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INTRODUCTION

The second part of Ajdukiewicz’s classic paper on Syntactic Connexion is devoted to a
discussion of languages involving variable-binding operators such as quantifiers, inte-
grals, and the like. Ajdukiewicz argues that such operators are not genuine functors,
and consequently that those languages run afoul of the basic functor/argument schema.
At most he suggests that all variable-binders might be restricted to one kind only, or to
the combination of ordinary functors with a “circumflex” operator (the terminology is
from Whitehead and Russell’s Principia Mathematica). And that suggestion has ever
since become quite popular, particularly under the impact of Church’s Lambda Cal-
culus.

This fact is of no little historical interest, for there is a misleading tendency to
present lambda-equipped categorial languages as an extension—rather than an imple-
mentation—of Ajdukiewicz’s original insights. More important, however, is the
philosophical import of this account. For apart from any considerations of esthetic ele-
gance and conceptual parsimony, the claim that functional application alone is not a
sufficient paradigm for linguistic analysis ties in directly with a number of fundamental
issues in semantics.

In this paper I argue that this is by no means a necessary course. I argue that a
fairly general semantic framework can be developed where the only relevant distinc-
tion is indeed the functor/argument distinction, and where the only structural operation
for generating expressions is functional application, with no need to resort to func-
tional abstraction as well. I shall not prove any general results to the effect that such a
framework is universally applicable. However, the overall apparatus is illustrated in
connection with some concrete examples—notably quantificational and full categorial
languages—which should suffice to support my point.

In the concluding section, I then offer some remarks to illustrate the philosophical
import of this approach. Particularly, I briefly discuss a certain conception of logic that
emerges from the proposed account: the view that logic is essentially a theory in the
model-theoretic sense, i.e. the result of selecting a certain class of models as the only
“admissible” interpretation structures (for a given language).
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LANGUAGES

As I mentioned, my starting point is essentially Ajdukiewicz’s notion of a “pure” cat-
egorial language. It is a very simple, rather abstract notion, and it is based primarily on
the idea that the expressions of any language may be divided into two kinds of syntac-
tic categories 

1, or types: individual (or primitive) and functional (or derived).
Intuitively, the former correspond to those categories of expressions whose syn-

tactic status need—or can—not be analyzed in terms of other categories. One of these
could be, for instance,  the category (Declarative) Sentence; another could be the cate-
gory (Proper) Noun 

2. We need make little effort here to select such primitives with
care. And to allow for the greatest generality, we may as well start off with an infinite
number, bypassing the problem of specifying the intuitive status of each of them. For
definiteness, I shall just identify the primitive types with the natural numbers, taking 0
and 1 to represent the traditionally fundamental categories of sentences and nouns re-
spectively.

On this basis, an infinite set of derived types is obtained by introducing some op-
eration on the set of primitive types, say the operation 〈 〉 of pair formation 

3. More
generally, we may assume that whenever t and t'  are types, primitive or derived, a
new derived type may be formed, which we may identify with the ordered pair 〈t,t'  〉.
The intuitive idea is to think of such a type as corresponding to those expressions
(functors,  in the traditional terminology) which produce expressions of type t'  when
combined with expressions of type t. For instance, if 0 and 1 are interpreted as above,
then 〈0,0〉, 〈0,1〉, 〈1,0〉, and 〈1,1〉 will be the types of such functors traditionally re-
ferred to as (monadic) Connectors, Subnectors, Predicators and Operators, respec-
tively; 〈〈0,0〉,〈0,0〉〉, 〈〈0,1〉,〈0,1〉〉,  etc. will be the types of the corresponding (mon-
adic) Adverbial Modifiers; and so on 

4.
In general, our set of types T can then be defined as the closure of ω under 〈 〉.

And the idea I wish to consider is that the expressions of any declarative language
L can be recursively specified on the basis of some type assignment to its symbols:
for each t∈T  , the L  -expressions of type t will comprise all the symbols initially as-
signed to t plus all those expressions that result from applying a given structural opera-
tion (usually some form of juxtaposition, but I shall leave that open) to pairs of ex-
pressions of type 〈t',t〉 and t'  (for some t'∈T  ).

DEFINITION 1. A language is an ordered triple of the form (s ,g ,E ) satisfying the
following conditions:

(a) s  is a one-one function with Ds  :α→T (for some ordinal α)
(b) g  is a one-one function with R g∩Rs  = 0 (and Dg  as below)
(c) E is the smallest system of sets closed under the clauses (i) for each pair

〈β,t〉∈Ds : t∈DE and s (β,t)∈Et; and (ii) if 〈t',t〉,t'∈DE, x∈E〈t',t〉 and y∈Et', then
t∈DE and g(x,y)∈Et .
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[Intuitively, where L=(s ,g ,E) is a language, the elements of R s  are the symbols
of L, and UR E is the class of all expressions generated from those symbols by re-
peated application of the structural operation g  (the requirement that s  and g  be one-
one functions with disjoint ranges is to secure that each expression of L can be
uniquely represented as either a symbol or a compound of the form g(x,y) ). In par-
ticular, an L  -symbol of type t is any x∈R s  such that x=s (β,t) for some β∈DDs
(such a β may be called the ordinal index of x), while an L  -expression of type t is any
element of Et  

5
 ].

There is no doubt that this definition allows for some peculiarities which make
little intuitive sense. For example, clause (a) allows for the possibility that a language
L involve an arbitrary number of symbols for any type t∈T  , but it is clear that unless
some L  -symbols are assigned derived categories, the structural operation of L would
be empty, and no compound expression could be generated. Also, there is nothing in
the above definition to secure that all symbols of a given language can actually be used
to produce expressions of type 0, i.e. sentences. Such oddities, however, are irrele-
vant in principle, and I shall refrain from introducing unnecessary complexities into
the account.

Indeed, the generality of Definition 1 lies precisely in the fact that it allows one to
single out a desired language or class of languages simply by implementing clauses
(a)-(c) with the appropriate additional conditions. Thus, for instance, one may want to
require that the functional expressions of a language L=(s ,g ,E) always yield individ-
ual expressions, in the sense that whenever E 〈t', t〉 is defined (for t,t'∈T  ), Et' is also
defined, and hence so is Et . Further, among such languages one may want to pick up
those languages only whose categories of expressions always cancel to a given type t,
i.e. can be used to generate expressions of type t. As I mentioned, presumably most
languages in use should be regarded as languages whose categories of expressions
always cancel to 0. Overall, however, the fundamental semantic notions must be out-
lined for the general case.

In this regard, it should also be noted that the above definition provides a purely
combinatorial characterization of the notion of a language. In particular, the difference
between symbols and compound expressions is a relative one: the latter are generated
by application of g , the former are not. This means that definition 1 does not imply
that a language’s symbols must necessarily lack internal structure, but only that this
structure—if any—is irrelevant to the syntax of the language. Apart from the fact that
this secures a certain neutrality with respect to the sort of entities languages are made
of (which was already an attractive feature of Ajdukiewicz’s original account), a deri-
vative advantage of this account is precisely the possibility of treating variable-binding
operators as ordinary functors, viz. as “structured” symbols consisting of the operator
together with a corresponding bound variable.

A few concrete examples will help illustrate all of this. To this end, let L=(s ,g ,E)
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be any language, and for all n∈ω and all t,  t'∈T  , let ‘〈t 
‹n›,t'  〉’ be an abbreviation

for the type 〈t0〈t1,〈…,〈tn-1 ,t'  〉…〉〉〉, where ti =t for each i<n (for n=0, 〈t 
‹n›,t'〉 reduces

to t'  ).

EXAMPLE 1.1. L is a sentential language iff RD s  ⊆{〈0 
‹n›,0〉: n ≥  0} —i.e. iff L

comprises a certain stock of sentence symbols (= symbols of type 0) along with a
number of n-ary connectors (= symbols of type 〈0 

‹n›,0〉) for various n > 0.
To redeem some familiar notation, suppose L   includes a binary connector ‘↓’ (of

type 〈0,〈0,0〉〉). Then, for all A,  B∈E
 0  , we may set:

(a)  ‘(A  ↓B)’ for ‘g(g(↓,  A),  B)’
(b)  ‘(¬  A)’ for ‘(A  ↓ A)’
(c)  ‘(A∨B)’ for ‘(¬(A  ↓ B))’
(d)  ‘(A∧ B)’ for ‘(¬(¬A)∨(¬  B))’
  M  M

EXAMPLE 1 .2.   L   is an elementary language iff RD s  ⊆{〈t 
‹n›,t'  〉: n ≥  0 & t,t'  ≤  1}

—i.e. iff L   comprises a set SENTL of sentence symbols  (of type 0) and a set NOUNL

of noun symbols (of type 1) along with a set CON L , n of n-ary connectors (of type
〈0 

‹n›,0〉), a set SUB L , n of n-ary subnectors (of type 〈0 
‹n›,1〉),  a set PRED L , n of n-ary

predicators (of type 〈1 
‹n›,0〉) and a set OPER  L , n of n-ary operators (of type 〈1 

‹n›,1〉)
for each n > 0. In particular, we may assume that if L  is an elementary language, then
there exist a denumerable set V  L ⊆NOUNL   and various sequences QL , n 

 disjoint from R
s  (for n > 0) such that QL , n ×VL  = {〈x,y〉: 〈x,y〉∈CON L , n 

}. In that case we may speak
of VL  as a set of noun variables,  referring to a pair of the form 〈QL , n , i 

,  v〉 (where
i∈DQL , n and v∈VL  ) as an n-ary quantifier binding the variable v.That is, from a
purely syntactic perspective, we may treat quantifiers as a special kind of “structured”
connectors 

6.
Again, to introduce some familiar notation suppose L   is an elementary language

whose symbols comprise a binary quantifier ‘〈↓,v〉’ for each element of a set VL of
noun variables. Then, for all v∈VL and all A,  B∈E

 0   we may set:

(a)  ‘(A  ↓
v

  B)’ for ‘g(g(〈↓,v〉,  A),  B)’
(b)  ‘(¬  A)’ for ‘(A  ↓

u
  A)’

(c)  ‘(A∨B)’ for ‘(¬(A  ↓
w

  B))’
(d)  ‘(A∧ B)’ for ‘(¬(¬A)∨(¬  B))’
  M  M
(e)  ‘(∨vA)’ for ‘(¬  (A  ↓ 

v
  A))’

(f)  ‘(∧ vA)’ for ‘(¬(∨v(¬A)))’

(where u is, as usual, the first variable foreign to A and w  the first variable foreign to
both A and B).
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EXAMPLE 1 .3 .   L   is a full categorial language iff RD s  =T —i.e. iff L   com-
prises a non-empty set S L , t of symbols for every type t∈T  . In particular, we may as-
sume that if L   is a full categorial language, then for each type t∈T   there exist a se-
quence A L , t disjoint from R s  and a denumerable set VL , t ⊆S L , t so that, for every
t'∈T  , {〈x,y,t'  〉: 〈x,y,t'  〉∈S L , 〈t',〈t,t' 〉〉 

}= A L , t 
×V L , t 

×{t'}. In that case we may speak of
each V L , t (t∈T ) as a set of variables of type t, referring to a triple of the form 〈A L , t,i

,v,t'  〉 (t,t'∈T  , i∈DA L , t 
, v∈V L , t ) as an abstractor of type 〈t' ,〈t,t'  〉〉 binding the vari-

able v.
To illustrate, suppose now L   is a full categorial language with an abstractor

〈λ,v,t'  〉 for each variable v and each type t'∈T  ; then the usual lambda-combinatorial
notation can easily be introduced—for instance:

(a)  ‘(λvA)’ for ‘g(〈λ,v,t'  〉,  A)’
(b)  ‘I t’ for ‘(λvξ vξ ) ’
(c)  ‘K  t,t'’ for ‘(λvξ (λvζ vξ ))’
(d)  ‘S  t,t',t"’ for ‘(λvα (λvβ  (λvξ g(g(vα ,vξ) ,g(vβ ,vξ 

)))))’

(provided of course v∈U{VL , t : t∈T  }, t,t' ,t"∈T , A∈Et' , and vξ , vζ , vβ , vα are fixed
variables of type t, t' , 〈t,t'  〉 and 〈t,〈t' ,t'  〉〉 respectively ).

MODELS

We can now turn to the notion of a model (of a language L ). The general idea is sim-
ply that a model must act as a sort of semantic lexicon: it must determine what sort of
things may be assigned to the basic components of the language as their contensive
counterparts, and it must do so within the limits set by the relevant type distinctions.
Thus, in general, a model for a given language L  of the form (s ,g ,E ) will be a struc-
ture M  of the form (d ,h,I  ), with d , h and I a triple of functions satisfying essentially
the same conditions as s , g  and E respectively: to each category of expressions Et ∈R
E there will correspond some non-empty domain of interpretation It ∈R I; to each sym-
bol s (β,t)∈Et there will correspond  a denotation d(β,t)∈It ; and to the structural op-
eration g  ⊆(UR E) 

3 there will correspond an operation h ⊆(UR I  ) 
3 subject to the same

type restrictions, i.e. such that x∈I  〈t',t〉 and y∈It' always imply h(x,y)∈It  
7.

DEFINITION 2. A model for a language (s ,g ,E ) is a structure (d ,h,I  ) satisfying
the following conditions:

(a) d  is a function on the domain of s
(b) h is an operation distinct from d
(c) I is a system of sets closed under the clauses (i) for each pair 〈β,t〉∈Ds :

t∈DI and d(β,t)∈It ; and (ii) if 〈t',t〉,t'∈DI, x∈I〈t',t〉 and y∈It', then t∈DI and
h(x,y)∈It .
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I think this is more or less the notion of a model that Ajdukiewicz had in mind, at
least relative to the general notion of a language introduced above. Of course this is all
quite abstract, and the intuitive appeal of the account depends on the actual make up of
the functions d , h, I. For example, if the sentence type 0 were in D E, then I0 might
be construed as a set of “truth-values”, or perhaps as a set of “propositions”. And if 1
or 〈1,0〉 were in D E, one might think of I1 as a set of “individuals” and I  〈1,0〉 as a set
of “properties”. However, in general I believe semantics ought to remain neutral with
respect to the philosophical question of what kind of entities should be taken as inter-
pretations of what expressions, particularly where commitment is not necessary (for
the same reason, in the definition of a language the notions of “sentence”, “noun”,
“predicator”, etc. are not defined independently, but only in relation to the auxiliary
notion of a type).

In fact, what I want to stress here is that the generality of this approach lies pre-
cisely in the fact it allows one to single out a desired model or class of models simply
by implementing clauses (a)-(c) with the appropriate additional conditions, just as with
the notion of a language. For instance, the definition allows the domains of interpreta-
tion associated with the basic categories of expressions of the given language L  to be
arbitrary sets, and hence to vary from model to model. That in practice one is often
interested only in the study of models which agree in assigning the same, fixed do-
main of interpretation to certain basic categories of L   (say, only models M  such that I0

—if defined—is a fixed set of truth-values) is another matter, and may be accounted
for by singling out that class of models whose elements satisfy the desired conditions.
And of course the same criterion may be used to account for the fact that some sym-
bols are often assumed to have a fixed “meaning” (i.e. denotation in the case of indi-
vidual symbols, and denotation plus relative conditions on the structural operation in
the case of functional symbols): in general, such assumptions can be regarded as de-
termining a certain selection of models as the only admissible ones, and different as-
sumptions will correspond to different selections. Thus, as I take it, to say e.g. that a
language L   has a classical conjunction connective ‘∧’ is to say that the only models to
be considered are among those models where I0   is, say, the set 2={0,1}, and where
‘∧’ denotes that function ƒ : 2 →2 2 such that ƒ(x)(y)=x  ∩y for all x,y∈2; to say that L
has a standard multiplication operator ‘⊗’ is to say that the only models to be con-
sidered are among those models where I1 is, say, the set ω, and where ‘⊗’ denotes
that function ƒ :  ω → ω ω  such that ƒ(x)(y)=x.y for all x,y∈ω; and so on.

In this regard, there is yet an important feature of our definition that marks a de-
parture from (or rather, a generalization of) the standard Ajdukiewiczian approach:
there is in fact no requirement that every domain of the form I  〈t',t〉 be a “Fregean” set of
functions ƒ: It'  → It , hence no requirement that a model’s structural operation always
yield the value h(x,y)=x(y) for x∈I  〈t',t〉 and y∈It' . Again, this is in the spirit of ab-
stractness and philosophical neutrality. But we shall see in a moment that this gener-
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ality is particularly important for the purposes stated in the Introduction. For surely,
we cannot treat quantifiers as connectors and interpret all connectors as functions from
truth-values to truth-values.

In fact, as I see it this general attitude with respect to the notion of a model has far
reaching consequences, for it also seems to permit a uniform treatment of what are
sometimes regarded as different types of semantical modeling. For example, the se-
mantical analysis of so-called intensional languages is usually supposed to induce a
conceptual departure from that of simpler case studies, for in that case the “intended
meanings” of a language’s symbols seem to depend on various factors which are dis-
regarded in the simpler accounts. Yet, within the present framework such cases can be
dealt with like any other: to account for the relevant factors one only has to refer to the
appropriate classes of models, requiring e.g.  that the domains of interpretation be not
just sets of entities (truth-values for t=0, individuals for t=1, etc.), but sets of func-
tions ranging over those entities and taking as arguments indices from an appropriate
set of intensional features. More precisely, for any language we can single out the
class of its indexical models as consisting of all those models M =(d ,h,I  ) such that,
for some set A of “possible features” and some system U  =〈U t : t∈D E 〉 of universes
of “entities”, It = U t 

A for each t∈D E. And among such models, we can take the ones
that best fit our purposes. (The nature of A is in fact liable to further qualifications de-
pending on one’s specific needs. For instance, to account for a certain standard
meaning of such modal connectors as ‘necessarily’, ‘possibly’,  etc. one may construe
A as a set of “possible worlds”; but if the language is also supposed to contain in-
dexical locutions such as demonstratives, personal pronouns, etc., one might prefer
thinking of A as a set of ordered pairs consisting of a “possible world” and a “context
of use”; and in connection with tensed languages one would perhaps go even further,
requiring A to be a set of ordered triples consisting of a “possible world”, a “context
of use”, and a “moment of time”. All of this, as I see it, is just a matter of case-by-case
specifications.) 

8

It is of course understood that if M  is an indexical model relative to a given set of
features A, the values of h should in general not depend on A unless the arguments do
too. That is, one should have h(x,y)(ai )= h(x,y)(aj ) whenever x(ai )=x(aj ) and y(ai

)=y(aj ) (ai ,  aj ∈A).  Also, such values should behave coherently with respect to the en-
tities that make up the system of universes U  =〈U t : t∈D E 〉. Thus, in general one
should require that h(x i ,y)(a)= h(x j ,y)(a) if x i (a)=x j (a), and h(x,y i )(a)=h(x,y j )(a) if y i

(a)=y j (a). Indexical models satisfying these additional conditions may be referred to as
models rooted on the couple (U ,  A). As we now shall see, it is precisely models of
this sort that can be employed to provide an interpretation of languages whose vo-
cabulary includes variable-binders.

For concrete illustration, we can refer directly to the examples considered earlier.
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EXAMPLE 2.1. If L   is a sentential language, then M  is a bivalent sentential
model for L   iff I0  =  2. In particular, suppose L   contains only a binary connector ‘↓’ as
in Example 1.1: then we may say that M  is a standard sentential model for L   iff M  in-
terprets ‘↓’ as the joint-denial connector:

(*) if s (β,t)=↓, then h(h(d(β,t),  x),y)=1– (x  ∪y) for every x,y∈I0 .

EXAMPLE 2.2. If L   is an elementary language with a denumerable set VL of
noun variables, then M  is a bivalent elementary model for L   iff M  is rooted on a cou-
ple (〈U t : t∈D E 〉,  A) such that U 0  =2 and A=U 1  

VL.
Thus, to account for the fact that some L  -expressions may involve variable sym-

bols of type 1, we may just require M  to be an “indexical” model relative to the set of
“features” U 1  

VL, i.e. expressions may be interpreted as functions of the relevant value
assignments a:VL →U 1 . In particular, suppose L   includes a binary quantifier ‘〈↓,v〉’
for each variable v∈VL , as in Example 1.2: then we may say that M  is a standard
elementary model for L   iff the following additional conditions hold for every
〈β,t〉∈Ds ,  every v∈VL  and every x,y∈I0 :

(a) if s (β,t)∉VL , then d(β,t)(a)=d(β,t)(b) for all a,b∈A
(b) if s (β,t)=v, then d(β,t)(a)=a(v) for all a∈A
(c) if s (β,t)=〈↓,v〉, then h(h(d(β,t),  x),y)(a) = I {1– (x(a(v/u)) ∪  y(a(v/u))): u∈U 1  }

for all a∈A

(i.e., iff M  interprets ‘〈↓,v〉’ as the joint denial quantifier binding the corresponding
variable v, every constant symbol denoting constant functions of the right sort).

EXAMPLE 2.3. If L   is a full categorial language with a denumerable set VL , t  of
variables for each type t∈T  , then M  is a bivalent categorial model for L   iff M  is
rooted on a couple (〈U t : t∈T  〉,  A) such that U 0  =2 and A=∏〈U t 

VL , t : t∈T  〉.
Thus, again, since the expressions of L   may involve variable symbols of various

types, we require here that M  be an “indexical” model based on the appropriate set of
“features”: sequences of value assignments at :VL , t  →U t  for each t∈T  . In particular,
suppose L   includes an abstractor 〈λ,v,t'  〉 for each v∈U{VL , t : t∈T  } and each t'∈T  ,
as in Example 1.3: then we may say that M  is a standard categorial model for L   iff the
following additional conditions hold for every 〈β,t〉∈Ds  and every x∈It' :

(a) if s (β,t)∉U{VL , t : t∈T  }, then d(β,t)(a)=d(β,t)(b) for all a,b∈A
(b) if s (β,t)=v, then d(β,t)(a)=aτ(v)(v) for all a∈A
(c) if s (β,t)=〈λ,v,t' 〉, then h(h(d(β,t),  x),y)(a)=x(a(τ(v)/aτ(v)(v/y(a)))) for all y∈Iτ(v)

and all a∈A, where τ(v) is the type of v

(i.e. iff M  interprets each ‘〈λ,v,t'  〉’ as the functional abstractor of type 〈t' ,〈t,t'  〉〉 bind-
ing the corresponding variable v, every constant symbol denoting constant functions
of the right sort).
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VALUATIONS

At this point we just need to build a bridge between languages and models in the obvi-
ous way, via the notion of a valuation. This is straightforward, for it suffices to note
that every language is homomorphic to any of its models. That is, if L =(s ,g ,E ) is a
language and M =(d ,h,I  ) a corresponding model, then there exists a unique map
ƒ:  UR E → UR I such that  (i) ƒ(s (β,t))=d(β,t) for each 〈β,t〉∈Ds , and (ii) ƒ(g(y,z)=
h(ƒ(y),ƒ(z)) for each 〈y,z〉∈Dg  9. This means that M  is sure to provide all the infor-
mation that is needed in order to assign a value to each expression of L  : d  assigns a
denotation to each basic expression, and h tells us how to compute the denotation of a
compound expression given the denotation of its component parts. Since all this infor-
mation is perfectly reflected in the homomorphism that relates L  and M , such a map
—call it V —is the natural candidate for the role of a valuation of L   on M : it yields the
value V (x)=d(β,t) for x=s (β,t), and the value V (x)=h(V (y),V (z)) for x=g(y,z).

DEFINITION 3. The valuation of a language L   on a corresponding model M  is
the unique homomorphism V  between L   and M .

Just for the sake of completeness, one may refer to our previous examples to
verify that V  behaves normally when certain standard conditions are satisfied.

EXAMPLE 3.1. If L   is a sentential language with a binary connector ↓ (as in Ex-
ample 1.1) and M  a standard sentential model for L   (as in Example 2.1), then the
usual conditions hold for all A,  B∈E

 0 :

(a) V (A  ↓B)=1 iff V (A)=0 and V (B)=0
(b) V (¬  A)=1 iff V (A)=0
(c) V (A∨B)=1 iff V (A)=1 or V (B)=1
(d) V (A∧ B)=1 iff V (A)=1 and V (B)=1
  M  M

EXAMPLE 3.2. If L   is an elementary language with a binary quantifier ‘〈↓,v〉’ for
each variable v∈VL  (as in Example 1.2) and M  is a standard elementary model for L
rooted on a pair (〈U t : t∈D E 〉,  U 1

VL ) (as in Example 2.2) then the following usual con-
ditions hold for all A,B∈E

 0  , all v∈VL  , and all a∈U 1
VL :

(a) V (A  ↓
v

  B)(a)=1 iff V (A)(a(v/u))=0 and V (B)(a(v/u))=0 for all u∈U 1

(b) V (¬  A)(a)=1 iff V (A)(a)=0
(c) V (A∨B)(a)=1 iff V (A)(a)=1 or V (B)(a)=1
(d) V (A∧ B)(a)=1 iff V (A)(a)=1 and V (B)(a)=1
  M  M
(e) V (∨vA)(a)=1 iff V(A)(a(v/u))=1 for some u∈U 1  
(f) V (∧vA)(a)=1 iff V (A)(a(v/u))=1 for every u∈U 1  
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EXAMPLE 3.3. If L   is a full categorial language with a denumerable set VL , t  of
variables for each t∈T   and an abstractor 〈λ,v,t'  〉 for each variable v and each type t'
(as in Example 1.3) and M  is standard categorial model for L  rooted on a pair (〈U t :
t∈T  〉,  ∏〈U t

VL , t : t∈T  〉) (as in Example 2.3),  then the following conditions hold for all
t,t' ,t"∈T, all v∈U{VL , t : t∈T  }, all A∈Et' , all x∈Et , all y∈E 〈t,〈t',t"〉〉 , and all z∈E 〈t,t' 〉 :

(a) V (λvA(v))=V (A)
(b) V (I t (x))=V (x)
(c) V (K  t,t' (x,A))=V (x)
(d) V (S  t,t',t" (y,  z,  x))=V (y(x,  z(x))) 10 .

DISCUSSION

With Definition 3 our semantic framework is complete. It is in fact a semantic frame-
work, not a semantic theory—a framework wherein each of a variety of semantic theo-
ries falls rather naturally: as the particular form of the language and the specific con-
ditions on the relevant models are varied, the theory varies.

Now I believe this is rather close to what Ajdukiewicz had in mind. What is at-
tractive in the conception of semantics originated with his work is precisely that it
leads to a general framework fixed in advance, rather than a theory to be worked out
anew in each case: we only have to specify a type assignment for the language’s sym-
bols (eventually along with a suitable structural operation) and then specify which,
among the indefinitely many structures that give a homomorphic interpretation of the
language, are to count as “admissible” models. The account outlined here is a bit more
abstract than Ajdukiewicz’s, hence more general. But it is precisely this trade-off be-
tween abstractness and generality that shows the enormous potentiality of Ajdukie-
wicz’s original approach to semantics. I have on purpose refrained from considering
extending the basic notion of a categorial language, as suggested in more recent litera-
ture 

11 , to emphasize this aspect.
I would now like to conclude with a couple of remarks on the resulting overall

picture, both of which tie in with this general perspective.
The first remark concerns specifically the fact that also languages involving vari-

able-binding operators seem to fit in naturally with the proposed account. I don’t
know whether this could by itself justify a claim of generality 

12 . Certainly the fact that
we can analyze a language with quantifiers by the simple functor/argument schema is
not unattractive, but that is only one way of putting it: there are several alternatives
available that do the job as well. What I think is more interesting is the fact that also a
language with, say, a lambda operator can be treated in the same fashion. There is a
rather widespread belief that within a purely categorial framework one cannot go very
far in the analysis of complex linguistic structures, though much can be done with the
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additional help of the functional abstraction operator: arguably there is a strong con-
nection between abstraction and certain types of syntactic/semantic transformations
that allow one to come near to the surface of most natural language sentences
(probably as close as we need for most purposes) 

13 . From this point of view, then,
the present account becomes fairly attractive and justifies a different, more positive
attitude towards categorial investigations.

The second remark is also related to the above, but it bears on a more general is-
sue in the philosophy of semantics. Very often, the necessity of using variables and
variable-binding operators is taken to have important consequences with respect to the
role of semantic theorizing. In particular, it is often taken to imply that certain crucial
aspects of our language lie “outside”, or perhaps “above”, the realm of semantics: in-
sofar as such symbols must receive a fixed interpretation, there must be a correspond-
ing set of logical principles that we need “keep in mind” when we come to spell out the
semantic framework we want to use. This is rather typical, for instance, in the cus-
tomary model-theoretic way of presenting first-order logic, where the “meaning” of
bound variables and quantifiers is characterized only indirectly through the recursive
definition of the truth-value of a sentence. And the same applies to lambda-equipped
categorial languages, where the “meaning” of the lambda operator is usually fixed
during a recursive definition of the value of an expression. To a certain extent this way
of proceeding reflects neither less nor more than a natural need for short cuts: if we
are not going to consider other ways of interpreting those symbols, there is no need to
do otherwise. But the question is how—and somehow even whether—one could do
otherwise.  The question is whether it is possible in principle to do semantics without
also doing logic.

As I see it, there has never been much clarity on this point 
14 . Nevertheless my

suggestion is that within the approach outlined here the question seems to admit a sim-
ple answer. Insofar as quantifiers, functional abstractors, and the like can be treated as
ordinary functors, one has good grounds to regard these symbols as being on a par
with all the others—hence good grounds to treat logics as true theories in the usual se-
mantic sense. To treat something as a “logical” word is to select a certain class of
models as the only “logically” admissible ones, just as to treat something as, say, a
“mathematical” symbol is to select a certain class of models as the only “mathe-
matically” admissible ones. Earlier I exemplified this point with reference to the usual
interpretation of the conjunction connective and the multiplication operator. Now the
suggestion is that a similar argument could be given for any other logical word, wit-
ness the examples given in the previous sections. Classical sentential logic can be ob-
tained by selecting a sentential language along with the class of its standard bivalent
models; classical elementary logic can be obtained by selecting an elementary language
along with the class of its standard bivalent models; the classical typed lambda-calcu-
lus can be obtained by selecting a full categorial language along with the class of all of
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its standard bivalent models; and so on. Including, as I mentioned, logics usually clas-
sified as “intensional” (e.g. modal or tense logics).

Further generalizations can also be considered. For instance, as it is the semantic
framework outlined here embeds the requirement that every model provide a homo-
morphic interpretation of the corresponding language, which reflects the standard as-
sumption that a model must be made of well-defined, sharp-cut entities, neatly linked
to one another and to the language’s expressions in a univocal way. Philosophically—
as well as for practical reasons—one could find this a serious limitation in the scope of
a semantic theory, particularly in the spirit of the above considerations. There is no a
priori semantic reason to rule out the possibility that (our representation of) what we
talk about may involve “gaps” and/or “gluts” of various sorts. Indeed, since there is no
general linguistic criterion for incompleteness, there is no general way that incomplete-
nesses can be ruled out without weeding out a variety of unproblematic cases as well.
And since there is no general decision procedure for inconsistency, there is no general
and effective way that inconsistencies can be ruled out without rendering a great deal
of perfectly innocent thinking impossible. Without going into any details here, it is
therefore worth remarking that the approach described above can rather easily be gen-
eralized so as to cover such cases as well. This would of course make things a bit
more complicated. For there is no homomorphism between a language and an in-
complete model, while there can be more than one between a language and an incon-
sistent model. Still, the point remains that as long as we can define a general notion of
a valuation linking arbitrary languages and models thereof, be it or not a “pure” ho-
momorphic valuation 

15 , a general semantic framework is available relative to which a
variety of cases can be treated in a uniform fashion. And I think this is definitely in the
spirit (methodologically, if not philosophically) of Ajdukiewicz’s original insights.

NOTES

1Ajdukiewicz (1935) spoke of semantic categories, following the terminology of Husserl’s Un-
tersuchungen (1900-1901) and Leśniewski’s Grundzüge (1929). Presumably this is because he was
already thinking of their semantic role, but I find that a bit misleading. In the following I shall
mainly speak of types.

2These are indeed the two main primitive categories Ajdukiewicz had in mind, though he did not
rule out the possibility of different choices. Some authors, for instance Lewis (1970), have insisted on
a third one, Common Noun, and others have considered dispensing with Proper Noun in favour of
Noun Phrase, or even Verb Phrase.

3 I shall use standard set-theoretic notation and terminology: note only that if ƒ is a function, I
write ‘D ƒ’ and ‘R ƒ’ for the domain and the range of ƒ, respectively, while ‘ƒ(x/y)’ denotes the func-
tion exactly like ƒ except that its value at x is y.

4Since we define derived types by means of a binary operation, we can of course speak of
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“monadic” functors only. However, it is a well-known fact that this implies no loss of generality: for
whenever n > 1 and t1, … , tn, tn+1  are types, the derived type 〈t1,〈t2,〈…,〈tn,tn+1〉…〉〉〉 may be used to
represent the category of those “n-adic” functors that combine with n-tuples of expressions of type t1,
t2, … , tn (in this order) to produce expressions of type tn+1 

. In this sense, as long as the second co-
ordinate of a derived type is allowed to be a derived type itself, our relying on 〈 〉 imposes no signi-
ficant restriction on the class of possible functors. (To illustrate, the English word ‘and ’ is a dyadic
functor that makes a sentence out of two sentences; but it can equally be regarded as a monadic functor
that, when applied to a sentence, produces an expression that behaves again as a monadic functor: a
functor that makes a sentence out of a sentence). The idea goes back to Schönfinkel (1924) and reflects
the set-theoretic isomorphism AB1× B2× … Bn+1 ≈ (…((AB1)B2)…)Bn+1.

5Although we speak of the type of a symbol—and consequently of an expression—it could be
argued that this is only an apparent limitation: it is not difficult to imagine words belonging to more
than one syntactic category, but we can always deal with such cases by treating them as distinct sym-
bols with a common “surface realization”. (For instance, the word ‘light ’ in English may seem to
function as either a noun or an adjective, but we can also deal with this peculiarity the way common
dictionaries do: by distinguishing between a word ‘light  1’ and a word ‘light  2’, to be classified into two
distinct syntactic categories). Apparently the point was made by Ajdukiewicz himself, though several
authors have later proposed alternative accounts.

6The requirement that QL , n ×VL  = {〈x,y〉: 〈x,y〉∈CON L , n 
} is of course but one way of secur-

ing syntactic precision. Note also that in a similar fashion one could for instance treat descriptors as
suitable “structured” subnectors: given sequences DL , n 

 disjoint from R s  so that DL , n ×VL  = {〈x,y〉:
〈x,y〉∈SUB L , n 

}, one could speak of a pair of the form 〈DL , n , i 
,  v〉 as a n-ary descriptor binding the

variable v. In the present context, I shall not go into languages with descriptors to avoid certain well-
known complications in their semantics.

7The requirements that each domain of interpretation It be non-empty , that d be a total function
on D s , and that h be a total operation on U{I 〈t',t〉 ×  It' : t',〈t',t〉∈D I } reflect a major assumption of
standard semantics, namely that each model must provide a complete and consistent interpretation of
the language. It is of course possible to give up such requirements so as to admit incomplete and/or
inconsistent structures as models bona fide. For instance, allowing d to be a partial function would
correspond to a more liberal attitude with respect to the possibility of non-denoting symbols; allow-
ing it to be a relation would leave room for symbols with more than one denotations; etc. Although
this is in the spirit of greater generality, in the present context such a departure from standard seman-
tics would take us too far. A fuller account may be found in a forthcoming work entitled Universal
Semantics.

8 I think this is a rather natural exploitation of some basic ideas of Montague Grammars, par-
ticularly of the treatment in Montague (1970).  Note of course that one could also take the notion of an
indexical model as fundamental, regarding all other models as models indexed by a feature’s singleton.

9That ƒ is unique is easily seen, provided R g  ∩  R s  =0. Obviously ƒ(x) is defined if x is a sym-
bol. And if ƒ(y) and ƒ(z) are both defined, then ƒ(g (y,z))=h(ƒ(y),ƒ(z)) is also defined, since h is a func-
tion.

10 For readability, I use here a notation of the form ‘(w(w1,  … ,  wn))’ as an abbreviation for
‘g (…(g (g (w,  w1), w2),…), wn)’.

11 The first substantial refinements or extensions of the pure categorial paradigm go back to
the work of Bar-Hillel (1960) and Geach (1970). Some indications of the current trends may be found
in Bach (1984), Oehrle, Bach and Wheeler, eds. (1988) and Buszkowski, Marciszewski and van Ben-
them, eds. (1988).
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12 Certain aspects of the proposed account might still sound unpalatable. For instance, as Peter
Simons has pointed out to me, there is no way one can single out an elementary language where
“vacuous” quantification is forbidden. However, I am inclined to regard such limitations as symp-
tomatic of a more general problem concerning the generative power of Definition 1, typical of virtu-
ally every categorial grammar and independent of how one feels about variable-binding through func-
tors. For instance, there is no way one can single out a sentential or elementary language where
“useless” conjunctions such as A∧ A  are forbidden. From this point of view, the corresponding general
solution would simply involve redefining the structural operation g  as required: rather than a total
function on U{E  〈t',t〉 ×Et' : t',〈t',t〉∈D E  }, it should be allowed to be a partial function (of some sort).
Thus, for instance, an elementary language where g (〈↓,v〉,  A) is defined only if the noun variable v is a
constituent symbol of the sentence A would be a language with no “vacuous” quantification.

13 The work done in the tradition of Cresswell (1973) is most indicative of this approach.
14 The question is not whether one can live without any logic, as it were. For of course, one

could always say that semantics is set theory, and that surely embeds quite a bit of logic.
15 In my Universal Semantics, I propose a general solution based on an extension of Van

Fraassen’s notion of a supervaluation. An alternative approach has been proposed in Muskens (1989).
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