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C. S. Peirce and the square root of minus one:  

Quaternions and a complex approach to classes of signs and categorical degeneration   
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Abstract 

The beginning for C. S. Peirce was the reduction of the traditional categories in a list 

composed of a fundamental triad: quality, respect and representation. Thus, these three 

would be named as Firstness, Secondness and Thirdness, as well given the ability to 

degeneration. Here we show how this degeneration categorical is related to 

mathematical revolution which Peirce family, especially his father Benjamin Peirce, 

took part: the advent of quaternions by William Rowan Hamilton, a number system that 

extends the complex numbers, i.e. those numbers which consists of an imaginary unit 

built by the square root of minus one. This is a debate that can, and should, have 

contributions that take into account the role that mathematical analysis and linear 

algebra had in C. S. Peirce’s past. 
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Starting point for the study of signs, the semiotic categories are the Peircean 

response to the great metaphysical models. The beginning for C. S. Peirce was the 

reduction of the traditional categories in a list composed of a fundamental triad: quality, 

respect and representation. Thus, these three would be named as Firstness, Secondness 

and Thirdness, as well given the ability to degeneration. However, this degeneration, 

which allows the classes of signs’ extension, does not receive proper attention in 

language studies. Here we show how this degeneration categorical is related to 

mathematical revolution which Peirce family, especially his father Benjamin Peirce, 

took part: the advent of quaternions by William Rowan Hamilton, a number system that 

extends the complex numbers, i.e. those numbers which consists of an imaginary unit 

built by the square root of minus one. Given that the imaginary part of a quaternion is 

characterized, in their algebraic and geometrical properties, while a versor, this number 
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system makes itself ideal for application in the mechanics of a 3-dimensional and/or 4-

dimensional space, linking to the very question of analytic geometry, or even in 

algebraic reflections. Here we see that the engagement of C. S. Peirce in the design of 

his father’s linear algebra made him build his semiotic systems in the manner of 

mathematical imagination. Such consideration, developed by this article, is consolidated 

as a further contribution to the ongoing debate about the Peircean trichotomies and the 

development classes of signs, represented here by the development of a spherical 

representation of classes of signs. This is a debate that can, and should, have 

contributions that take into account the role that mathematical analysis and linear 

algebra had in C. S. Peirce’s past. 

 

Peirce family and quaternions 

Known for his letters and to leave in his estate, a series of impressionist writings, 

C. S. Peirce has a text where he paints a significant portrait about the relationship and 

the theoretical disagreements he had with the mathematical thought of his father, 

Benjamin Peirce. This does not mean an ordinary family disagreement. One of the first 

American mathematician with some worldwide projection, Benjamin Peirce is well 

remembered for his work in statistical theory, in analytic geometry, and linear algebra, 

as well for his phrase “Mathematics is the science which draws necessary conclusions” 

(PEIRCE, 1881, p. 97). 

In fact, this is the opening sentence of his treatise Linear Associative Algebra, 

from 1870 and republished posthumously in 1881, with notes and additions, by C. S. 

Peirce. And it is precisely in Linear Associative Algebra which deals with mentioned 

Peirce’s text. This text, dated June 28th, 1910, was in a copy of the Traité des 

Substitutions et des Equations Algébriques, by Camille Jordan, and was published by 

the initiative of Raymond Clare Archibald in 1927. I highlight below some excerpts 

from the text: 

 

I will record a reminiscence about this book. It was published in 1870, 
the same year as the date of the original edition of my father's Linear 
Associative Algebra (though I am sure this was not lithographed for a 
year or two after the general theory was complete). I had first put my 
father up to that investigation by persistent hammering upon the 
desirability of it. There was one feature of this work, however, which I 
never could approve of, and in vain endeavoured to get him to change. 
It was his making his coefficients, or scalars, to be susceptible of 
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taking imaginary values. In vain I represented to him that the system 
of imaginary quantity has two dimensions, and is consequently a 
double algebra. But it was always next to impossible to induce him to 
take a logical view of any subject. He did me the honor to reply to my 
arguments in a footnote on p. 19 of the Ed. of 1870 (p. 9 of that of 
1882). The reply is pure bosh. His "broad philosophy" which could 
not be definitely expressed, was a mere habit of feeling. He was a 
creature of feeling, and had a superstitious reverence for "the square 
root of minus one"; and as to the absence of it "trammeling" research, 
that only means that he was not in possession of any machinery for 
dealing with the problems that lie beyond its scope. If Hamilton had 
done as he would have had him, the calculus of quaternions could not 
have come into being, because division would not generally have had 
a determinate result.  (...)  When I found that my brother had 
purchased the [Jordan’s] book in 1874, I told him it was the very book 
he needed to study, and that he would get a flood of illumination from 
it. But he only cut the leaves of the first sheet, and remained to his 
dying day a superstitious worshipper of two hostile gods, Hamilton 
and the scalar √(- 1) (PEIRCE apud ARCHIBALD, 1927, p. 525-527). 

 

This family quarrel is quite simple, in mathematical terms. A complex number, 

whose set is denoted by C, is compound by a + bi where a and b are natural numbers 

and i is the imaginary unit, since i2 = -1, that is, i is the square root of minus 1. On the 

right side of the plus sign, that is a, we have the real part. On the left side, that is bi, we 

have the imaginary part. A quaternion, as we shall see, is an expansion of complex 

numbers. Its structure is defined by Hamilton in the first lines of his theory, one of the 

most direct definitions in the history of mathematics: 

 

Let an expression of the form Q = w + ix + jy + kz  be called a 
quaternion, when w, x, y, z, which we shall call the four constituents 
of the quaternion Q, denote any real quantities, positive or negative or 
null, but i, j, k are symbols of three imaginary quantities, which we 
shall call imaginary units, and shall suppose to be unconnected by any 
linear relation with each other (HAMILTON, 1844, p.10). 

 

Also, this is the very moment that the Peirce family begins to disagree. In the 

footnote mentioned in C. S. Peirce’s letter found in Camille Jordan’s book, Benjamin 

Peirce criticizes Hamilton’s method: 

 

Hamilton's total exclusion of the imaginary of ordinary algebra from 
the calculus as well as from the interpretation of quaternions will not 
probably be accepted in the future development of this algebra. It 
evinces the resources of his genius that he was able to accomplish his 
investigations under these trammels. But like the restrictions of the 
ancient geometry, they are inconsistent with the generalizations and 
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broad philosophy of modern science. With the restoration of the 
ordinary imaginary, quaternions becomes Hamilton's biquaternions. 
From this point of view, all the algebras of this research would be 
called bi-algebras. But with the ordinary imaginary is involved a vast 
power of research, and the distinction of names should correspond; 
and the algebra which loses it should have its restricted nature 
indicated by such a name as that of a semi-algebra (PEIRCE, 1881, p. 
105). 

 

What we have here is the quaternion’s characterization, by Benjamin Peirce, as 

an algebraic structure incomplete. For Benjamin – an opinion also shared by his other 

son and successor in the chair of mathematics at Harvard, James Mills Peirce, as C. S. 

Peirce mentions in the letter – Hamilton has a misdirected attitude when dealing with 

his creation, especially when defining that the constituents w, x, y, z cannot be complex 

numbers, as they are in biquaternions. 

Only with such characterization, as Benjamin Peirce writes, is that quaternions 

(in case, biquaternions) could compose a complete algebraic set and constituting an 

quadruple algebra, not a triple one (Peirce, 1881, p. 105). However C. S. Peirce believed 

that quaternions were a good example of a double algebra, following the nomenclature 

developed by Augustus De Morgan (1849). The distinction is simple in symbolic 

algebra’s field: 

 

This particular mode of giving significance to symbolic algebra 
[double algebra] is named from its meaning requiring us to consider 
space of two dimensions (or area), whereas all that ordinary algebra 
requires can be represented in space of one dimension (or length). If 
the name be adopted, ordinary algebra must be called single (...). All 
the symbols which in single algebra denote numbers or magnitudes, in 
double algebra denotes lines, and not merely the lengths of lines, but 
their directions. Thus two lines of the same length, but in different 
directions, or two lines in the same direction, but of different lenghts, 
must have different symbols. Accordingly, each symbol is meant to 
convey a double signification: it describes the lenght, and direction, of 
its line (...).Thus, A and B being points, AB and BA are not entitled to 
the same symbol: and if a A, B, C. D be the points of a parallelogram 
in order, AB and DC gave the same symbol, but not AB and CD. Thus 
AB = DC is true: AB = CD is not (DE MORGAN, 1849, p. 117).   

 

Thus, C S. Peirce regarded quaternions in its vector potential while Benjamin 

and James Mills Peirce maintained its position for linear algebra. Of course, the advent 

of vector analysis – driven by the book Vector Analysis, by Edwin Bidwell Wilson 

based on Josiah Willard Gibbs’ lectures – did not pass unnoticed to the Peirce family, 



5 

 

who loved Hamilton and scalar √(- 1), as described in Kennedy (1979, p. 426). But we 

can notice that biquaternions’ properties are not lost on a double algebra dynamics. An 

example is the hyperbolic quaternions, designed by Alexander MacFarlane (1900), 

whose application is similar to Minkowski diagrams. 

While his father and his brother James position themselves within the linear 

algebra, C. S. Peirce seems to indicate his interest in the condition caused by De 

Morgan’s vectorial double algebra. To understand how it affects the mathematical 

imagination that Peirce used in the categorical degeneration and in the classes of signs, 

we must first introduce the mathematical concept of quaternion. 

 

The Quaternion 

As mentioned earlier, a quaternion is defined by Hamilton as: 

 

Let an expression of the form Q = w + ix + jy + kz  be called a 
quaternion, when w, x, y, z, which we shall call the four constituents 
of the quaternion Q, denote any real quantities, positive or negative or 
null, but i, j, k are symbols of three imaginary quantities, which we 
shall call imaginary units, and shall suppose to be unconnected by any 
linear relation with each other (HAMILTON, 1844, p.10). 

 

A quaternion, thus, is an expansion of a complex number – those compound by a 

+ bi where a and b are natural numbers and i is the imaginary unit, since i2 = -1, that is, i 

is the square root of minus 1 –, so w is its real part or scalar and rest of the equation is 

its imaginary part or vector. 

As we can see, to expand a + bi, in case w +ix, Hamilton introduces the 

imaginary units j e k, transforming the imaginary part into a vector with the following 

assumptions: j2 = -1; k2 = -1; ijk = -1. In traditional way, we can reduce it on an 

assumption: i2 = j2 = k2 = −1. It makes Hamilton conceive, in the quaternion, the idea of 

a noncommutative multiplication: ij = k; jk = i; ki = j, but ji = -k; kj = -i; ik = -j. 

Addition and subtraction follow the complex number’s rules and, like multiplication, 

those presupposes a complete separation between the real and imaginary parts. 

 

The separation of the real and imaginary parts of a quaternion is an 
operation of such frequent occurrence, and may be regarded as being 
so fundamental in this theory, that it is convenient to introduce 
symbols which shall denote concisely the two separate results of this 
operation. The algebraically real part may receive, according to the 
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question in which it occurs, all values contained on the one scale of 
progression of number from negative to positive infinity; we shall call 
it therefore the scalar part, or simply the scalar of the quaternion, and 
shall form its symbol by prefixing, to the symbol of the quaternion, 
the characteristic Scal., or simply S., where no confusion seems likely 
to arise from using this last abbreviation. On the other hand, the 
algebraically imaginary part, being geometrically constructed by a 
straight line, or radius vector, which has, in general, for each 
determined quaternion, a determined length and determined direction 
in space, may be called the vector part, or simply the vector of the 
quaternion; and may be denoted by prefixing the characteristic Vect., 
or V. We may therefore say that a quaternion is in general the sum of 
its own scalar and vector parts, and may write Q = Scal.Q + Vect.Q = 
S.Q+V. Q or simply Q = SQ+VQ (HAMILTON, 1846, p. 26). 
 

 

However, there is one controversy regarding the nomenclature in a quaternion 

with a real part equal to zero – that is a quaternion as Q = ix + jy + kz, also known as 

pure quaternion – can be thought of as a vector.  

 

Of course, there is a one-to-one correspondence between the set of 
vectors and that of pure quaternions, because vectors and pure 
quaternions are both triplets. However, not every triplet can be 
regarded as a vector, because a vector is a triplet with some specific 
properties. The notation for vectors and quaternions also helps to 
increase the confusion. In both cases one employs i, j, k, and this 
notation conjures up an identification between pure quaternions and 
vectors. However, for vectors, i, j, k are unit vectors in three 
perpendicular directions. In the case of quaternions, i, j, k are 
imaginary units. Altmann has shown, from a modern point of view, 
how dangerous it is to identify uncritically a pure quaternion with a 
vector. A pure quaternion and a vector do not have the same 
symmetry proprieties (SILVA & ANDRADE MARTINS, 2002, 
p.958-959).  

 

This was noticed by Hamilton, who describes that quaternions can represent 

rotations. To this, we call it versor that is nothing more than a directed arc from a circle 

with radius 1, representing the path of a point that is rotated by an angle a in an axis r. 

With this, a versor is Uq = exp (ar) = cos a + r sin a  where r2 = -1 e a ∈ [0,π].  The 

rotations performed by a quaternion can be placed such as those placed by Euler angles, 

however, with one difference: the angle must be halved. 

In this comparison with the Euler angles – demarcating its proximity to Euler-

Rodrigues formula – we can redesign the entire matrix of rotation operator. Taking into 
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account that q1, q2 e q3 are the vector components and q4 is scalar component, as well E1 

= 2q4q1, E2 = 2q4q2, E3 = 2q4q3 e E4 = q4
2 – (q1

2+ q2
2+ q3

2), we have this matrix:  

 

 

 

Simplifying, we can notice that the rotation’s definition of vector v post by 

quaternion is calculated as qvq-1 where q-1 is the conjugate of the quaternion q. This 

mathematical property of quaternions makes them ideal in the construction of 

algorithms for 3D computer graphics. Through qvq-1 and the actual condition to reduce 

the angle by half, those arcs gain equivalent negative arcs, so the rotation is calculated 

both in clockwise and counterclockwise manner. The result of these arcs is a 

hypersphere, a 3-sphere in 4-D space. 

A special form of the versor is the right versor where a = π/2. The major 

consequence is that they produce a scalar null and all vectors of imaginary part of size 

one. Thus, they form a sphere of square roots of -1 in a three dimensional space. 

With this brief explanation, we want to show, in general, the reasoning put by 

Hamilton in his time. It is not the scope of this paper to explain the current state of 

quaternions’ research that, if on one side is being forgotten within mathematics, more 

specifically the Analytic Theory of Numbers, but on the other side, provides some 

interesting insights in quantum physics as well as being a simple way to construct 

algorithms for the digital world. 

To link this reasoning to that engendered by the Semiotics of C. S. Peirce, we 

must first understand the scope of the cenopythagorean categories as well as the role 

that their degeneration have in the trichotomies’ development in Peirce’s thought. This 

is the moment when mathematical intuition will join semiotic intuition. 

 

Categories and Degeneration 

In the broad project of semiotics, the cenopythagorean categories’ issue – 

namely Firstness, Secondness and Thirdness – is the beginning of theorizing about the 
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sign, but also attempt made by Peirce to discuss the tradition posited by Hegel and Kant. 

In other words, we find ourselves in a search through the stages of thought, how the 

mind operates what is before it. In his own words, in a letter to William James, Peirce 

states that “by the phenomenon I mean whatever is before our minds in any sense. The 

three categories are supposed to be the three kinds of elements that attentive perception 

can make out in the phenomenon” (CP 8.265). 

With this, we have a set of functions operating on a single point. From all the 

many definitions and descriptions of the cenopythagorean categories that Peirce gave, 

the most vivid are those given in the letter to Lady Welby. But it is only in his lectures 

on Pragmatism at Harvard that we found a systematic way to describe them. 

The construction begins by Firstness that "is the Idea of that which is such as it 

is regardless of anything else. That is to say, it is a Quality of Feeling (…).   Category 

the First owing to its Extremely Rudimentary character is not susceptible of any 

degenerate or weakened modification" (CP 5.66-68). 

Secondness “is the Idea of that which is such as it is as being Second to some 

First, regardless of anything else, and in particular regardless of any Law, although it 

may conform to a law. That is to say, it is Reaction as an element of the Phenomenon” 

(CP 5.66). 

At last, Thridness “is the Idea of that which is such as it is as being a Third, or 

Medium, between a Second and its First. That is to say, it is Representation as an 

element of the Phenomenon” (CP 5.66). 

Quality, Reaction, Representation. It is this progression that the mind deals with 

the phenomena of the world. Thus, we could say, ultimately, that the three semiotic axes 

live in such conditions, basing semiosis’ very own way. 

However, it is also these Harvard lectures that Peirce introduces the idea of 

degeneration. Degeneration would be supplemental trichotomy, as the cenopythagorean 

categories are a genuine trichotomy. Incidentally, the degeneration would be a 

consequence of the categorical interdependence. The Firstness exists in itself and also in 

the degenerate form in Secondness and in Thirdness. There is not Secondness in 

Firstness, but there is Secondness on Thirdness. Finally, the last phase of thinking, 

Thirdness, exists only in itself. 

What we have here is the sign’s development kickoff. 
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Peirce's theory involves the use of five principles: 1. There is a single 
triadic set of categories in terms of which all phenomena are to be 
classified.' A phenomenon is either a First, something in itself; a 
Second, an existent in dyadic relation to something else; or a Third, a 
mean inseparable from a law or pur- pose. 2. A triadically determined 
object exemplifies all three cate- gories (CP 2.238). Since a sign is 
defined as "something which stands to somebody for something in 
some respect or capacity" (CP 2.228), it is triadic in nature. By 
principles 1 and 2, one obtains three divisions of signs: the sign in 
itself, the sign as related to its object, and the sign as interpreted to 
represent an object. (...). 3. Each division is subject to all three 
categories (CP 2.243). Accordingly, each division is trichotomous. For 
example, the sign as related to its object (the second of the three 
divisions) may be similar to, may be existentially connected with, or 
may be referred by means of a law to, its object (...). 4. Thirds have 
two degenerate forms, Seconds one degenerate form (CP 1.365). The 
application of this principle to the three divisions yields ten divisions 
(...). By principle, the ten divisions yield the ten trichotomies  (...). 5. 
Whatever is a First determines only a First; whatever is a Second 
determines a Second or (degenerately) a First; whatever is a Third 
determines a Third, or (degenerately) a Second or a First (CP 2.235). 
The application of this principle to the three trichotomies (...) yields 
ten classes of signs (...). The application of this principle to the ten 
trichotomies (...) yields the sixty-six classes of signs (WEISS & 
BURKE, 1945, p. 384). 

 

Thus, sign development becomes just a matter of combinatorial trichotomies 

governed by the equation where the number of classes is equal to (n + 1)(n + 2)/2,  

where n is the number of trichotomies. Thus, in accordance with Weiss and Burke’s 

consolidation, with 10 trichotomies, we have 66 signs. However, will this is the only 

way to understand the trichotomic reasoning designed by C. S. Peirce? Does it all lies in 

combinatorial analysis or there is more forms of mathematical intuition and imagination 

involved? 

 

The complex approach to degeneration and classes of signs 

We know that 10 trichotomies generate 66 signs from the reasoning set by Peirce 

(CP 2.254-65), which cenopythagorean categories obeys 3 factors: (1) the factor A, 

signs in themselves, (2) the factor B, signs in relation to objects, and (3) the factor C, 

signs interpreted to represent. Thus, it generates the well-known below, as well as its 

graphical triadic progression, both by Peirce: 

   

A B C Name of Sign Example 
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1 1 1 Qualisign (I) A feeling of "red" 

2 1 1 Iconic Sinsign (II) An individual diagram  

2 2 1 Rhematic Indexical Sinsign (III) A spontaneous cry 

2 2 2 Dicent Sinsign (IV) A weathercock or photograph  

3 1 1 Iconic Legisign (V) A diagram, apart from its factual individuality 

3 2 1 Rhematic Indexical Legisign (VI) A demonstrative pronoun  

3 2 2 Dicent Indexical Legisign(VII) A street cry 

3 3 1 Rhematic Symbol (Symbolic Rheme) 

(VIII) 

A common noun  

3 3 2 Dicent Symbol (Proposition) (IX) Proposition  

3 3 3 Argument (X) Syllogism 

 

 

 

Typically, this graphical progression is referred to be a lattice. But, if we think 

closer to the Order Theory, or even algebraic logic, we can see that its construction is 

not binary, ie, the lattice L does not follow the structure L = (L,R) – that means, L is 

partially ordered by R, a binary pair. 

The logic developed by Peirce is triadic, but without being ternary. If we look 

deeply, we can see that triangle is form, in fact, by following of the movement of three 

triangles, namely: (1) the triangle of the classes that have at least a 1; (2) the triangle of 

the classes that have at least a 2; and (3) the triangle of classes that have at least a 3. 

Consider these three triangles separately: 
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These triangles are flanked by a segment of the classes that have not the chosen 

number. It is interesting to note that these external classes to triangles seem to mark 

them against a possible exterior. With a much more close analysis and counting the 

movement between the triangles, we can, indeed, associate them with degenerate 

cenopythagorean categories, namely Firstness of Secondness (1'), Firstness of Thirdness 

(1'') and Secondness of Thirdness (2').  

Therefore, our triangles would be like those: 
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However, this does not seem enough, because we have not forgotten the classes 

involved. The difficulty of observing such consideration, coming from what we call in 

this article a complex approach, resides in the fact that we are considering these 

triangles in a two-dimensional condition. With the aid of complex numbers, the 

quaternions more specifically, it will allows us to see these 10 classes and their triangles 

in a three-dimensional condition. 

We mentioned earlier about right versor which transforms the scalar in a null 

one and makes all the vectors in imaginary part being -1. We also said that they form a 

sphere of square roots of -1 in a three dimensional space. Thus, this sphere becomes an 

example of how to calculate the square root of -1 in the set H made of quaternions. 

We conjecture that this sphere produced by the right versor is the best movement 

representation of semiotic degeneration, as well the best representation of classes of 

signs’ internal logic. This sphere is built on a zero scalar, which is the center of the 

sphere, with its large arcs build by its vectors. This is justified in semiotics because 

classes of signs need the phenomenon, which is the guarantee of realism as defended by 

Peirce (CP 5.470, 8.16-17). The sphere’s center (named here as O), the null scalar, is the 

anchoring of the phenomenon which, in turn, is the sphere as a whole. 

Thus, this spherical representation of classes of signs would have the following 

graphical representation: 
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The classes of signs form a prism inserted in the sphere of phenomenon, three 

corresponding to the three classes of signs’ triangles and one side corresponding to the 

excluded classes of signs in accordance with rules 4 and 5 by C. S. Peirce on the 

trichotomies. Let’s recall them: 

 

4. Thirds have two degenerate forms, Seconds one degenerate form 
(CP 1.365). The application of this principle to the three divisions 
yields ten divisions (...). By principle, the ten divisions yield the ten 
trichotomies  (...). 5. Whatever is a First determines only a First; 
whatever is a Second determines a Second or (degenerately) a First; 
whatever is a Third determines a Third, or (degenerately) a Second or 
a First (CP 2.235). The application of this principle to the three 
trichotomies (...) yields ten classes of signs (...). The application of 
this principle to the ten trichotomies (...) yields the sixty-six classes of 
signs (WEISS & BURKE, 1945, p. 384). 

  

Taking this spherical representation of classes of signs as a reference, we can 

think of the 66 classes of signs (and all others who fail in rules 4 and 5) while rotations 

in relation to the center of the sphere of phenomenon measured by such arcs. With this 

situation, we will can map out and build a more accurate model of the sign positioning, 

their interpenetration, as well as its relationship with the phenomenon. 

 

Spherical representation of classes of signs as mathematical intuition and 

imagination 
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Our choice of a three-dimensional approach, going into the reasoning that are 

lead the two-dimensional triangles, only values the fabulous exercise within the 

philosophy of C. S. Peirce, composed by both mathematical intuition and imagination. 

In his mathematical works themselves or in his writings of logic and semiotics, Peirce 

has always shown the force of mathematical thinking in their elaborations. 

Also, we may note that, in his writings, his thought is not only driven by the 

mathematical force, but also by the attempt to investigate deeply the logic of this force. 

As a member of his generation, Peirce put that search as an objective. 

 

He in fact developed a rich and systematic philosophical account of 
the nature of mathematical reasoning as centrally involving semeiotic 
experimentation. The effort to provide an account of the logic of 
inquiry, in general, had a central place among the many diverse 
intellectual interests that he cultivated through his life. And describing 
the logic of mathematical inquiry was especially important to him, as 
mathematics occupied a privileged place as the most general of 
sciences in his classification—a science that provides and exemplifies 
general patterns of reasoning for all other sciences. He in fact 
considered the search for general methods of discovery in 
mathematics — what he called a methodeutic — an endeavor worth a 
lifetime of research and study (CAMPOS, 2009, p. 136). 

 

Campos claims that there are three guiding values in Peirce’s mathematical 

reasoning: imagination, concentration and generalization. This group, which he calls 

"intellectual powers", he assigns three skills:  

 

(i) create a mathematical “icon”—a presentation of a hypothetical 
state of things that is of interest for its own intrinsic formal character 
to the inquirer qua mathematician; (ii) discriminate between 
mathematically essential and superfluous relations in the 
determination of the icon and focus the attention on the essential ones; 
and (iii) generalize on the basis of the characters and relations 
embodied in the icon (CAMPOS, 2009, 137). 

 

Known to be systematic in the thinking-preparation of such forms, Peirce, along 

with other mathematicians such as Bernhard Riemann and Carl Friedrich Gauss, is 

remembered as someone with a powerful mind on the issue of mathematical 

imagination, especially in matter of analysis, analytical geometry and especially the 

field of non-Euclidean geometries. 
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Thus, mathematics, despite being the science of observation and experimentation 

on diagrams, resembling the physical sciences (CP 4.530), it is a science that requires 

the hypothesis-making. And for is subject, not only the imagination is needed, but also 

intuition in all forms that Polya (1954) describes such as induction and analogy. 

There is a need in the field of semiotics, especially at the dawn of C. S. Peirce’s 

centennial celebrations, to increasingly exercise these principles. The research field of 

complex numbers, which quaternions are an expansion, and their relationship with the 

sign construction needs further investigation. Especially because we know that they not 

only interested the other members in the Peirce Family. C S. Peirce (1879) himself used 

complex numbers to calculate its quincuncial projection of the sphere. Moreover, in the 

future of the complex approach designed in this article, the quincuncial projection 

method will be of enormous value when we start to calculate and categorize the 66 

classes of signs through the spherical representation formulated here. 

The task of the semiotics scholars, in this second new century after Peirce, is to 

go deeper and deeper into the semiotic imagination using mathematical intuition and 

imagination as reasoning companions. For this new centennial that begins in 2014, we 

can say the same famous David Hilbert’s words: Wir müssen wissen. Wir werden 

wissen. 
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