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1 Introduction 

In this manuscript, I would like to share with you my invention, its a formal, axiomatic 

theory of thinking, within which I describe a thinking algorithm. Since I firmly believe 

that my modest invention is theoretically and practically useful, I decided to write this 

manuscript. Below you will find an introductory commentary, my theory and algorithm. 

First of all, it should be noted that from the point of view of my theory, intelligence, 

and thinking are conceptually independent of each other, this means that intellect and 

thinking can exist one without the other, they are different phenomena, from different 

levels of abstraction. I algorithmize precisely the intuition of thinking, but not the in-

telligence. 

As examples of what I mean by thinking, one can point to such hi level phenomena 

as the evolution of a personal or collective worldview, as well as the evolution of soci-

ety, the evolution of language, science, art, and the evolution of human knowledge in 

general and in particular. In a more down-to-earth sense, the existence of thinking as 

an intuitively obvious phenomenon can be seen in the process of solving some difficult 

problem with previously unknown principles. By experience, it will be a spontaneous, 

evolutionary process in which the complexity of reasoning at the beginning of the so-

lution and at its end will be different, at that intuition tells us that the achievement of a 

solution in problems of this sort will be accompanied by an increase in the complexity 

of actions and reasoning, since the invention of new principles of action and reasoning 

will be required. The listed processes demonstrate well the universal landscape of hu-

man thinking—productivity, logicality, spontaneity, and increasing complexity. Thus 

the main thesis of my theory is that thinking and the evolution of complexity are one 

and the same phenomenon. It is important to emphasize exactly the evolutionary nature 

of the thinking processes, which means the thinking process retains logical coherence 

at various levels of abstraction over time. The algorithm that I propose is an ideal model 
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of the complexity evolution process. The process is formally structured as a hierarchy 

of some abstract interconnections, but its structure is devoid of other meanings than 

complexity, relative significance, and diversity, roughly speaking - it is a meaningless 

evolving complexity in its pure and explicit form. Using the proposed algorithm, it is 

possible to model a large variety of evolutionary processes of any given complexity. 

You can pay attention to the fact that my definition of thinking includes processes 

in which there is no human intelligence, for example, the evolution of an embryo is 

clearly different from the evolution of scientific knowledge, although both are thinking 

according to the definition. It's obvious that these two types of evolution are structured 

differently: the evolution of the embryo is structured by biochemical rules, whereas the 

evolution of scientific knowledge is structured by the rules of intelligence. The ad-

vantage of my approach is that "pure thinking" implemented in the algorithm can be 

structured in any desired way, including it can be structured as intelligence. The "pure" 

thinking process that I propose can be interacted with at different levels of abstraction, 

and the nature of the interaction will determine the structure of thinking. If the interac-

tion (with the help of a feedback loop) is intellectual in nature, then in the process of 

evolution the computational process of thinking will be structured as intelligence, with 

all the ensuing consequences. 

2 Experiment 

I propose to verify the validity of my assumptions of thinking by solving some fairly 

complex inventive problem. For example, there is the so-called "the hardest logic puz-

zle ever" by George Boolos, and once I solved this puzzle and I can describe my ex-

perience. In the proposed task, you need to come up with the no more than three ques-

tions to three sober-minded Gods - one always tells the truth, the other always lies, 

and the third answers truth or lie randomly - and ask these questions to one or more 

from Gods in order to find out who is who; with the additional condition that the 

Gods gives their answers Yes / No in an unknown language. Tackling the solution for 

the first time, I exhausted possible options for questions in a few days and did not 

come close to a solution, and in general, it seemed that there could be no other ques-

tions in principle, a strange feeling: "How it happened if there is a solution, why can't 

I think of?". Having failed himself I tried to find a theory or algorithm for solving 

similar problems, but did not find it. So, unable to cope with the task, I postponed the 

task. After a year's break, I returned to the task again and with a fresh mind noticed a 

way to complicate the questions for Gods, and the solution quickly opened! Compre-

hending this case can give a general theoretical recommendation - you need to make 

the questions fundamentally more complex in all senses. The questions that I could 

come up with in the first iteration of the solution were too simple, and the main diffi-

culty was just how to make more complex questions virtually from nothing. So, to 

make a more complex questions, I performed two universal steps: first, I added new, 

random properties at all levels of abstraction to the existing questions, and in the sec-

ond step I generalized the results of the first step, and did this in a circle many times 

until the generalized conception of questions reached complexity enough for solution. 
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Comparing the questions I could ask in the first iteration of the solution with the ques-

tions I invented in the second iteration, there can be no doubt that the complexity of 

the questions has increased. And in all problems for which there is no typical solution 

I always observe the same general scheme - a transition from less complexity of logic 

to greater complexity is required, and this transition takes place in thinking, and this is 

achieved through random modifications (e.g. by expanding the context) and subse-

quent generalization. Therefore, it seems plausible to suggest that the defining feature 

of thinking is the ability to create logically organized content of the necessary com-

plexity. And whether this is so, you can check on the experience of solving the puz-

zle. 

3 Logic of thinking 

About thinking in general. When considering thinking, it is impossible to abandon 

four fundamental characteristics: productivity, logicality, spontaneity, and complex-

ity. If even one of these characteristics is absent, then there is no thinking. Therefore, 

thinking in general form is the spontaneous production of logically organized content 

of a necessary complexity. To model thinking, it is necessary to constructively for-

malize the enumerated fundamental characteristics. 

 

Logic in general. Logic implies the main, the secondary and their dynamics. There is 

no logic without connections and levels of abstraction. Consequently, any logically 

organized content can be structured as a hierarchy of interconnections, where content 

from higher hierarchies is more significant than content from lower ones. Transfor-

mations that preserve the content hierarchical ordering property are logical operations. 

Any defined set of possible sequences of logical operations is some logic. Logic will 

be spontaneous if the set of possible sequences of logical operations is random. 

 

The definition of logic given above allows you to explicitly define a special set of 

structured objects so that any mappings on this set are logical operations. The hierar-

chy of interconnections can be written literally, for example, in the following form: 

((ab)c) is a rooted tree, the levels of which correspond to the levels of significance of 

the content, and each node of the tree contains a collection of arbitrary identifiers - 

which is interconnected content. For ease of writing, I skip separating characters 

when writing identifiers, so each letter is a separate identifier. The collection can be 

empty and the identifiers can be repeated. For example, there may be trees like this: 

(a), ((aa)(aa)), ((a)(b)), (ab(cd(efg(a)))), (ab(ab)(ab)(aabb)), 

(a(b(cccc(dd)(ee)))) and the like. It is convenient to operate with such trees as 

strings, so from now on I will speak simply - strings. Isomorphism’s of strings are 

identical, for example, ((a(b))c) ≡ (c((b)a)). On the set S of all possible strings of the 

specified type, any operations of the type S → S will be logical operations, so any se-

quence of string transformations will correspond to some kind of logic. This logical 

universality of content from S is suitable for the logic of thinking in general. 
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The logic of thinking. The logic of thinking implies complexity and its dynamics. 

There is no thinking if there is no possibility of transition from less complexity to 

more complexity and vice versa. Thus, in order to set the logic of thinking on the set 

S, it is necessary to determine the complexity on the set S. Complexity can be defined 

explicitly: firstly, there must exist prime objects and complex ones, secondly, any 

complex object can be decomposed into prime objects, thirdly, a complex object has 

properties that its decomposition does not have, and fourthly for prime objects, the de-

composition is empty. This corresponds to the natural intuition about complexity: if a 

thing can be taken apart into simple parts and, if the thing and a set of its spare parts 

are not the same, then the thing is undoubtedly complex. The definition of complexity 

thus given requires a decomposition procedure, and such a procedure can be given on 

the set S, A: S→2^S, if s ∈ S, A[s] = ∅ then s is prime string; else, if A[s] ≠ ∅, ∀a ∈ 
A[s] , A[a] = ∅ then s is complex string, besides ∀s1, s2 ∈ S, s1 ≠ ∅, s2 ≠ ∅, s1 ≠ s2 ⇒ 

A[s1 ] ≠ A[s2]; further I call the decomposition procedure A an Abstraction operator 

since it is based on the operation that explicitly deduces the main and discards the sec-

ondary, which is abstraction by definition. Well if string decomposition is set, then 

complexity is set, but this is not enough for the logic of thinking, since the definition 

requires the possibility of increasing complexity, and this requires another procedure 

on S, D: S → S that can make complex strings from simpler or primary ones, ∀s ∈ S, 

C[s] < C[D[s]], С: S → ℕ, C[s] ≡ |A[s]|, C calculates the complexity value, besides 

∀s1, s2 ∈ S, s1 ≠ ∅, s2 ≠ ∅, s1 ≠ s2 ⇒ D[s1 ] ≠ D[s2]. Operator D can also be given on the 

S; further I call D the Deduction operator because it is based on the natural deductive 

rule. Thus, two corresponding operations: Abstraction and Deduction gives the logic 

of thinking on the S. 

 

Operation of Abstraction. Acts on the principle of detecting a common property for 

a group of similar objects. On the set S, this principle can be expressed literally: 

((ab)(ac)) ⇒ (a(bc)). The general letter "a" can be put out from the parentheses, thus 

raising its level in the abstractions hierarchy, the letter "a" has become a generic fea-

ture for everything lower in the hierarchy, and the remnants are merged in common 

parentheses because this is a set of specific features that were discarded when ab-

stracting a generic feature "a". After the action of the operation, the construction of 

the string is simplified, and the loss of insignificant information (compression) occurs, 

which is also characteristic of natural generalization procedures. The rule can be gen-

eralized. Firstly, let's define the concept of a substring, since a string is a rooted tree, 

then a substring is any subtree. For example, the string (ab(cd)(ee(bb))) contains four 

following substrings: (ab(cd)(ee(bb))), (ee(bb)), (cd), (bb). Write s1, s2 ∈ S, s1 ⊂ s2 

means that s1 is a substring of s2; ∀s ∈ S notation s ⊂ s is valid. Second, let's define 

the concept of string elements: for any string or substring, the collection of its ele-

ments is the union of root node identifiers and the root node substrings, so the collec-

tion is heterogeneous and a single element can be an identifier or a string. The collec-

tion of elements for the string s will be denoted by Es, the collection is multiset. For 

example, consider the string s = (aabb(cd)(ee(bb))((a)(b))) its elements will be Es = {a, 

a, b, b, (cd), (ee(bb)), ((a)(b))}. Write s, s1 ∈ S, s1 ∈ Es means that s1 is an element of s. 
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To denote a subcollection, the following notation will be used: E1 ⊂ Es, and the nota-

tions s1 ∈ E1, Es ⊂ Es will be valid. For collections, let's define two operations: ins[] 
and del[], inserting new elements into the collection and removing elements from the 

collection, respectively: ∀s1, s2 ∈ S, ins[Es1, Es2] ⇒ Es1 = Es1⊎Es2, del[Es1, Es2] ⇒ Es1 = 

Es1∖Es2. The collection can be specified explicitly E1 = {s1, s2..sn}. Now let's write the 

Abstraction rule in general form: ∀s0 ∈ S, ∀sb ⊂ s0, ∀s1..sn ⊂ sb such that ∀i ∈ [1..n], 

s[i] ∈ Esb, ∀E1 ⊂ ∩∀i∈1..nEs[i] ⇒ ins[Esb, E1]; del∀i∈1..n[Es[i], E1]; ∃sa such that Esa = 

⊎∀i∈1..nEs[i], ins[Esb, {sa}]; del[Esb, {s1..sn}]. Semicolons separate sequential operations, a 

record of the form ∀i∈ [1..n] means a cycle by i. The decomposition procedure A[s] se-

quentially and recursively goes through all possible applications of the abstraction 

rule for a given string and thus finds a decomposition into prime strings. 

 

Let's look at an illustrative example. The abstraction rule is valid for any substrings, 

any given string. If any group of substrings is at the same level of the hierarchy, for 

example, (...()()...), (...()()()...), (...()()()()...), ..., (...(...()()...)...), (...(...()()()...)...), 
..., and if any combination of substrings contains the same content, for example, like 

this (...(ab)(aabb)...), or this (...(ab)(aabc)(aabbcc)...), then any piece of matching 

content can be put out from the parentheses, for example like this 

((ab)(aabc)(aabbcc)) ⇒ (ab(aс)(aabbсс)), or like this  ((ab)(aabc)(aabbcc)) ⇒ 

(a(babcabbcc)), or this ((ab)(aabc)(aabbcc)) ⇒ ((ab)abc(aabc)), 

((ab)(aabc)(aabbcc)) ⇒ (ab(aabссc)) and there are still many options left. The 

content that is putted out from the parentheses is underlined. As you can see, after 

putting out the general content, the remnants in the parentheses must be merged. You 

can put out from the parentheses not only identifiers, but also substrings, for example, 

(((a(b))(c(b))) ⇒ ((b)(ac)), and if there are empty parentheses, they must be dis-

carded, for example, (((a(b))(a(b))) ⇒ (a(b)()) ≡ (a(b)). Since a string can be simpli-

fied in many alternative and mutually exclusive ways, the Abstraction rule must be 

performed sequentially, that is, in one step, you can make only one simplification for 

any one group of parentheses and one selected piece of content. Using the Abstraction 

rule, for any given string, you can sequentially construct the set of all possible simpli-

fications in all possible alternative ways, using recursion. For example, consider the 

string ((a)(bc(a))(bc(a))), and write down all possible simplifications: on the first it-

eration its be ((a)(bc(a))(bc(a))) ⇒ (b(a)(cc(a)(a))), ((a)(bc(a))(bc(a))) ⇒ 

(c(a)(bb(a)(a))), ((a)(bc(a))(bc(a))) ⇒ (bc(a)((a)(a))), ((a)(bc(a))(bc(a))) ⇒ 
((a)(a)(bbcc)), ((a)(bc(a))(bc(a))) ⇒ ((a)bc(a)), now apply the Abstraction rule to 

the results obtained at the first iteration, where possible (b(a)(cc(a)(a))) ⇒ 

(b(a)(cca)), (c(a)(bb(a)(a))) ⇒ (c(a)(bba)), (bc(a)((a)(a))) ⇒ 
(bc(a)(a)),  ((a)(a)(bbcc)) ⇒ (a(bbcc)), ((a)bc(a)) ⇒ (abc), again apply the Ab-

straction to the results of the second iteration (b(a)(cca)) ⇒ (ab(cc)), (c(a)(bba)) ⇒ 
(ac(bb)), (bc(a)(a)) ⇒ (abc), that's all, there are no more options, the procedure re-

cursively converged. Thus, with the help of recursion, we have decomposed the 

source, complex string into many simple and prime strings. Recursive decomposition 

of the source string into a set of prime ones using the Abstraction rule, I will call the 

Abstraction operator A[s], to summarize, we write, A[((a)(bc(a))(bc(a)))] = 

{(b(a)(cc(a)(a))), (c(a)(bb(a)(a))), (bc(a)((a)(a))), ((a)(a)(bbcc)), ((a)bc(a)), 
(b(a)(cca)), (c(a)(bba)), (bc(a)(a)), a(bbcc)), (abc), (ab(cc)), (ac(bb)), (abc)}, 
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the specified multiset of Abstraction results contains all possible generalizations of 

the source string. 

 

Deduction operation. Adds new constructive properties to the source hierarchy, ex-

tends, and always complicates the interconnections hierarchy. A strict description of 

the Deduction algorithm is unreasonably cumbersome, so I will limit it to an intuitive 

description with examples. On set S, there is a simple and natural way to define De-

duction. First, note that strings can be written in a more compact form if repeating ele-

ments are written using a multiplier prefix, for example, (aa) ≡ (2a), ((a)(a)) ≡ 
(2(a)), ((aa)(aa)) ≡ (2(2a)), (aa(bb(ccc)(ccc))(bb(ccc)(ccc))) ≡ (2a2(2b2(3c))), 
in this notation any string is unambiguously unpacked from left to right. The Deduc-

tion rule duplicates all elements of the source string and its substring, any given num-

ber of times, and is general case defined as follows: (a) ⇒ {(2(2a)), (3(3a)), (4(4a)), 
...}, that is, from any source string, you can get an infinite number of Deductions that 

will differ in the number of duplicates of the source elements. For practical purposes, 

in order to write down the algorithm, the number of duplicates must be fixed, so I de-

fine the Deduction operator as D: S → S, D[(a)] = (2(2a)). More examples: D[(aa)] = 

(2(4a)), D[((a)(b))] = (2(2(2a)2(2b))), D[(a(b(c)))] = (2(2a2(2b2(2c)))) and the 

like. As you can see, even if the source string is prime relative to the Abstraction rule, 

then its Deduction will always be complex, that is, it will have a non-empty decompo-

sition into prime strings, for example, A[D[(a)]] = A[(2(2a))] ≡ A[((aa)(aa))] = {(aa), 
(a(aa))}, from this example it is obvious that the source string (a) after Deduction ac-

quired fundamentally new constructive properties that Abstraction detects. In practice, 

the variety in decomposition into prime strings depends on the number of duplica-

tions. 

 

Complexity calculation. Let's return to the definition of complexity. As mentioned 

above, complexity requires a decomposition operator, which parses a complex string 

into many simple ones, with some refinements (see above). We constructed such an 

operator and called it Abstraction. Next, you need to pay attention to the fact that op-

erator A is a logical operation, according to the definition of logic given above. There-

fore, we are talking specifically about the logical complexity of strings, and not about 

some other complexity that might not be logical. In addition, A is a generalization 

procedure, and as a result of decomposition, we get many generalizations of the origi-

nal string and not just some simple parts that might not be generalizations. To summa-

rize - A sets logical complexity and is a generalization procedure in terms of its mode 

of action. I also believe that A is the only possible operator specifying logical com-

plexity on S, but I have no proof. 

 

There is a well-known heuristic metric for complexity: the number of components is 

proportional to complexity. Everyone has heard about the myriad of parts in a space-

ship, and everyone can imagine how relatively few parts there are in a car, and even 

fewer in a bicycle. This intuition can be extended to more abstract things, for exam-

ple, to blueprints and descriptions - complex blueprints and descriptions contain many 

different design concepts necessary for their draw-up. And it is obvious that complex 

descriptions will contain more concepts than simple descriptions. Further, the com-

plexity metric can take into account either all components - including repeated ones, 
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or only unique components. In our case, only unique components are taken into ac-

count. So, relying on the heuristic indicated, the complexity of a string is equal to the 

number of unique prime strings in its decomposition. In turn, the complexity of prime 

strings is the same. The last point is not intuitive, since prime strings can have differ-

ent structures and different lengths, for example, there can be short strings with a 

shallow hierarchy and there can be long strings with a deep hierarchy. It seems that 

prime strings must also have some kind of relative complexity - intuition makes us 

suspect the existence of some kind of internal logic in prime strings. However, from 

the point of view of the decomposition procedure, the complexity for simple strings is 

not defined, and within the framework of the formalism there can be no additional as-

sumptions about what the complexity of prime strings could mean; these are elemen-

tary, although different objects. Therefore, as a matter of common sense, we will as-

sume that the complexity of prime strings is the same. Based on this understanding, 

the complexity metric can be further improved. With the help of the Deduction opera-

tor, we could make a complex string out of a prime one - it would be some new ob-

ject, and its complexity would be proportional to the source string complexity. In this 

way, it is possible to formulate a more advanced complexity metric that will be con-

sistent with the intuition of “internal logic”: instead of the value |A[s]| you can calcu-

late the complexity of Deduction |A[D[s]]|, this is a kind of potential complexity, and 

it is defined for any string from S. Moreover, the potential complexity can be calcu-

lated with arbitrary precision, for this you need to alternate the steps of Deduction and 

Abstraction as required times recursively.  

 

Before summing up this paragraph, it is necessary to clarify that earlier - in the illus-

trative example of how the Abstraction operator works, I included in the result all the 

strings obtained during the decomposition, this was done for ease of understanding, 

but in reality the result A should contain only unique prime strings. So let’s summing, 

complex things have more possible generalizations than simple things. The complex-

ity of things implies generalization. The logic of an object is more complex the more 

different generalizations can be established for a given object. Thus, the Abstraction 

operator naturally defines the complexity on the set S. The more prime strings in the 

decomposition of source string using the Abstraction operator, the more complex the 

source string is. Let's define complexity as C[s] ≡ |A[s]|, where |A[s]| is the number 

of unique prime strings in the set of Abstraction results. The operator C can be used to 

express the main property of Deduction, C[s] < C[D[s]], which is obviously by con-

struction. The complexity of all prime strings is the same and does not depend on 

their size and hierarchy, for example, C[(a)] = C[(a(b)(c))] = C[(a(b(c))(c(a)))]. 
However, for prime strings, you can define their potential complexity through Deduc-

tion, C[D[(a)]] < C[D[(a(b)(c))]] < C[D[(a(b(c))(c(a)))]], in which case the potential 

complexity will depend on the size and structure of the source prime strings. 

 

Thinking process. On the set S, Abstraction and Deduction procedures are given, as 

well as complexity is defined. Thus, the logic of thinking is set. Now within the 

framework of the described formalism, it is possible to manipulate logical and com-

plex objects that are represented by strings, and most importantly, it is possible to 

make logical transitions from less complexity to greater complexity, which is a defin-

ing feature of thinking, according to our definition. Since the specific level of human 
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thinking complexity is unknown, and since it seems that the human thinking complex-

ity is very great but still finite, then only an infinitely complex computational process 

can simulate human thinking for sure. Thus computational process satisfies the crite-

ria for real thinking if it can create content of arbitrary complexity. To formally write 

such a process, an additional string concatenation operator is required. For syntax uni-

formity, the concatenation operator will be written as parentheses ({...}), the concate-

nation operator can be applied to any set of strings and result in one string, for exam-

ple, (A[D[(a)]]) = (A[((aa)(aa))]) = ((aa)(a(aa))). As you can see, many of the two 

Abstraction results have been concatenated into one string. So, the thinking process in 

general form: tn = (A[D[tn-1]]); t0 ∈ S. This recursive function produces logical, unique 

and arbitrarily complex content in any quantity from any nonempty starting value. 

 

Spontaneity. Thinking is spontaneous, no one can predict their next thought. In think-

ing, temporal trends can be identified, so you can predict the direction of thoughts to 

some extent, for example, you can roughly guess what you will think tomorrow, but 

such predictions are mostly wrong since the origin of trends is also accidental. Collec-

tive forms of thinking, such as the development of science or the history of society, 

are also clearly random. No one can reliably predict history or how this or that scien-

tific theory will develop. Spontaneity is the guarantee of any fundamental novelty and 

this property is not reducible to the effect of a set of external factors, but it is inherent 

in thinking, which is obviously observed in closed subjective thinking. Thereby the 

computational process of thinking must be algorithmically random. In a strict sense, I 

believe that the set of all possible substrings that the function tn enumerates at the ab-

straction stage is undecidable, and therefore the function tn is algorithmically random, 

but I have no proof. 

 

Finale stage of reasoning, given spontaneity, the function tn fully satisfies the defini-

tion of thinking, all properties of thinking are constructively formalized. This function 

produces spontaneous, logically organized content of any given complexity. Moreo-

ver, the complexity is defined explicitly and constructively, and it can be calculated 

and evaluated. The logical organization of content is guaranteed by the syntax and the 

Abstraction operator, which iteratively generalizes the logic of the produced content. 

Thus, the function tn represents an algorithmic form of thinking in its pure, ideal form. 

Calculating this function is thinking. 

 

Adjustment of generalizing ability and complexity of thinking. As you can see from 

the construction, the complexity of the content produced by the tn function increases 

exponentially, this is impractical. However, there is a natural way to regulate the gen-

eralization and complexity of content over a wide range. Any fixed level of complex-

ity and abstractness of content can be maintained. Due to the specific action of Ab-

straction, highly organized content floats to the upper levels of the hierarchy, while at 

the lower levels of the hierarchy, more chaotic content remains, that is, the content is 

ordered by the level of significance, generality and logical organization. Therefore, it 

is possible to discard the lower, insignificant levels of the hierarchy, that is, you can 

perform additional generalization of content using a cruder method. For example, 

from the string (abc(de(fk(gh)(cn(rt))))) you can extract the most significant part by 

cutting off deep nesting levels, like this (abc(de(fk(gh)(cn(rt))))) ⇒ (abc(de(fk))), in 
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showed case a relatively insignificant fragment (gh)(cn(rt)) was removed. The proce-

dure for removing insignificant content can be built into the tn function after the Ab-

straction stage, like this tn = (Truncate[A[D[tn-1]], d]), where d is the depth of the re-

moved content. In addition to deletion of deep nesting, at the Abstraction stage it is 

also possible to selectively leave the Abstraction results, for example, it may make 

sense to leave only prime strings since they are the most generalized, and filter out the 

rest. In general, it is possible to filter the results of Abstraction according to their sta-

tistical significance for each specific practical problem. 

 

Practical use. In order for the described formal thinking process to acquire a mean-

ingful character, it is necessary to feed it a meaningful external signal, encoded with 

strings, according to the following scheme: tn = (A[D[((tn-1)(InputSignaln))]]), if a cer-

tain meaning is encoded in the input signal, then the behavior of the tn process will 

also have a certain meaning. The tn process thinks abstractly in its own internal “lan-

guage”, in order to understand the content of such thinking, it is necessary to build a 

model of a “common language” with the help of a feedback loop. 

 

Intelligence. In the context of thinking, I consider intelligence as an epiphenomenon. 

That is, intelligence is a dependent and optional form of the general process of think-

ing. This form of thinking can arise in response to a specifically intellectual interac-

tion with the general process of thinking. In order for the process of thinking tn to ac-

quire an intelligence character, it must be structured in terms of the rational achieve-

ment of goals through interaction with an external intelligent system. The combina-

tion of tn with an external intelligent system in a feedback loop will be a kind of Arti-

ficial General Intelligence. 

 

Consciousness. The idea that an algorithm can somehow have consciousness is 

wrong. The algorithm consists of parts and exists in steps, while consciousness, on the 

contrary, does not consist of parts and does not exist in steps. "Algorithmic" and "un-

conscious" are synonymous. All so-called functional manifestations of consciousness 

belong exclusively to the sphere of thinking. The correct understanding is that there 

are various forms of thinking, in particular, there is conscious thinking - like in hu-

mans, and algorithmic thinking, that is, the unconscious. And the only question is 

whether an algorithmic form of thinking is possible, and this manuscript answers this 

question positively. 

This position allows us to make several constructive assumptions about conscious 

thinking. Although conscious thinking cannot be a discrete entity, however, it is a 

process. This means that if an analog, stochastic, complex process is physically possi-

ble, and isomorphic to the discrete process tn, then it is likely to be conscious in the 

human sense. To confirm the last assumption, a natural experiment is possible, one 

could look for patterns of complexity oscillations (corresponding to the Abstraction-

Deduction cycle) on the active neurological substrate and evaluate the correlation 

with the presence of consciousness. If there is a significant correlation, then the nerv-

ous system is likely to simulate an analog version of tn of some complexity, which 

would indirectly confirm that similar processes on other physical substrates will also 

be conscious. 
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In addition, we can offer a plausible version of what the analog implementation of 

tn should be. But first I want to clarify that we are talking specifically about conscious 

thinking, that is, about the process of the evolution of complexity with some addi-

tional specificity - such that makes this process a good candidate for the assumption 

of the experience of sensation. The behavior of the algorithm is deterministic - the fu-

ture is predetermined, although unknown in advance (weak spontaneity), which 

means that in algorithmic thinking there is no independent subject, algorithmic evolu-

tion does not make a real choice. It would be a completely different matter if there 

were strong spontaneity, that is, there would be an indeterminism in the process of 

complexity evolution. In the case of indeterminism, the future is not only unknown 

but also not predetermined, which is a necessary prerequisite for the existence of an 

independent subject with free will. That is, thinking + indeterminism = independent, 

subjective thinking because there are all the necessary attributes of the subject: inde-

pendence of behavior (strong spontaneity) and tendentiousness of behavior - one’s 

own motives, as well as the ability to comprehend one’s own behavior at different 

levels of abstraction. Such a process is apparently embodied in the human nervous 

system, and one can roughly estimate its structure. For example, on a neurological 

substrate, random, self-sustaining feedback loops of evolving complexity could 

emerge from spontaneous group interactions of cells, which would by definition be a 

form of thinking, with physically independent cell activity guaranteeing indetermin-

ism in the behavior of such loops. Hypothetical self-sustaining feedback loops would 

be free to influence their own evolution to their own advantage, and thus influence the 

physical behavior of the cellular ensemble involved in the loop. It would be a kind of 

magic since we are talking about a feedback loop with a purely virtual subject, which 

does not depend on the physical substrate and at the same time can influence the 

physical substrate through the feedback in which it is involved. This configuration 

limits from below the range of processes for which the assumption of sensation expe-

rience is plausible. 

4 Conclusion 

I have no conclusions other than the thinking algorithm. The following is just random 

text for the sake of styling. 

 

The main proposal is to free thinking from any kind of a priori phenomenology, from 

things, actions and meanings. Сan is seen that thinking in general form does not need 

these concepts. Things and the logic of things are secondary products of thinking. For 

an accurate definition of thinking, the idea is important that the mind is a very high-

level process, it does not depend on the meaning of what it creates, and therefore does 

not need the concept of meaning in its own definition. 

From the point of view that thinking does not depend on meaning, one can proceed to 

the formal definition of thinking through complexity and then to its algorithmization - 

to a universally thinking algorithm. To do this, it should be noted that thinking has a 

universal product - this is complexity. All human theories of things are complex. This 

means that we can assume that the mind achieves its goals at the level of complexity 

of things, and the meaning of things is a by-product, and therefore thinking does not 
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depend on meaning. The main question to which thinking answers (without meaning) 

is how to make other fundamentally new, more complex things from a given, simple 

thing. Thus, all transformations of thought are transformations of the constructive 

complexity of things. However, for an outside observer, the phenomenology of think-

ing can look infinitely vast, because transformations at the level of complexity create 

a diverse, new logic of things. 

In turn, the transformations of things at the level of complexity can be algorithmized 

in a general and explicit form. And the resulting algorithm, therefore, will be an accu-

rate, constructive definition of mind in a general form. The main task of the algorithm 

is to create a new logic of things, of any required complexity. For this, the concept of 

logic is generalized and things are divided into logical and illogical. The algorithm 

creates only logical things and therefore they can be investigated and comprehended 

in concepts corresponding to the logical complexity of things. 

The algorithm can be interacted with, and the algorithm is able to independently com-

prehend the nature of interaction at various levels of abstraction in the subjective sys-

tem of concepts, which, along with the ability to evolve, is a prerequisite for high-

level communication and intelligence. Intelligence is seen as a form of thinking that 

arises in response to meaningful interaction. In other words, any meaningful interac-

tion, as a result of generalization, structures the subjective logic of the algorithm as 

the logic of intelligence. Thus, the initial assumption that thinking in its pure form 

does not need meaning does not exclude the possibility of meaning and intelligence 

and even turns out to be a prerequisite for their emergence and existence. 


