, the very evolution of the function of the enrollment of mathe
matical categories in Rosen’s theoretical biology is enough to show 
that this enrollment has more of a reactive than a constructive role. 
Mobilizing a deliberately generalizing and rather intimidating 

57  Hypothesis according to which the greatest mathematical generality necessarily leads 
to the real, touching it, and, finally, merging with it. This fallacy — an ad ignorantiam 
fallacy— is common, as it is so attractive. Its formulation is roughly this: we do not 
know (or conceive) that which might escape that which allows the conception of all 
that is conceivable, and therefore it does not exist.
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mathematical apparatus mainly served to respond to the growing 
hegemony of computational approaches with an unprecedented 
leap in mathematical abstraction, regardless of the precise func
tion—sometimes alternative, and sometimes radically critical, as 
we have shown—that has been given, at one time or another, to 
this most abstract of mathematics.

This is undoubtedly true—categories are again with us, having 
been revived in recent years. Being aware of the pioneering works 
in this field and their fascinating character, as well as their limita
tions, should provide an opportunity to ensure that this return to 
fashion can be more than simply an opportunity to pursue aca
demic battles and that it can nourish the search for real, alterna
tive formalization solutions that are capable of confronting real
world data and, indeed, of going head to head with computational  
models themselves.
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