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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 59. Number 3. September 1994 

A SMALL REFLECTION PRINCIPLE FOR BOUNDED ARITHMETIC 

RINEKE VERBRUGGE AND ALBERT VISSER 

Abstract. We investigate the theory IAo + Q, and strengthen [Bu86. Theorem 8.6] to the following: if NP 

7 co-NP. then 1-completeness for witness comparison foumulas is not provable in bounded arithmetic. 

i.e.. 

IAo + Q IL VbVec ('(a(Prf (a. c) A V. < ac- Prf(z. b)) 

Prov(73]a(Prf(a. ) A V: < a- Prf(z. b)))). 

Next we study a "small reflection principle" in bounded arithmetic. We prove that for all sentences p 

IAo + Q, FH Vx Prov(1Vvv < -x(Prf(v. r -) )- 

The proof hinges on the use of definable cuts and partial satisfaction predicates akin to those introduced 

by Pudlak in [Pu86]. 

Finally. we give some applications of the small reflection principle. showing that the principle can 

sometimes be invoked in order to circumvent the use of provable 1-completeness for witness comparison 

formulas. 

?1. Introduction. A striking feature of Solovay's Theorem that L5b's logic is 
complete for arithmetical interpretations is its amazing stability. If one sticks to 
the unimodal propositional language and standard arithmetical interpretations, 
the result holds (modulo a trivial variation) for any decently axiomatized extension 
of IAo+ EXP. Such stability is in some sense a weakness: unimodal propositional 
logic combined with the standard interpretation cannot serve to classify or give in- 
formation on specific theories in a broad range. Of course this weakness disappears 
when we extend the modal language, but that is not our subject here (however, 
see [Vi9O], [Be9l], [Be89]). 

Is there life outside the broad range of arithmetical theories satisfying Solovay's 
Completeness Theorem? Clearly the question is only sensible if the theories under 
consideration verify Lob's logic, or perhaps some still interesting weakening of it. 

Two directions of research come to mind. The first one is to weaken the logic 
of the arithmetical theory. Specifically one can study theories like Heyting Arith- 
metic (HA), the constructive version of Peano Arithmetic. It turns out that HA 
verifies the obvious constructive version of L6b's logic plus a wide variety of extra 
principles (see [Vi8l], [Vi82], [Vi85]). The only definitive information that we have 
is a characterization of the closed fragment of HA. For all we know the provability 
logic corresponding to HA itself could be HIg-complete. Moreover, extensions of 
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786 RINEKE VERBRUGGE AND ALBERT VISSER 

HA have quite different provability logics. Note by the way that provability logics 
need not be monotonic in their arithmetical theories. 

The second direction of research is simply to look at classical arithmetical 
theories that are strictly weaker than, or even incompatible with, IAo+ EXP, It 
turns out that there are two salient theories of this kind: Paris and Wilkie's IAo + K2, 
and Buss' S1, both of them satisfying Lob's logic (see [WP87], [Bu86]). Does 
Solovay's Theorem still hold for them? At present nobody knows or to be precise, 
we haven't heard that anybody knows. 

This paper is a first contribution to an understanding of the difficulties involved 
in proving or disproving Solovay's Theorem for theories like IAo + K2, and S2 . Solo- 
vay's proof involves Rosser methods. The problem for us resides in the instances 
of fIb-completeness that occur in the proof. Two points are important. 

* We do not know whether the instances of iJ -completeness used in Solo- 
vay's proof are provable in our target theories. Buss proved that provability of 
fIb -completeness with parameters in S' implies NP = co-NP (see [Bu86]). In 
?3 we elaborate on this theme. To be specific, we prove that if NP 7? co-NP, 
then X-completeness for witness comparison formulas is not provable in bounded 
arithmetic, i.e., 

IAo + Q1 ? VbVc(3a(Prf(a, c) A Vz < a-' Prf(z, b)) 

- Prov(-3a(Prf(a,5) A Vz < a -Prf(zb))')). 

* In many cases we can circumvent the use of instances of flb-completeness. 
Svejdar discovered the first alternative argument when he surprisingly provided a 
proof of Rosser's Theorem that genuinely differed from Rosser's own proof (see 
[Sv83]). To this end he introduced a principle which we have dubbed Svejdar's 
principle. In ?4 we prove a "small reflection principle" in our target theories from 
which Svejdar's principle immediately follows. More precisely, we show that for 
all sentences A, 

IA0o + 2, F- Vx Prov(5Vy < -x(Prf (y, rF-1P) ) 

Svejdar's principle is not sufficient to derive Solovay's Theorem. However, it has 
been fruitfully exploited in the dogged attempt to use Solovay-like methods to 
embed larger and larger classes of Kripke models for Lob's logic in our weak 
arithmetical theories. The state of this dogged art can be found in [BV93]. 

We end ?4 with some other applications of the small reflection principle. 
In ?5, we use the small reflection principle in order to extend Krajicek and 

Pudlak's result on the injection of inconsistencies into models of IAo+ EXP. 
Theorem 3.7 and Theorem 4.20, the main results of ?3 and ?4, were published 

previously in the first author's technical report [Ve89], which in turn is based on 
her master's thesis [Ve88]. 

?2. Preliminaries. We assume that the reader is familiar with the standard ref- 
erences to the area of weak arithmetics (see [Bu86], [WP87], and Chapter V of 
[HP93]). However, for ease of reference, we quickly review those concepts that 
we need in the sequel. 
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The principal feature distinguishing various theories of Bounded Arithmetic 
from Peano Arithmetic is that in the former induction is restricted to bounded 
formulas. 

2. 1. I/Ao + K . 
DEFINITION 2.1. The language of IA0o + Q, as introduced in [WP87] contains 

0, S, ?,=, and <, and additionally the logical symbols , -, and V, and vari- 
ables Vi, V2. With regard to logical axioms, we use a Hilbert-type system as 
in [WP87], but other choices are reasonable too. For example, a Gentzen style 
sequent calculus with cut rule or natural deduction would do. However, we do 
not use a logic in which only direct proofs (i.e., tableau proofs or cut-free proofs) 
are allowed. 

As nonlogical axions we consider a set containg the following: 
* a finite number of universal formulas defining the basic properties of the 

function and predicate symbols of the language: 
(1) 0 < O A -(SO < 0); 
(2) Vx(x + 0 = X A/x * 0 A x SO = X); 
(3) VxVy(Sx = Sy -* x = y); 
(4) VxVy(x < Sy (x < y V x = Sy)); 
(5) VxVy(x + Sy S(X + y)); 
(6) VxVy(x * Sy = (x * y) + x); 
* a formula Vx~yp(x,y), where o is the AO-formula defining the relation 

Y = w-)I(X)(= x1XI); 
* the scheme of induction for AO-formulas. 

2.2. Buss' systems of bounded arithmetic and the polynomial hierarchy. 
DEFINITION 2.2. The language of Buss' bounded arithmetic consists of 0,S., ,. 

=5 <! -log2(x + 1)Y, the length of the binary representation of x), LIX], 

and x#y(= 2Ix1IIyI, the smash function). 
REMARK 2.3. Note that the smash function # allows us to express terms ap- 

proximately equal to 2P(IxI) for any polynomial P. More precisely, for every n, 
x > 2 the following holds: 

21x' < x# ... #x < 22.xIlI-2 

n times 

as is easily proved by induction. This property of # is useful when we want to 
define polynomial time functions. 

DEFINITION 2.4. The hierarchy of bounded arithmetic formulas is defined as fol- 
lows: 

(1) lb = nb = Ab is the set of formulas with only sharply bounded quantifiers 
Vx < It , 3x < ItI (wehre t is any term not involving x); 

(2) Xb is defined inductively by 
* lD fj, and is closed under A, 3x < t, and Vx < ItI; 
* if B Eclr , then -,B Ec b 

(3) flrjb is defined inductively by 
* Dl X, and is closed under A, Vx < tI, and 3x < ItI; 
* if B~tk+ then -B k+1. 
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(4) lb and ]Fj< are the smallest sets which satisfy (2) and (3). 
DEFINITION 2.5. If R is a theory and A a formula, we say that A is A$ b1 with 

respect to R iff there are formulas B C lb and C E I-lb such that R F- A +-+ B 
and R H A +-+ C. 

We never leave out the superscripts b from the levels of St and FIh of Buss' 
bounded arithmetical hierarchy, so our use of In for 1? and fln for no1 should 
not give rise to confusion. 

The hierarchy of bounded arithmetic formulas is constructed in such a way that 
all levels nh and Xb except Xb correspond to levels of the polynomial hierarchy, 
which is well known from structural complexity theory. Without defining all the 
basic notions of complexity theory, for which the reader may turn to [BDG87], 
we give one of the standard definitions. 

DEFINITION 2.6. The polynomial hierarchy is defined as follows. 
(1) P=zAPj is the set of predicates on the natural numbers which are recognized 

by a deterministic polynomial time Turing machine; 
(2) NP =El is the set of predicates on the natural numbers which are rec- 

ognized by a nondeterministic polynomial time Turing machine; 
(3) EP? is the set of predicates Q such that there is an R c Ap' and a polynomial 

P such that for all x, Q(&#) - By < 2P(L'I)R(X&.y); 
(4) HlP' is the set of predicates Q such that there is an R E XP$ so that for all 

X, Q(x) ( 
(5) AhP7j is the set of predicates which are recognized by a deterministic poly- 

nomial time Turing machine with some oracle from lp. 
As usual we use the name co-NP for n1J'. There are many open questions about 

the polynomial hierarchy. The most important one is: is there a k such that 

IPI = lp+l in which case the hierarchy collapses? More particularly, does NP 
- co-NP? Or even P = NP? It is also unknown whether for any k, AP~c = 0P, n fl,, 
and in particular, whether P = NP n co-NP 

DEFINITION 2.7. A is polynomially reducible to B if there is a polynomial time 
computable function f such that Vx(x E A +-+ f (x) E B). 

Note that polynomial reducibility is analogous to many-one reducibility from 
ordinary recursion theory. 

DEFINITION 2.8. B is NP-complete if all A E NP are polynomially reducible to 
B. Similarly, B is co-NP-complete if all A E co-NP are polynomially reducible to 
B. 

REMARK 2.9. It is easy to see that for every NP-complete set B, the following 
hold: 

* if B E co-NP, then NP = co-NP; 
* if B E P, then P = NP. 

REMARK 2.10. From results of Stockmeyer, Wrathall, and Kent and Hodgson 
[St76], [Wr76], [KH82] it follows that the bounded arithmetical hierarchy is related 
to the polynomial hierarchy in the following way: I$,+A is the class of predicates 
which are defined by formulas in lb. In particular, NP is the class of predicates 
which are defined by S -formulas; similarly co-NP is the class of predicates defined 
by -l-formulas. We refer the reader to [Bu86, Chapter 1] for proofs of these 
correspondences. 
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DEFINITION 2.11. The theory S2 consists of BASIC, a finite list of axioms defin- 
ing the basic properties of symbols in the language of bounded arithmetic, plus 
the following induction scheme PIND(1t): 

A(O) A Vx(A(L'X1) -* A(x)) -* VxA(x) for A E St 

DEFINITION 2.12. S2 Ui Si. 
One of the most important theorems about bounded arithmetic is Parikh's 

Theorem. It implies that every A0-definable provably total function of S2 can 
increase the length of its input only polynomially. 

Parikh originally proved his theorem for IAo, for which the A0-definable prov- 
ably total functions are even more severely limited than for S2: they can increase 
the length of the input only linearly. 

We state a version of Parikh's Theorem for Buss' theories Si. 
THEOREM 2.13 (Parikh's theorem). Let i > 0. Suppose that p is a bounded 

formula and that S2 F- Vx3yp(x,y). Then there is a term t(x) such that S F- 
Vx]y < t(x)9(x,y). 

PROOF. Buss gives a proof-theoretic proof (see [Bu86, Theorem 4.11]), but the 
theorem can also easily be proved in a model-theoretic way. Ol 

2.3. Metamathematics for bounded arithmetic. In order to prove Gddel's Incom- 
pleteness Theorems for bounded arithmetic, Buss arithmetized the usual notions 
of metamathematics (see [Bu86, Chapter 7]). It turns out that most predicates 
needed can be A' -defined (or sometimes 3/ b-defined) in SI. Moreover, these 
definitions are intensionally correct in the sense of [Fe 60] which means that the 
usual connections between them can be proved in SI. 

Here follows a list of predicates used in the sequel. 
* Seq(w) for "w encodes a sequence"; 
* Len(w) = a for "if w encodes a sequence, then the length of that sequence 

is a; otherwise a = 0"; 
* Term(v) for "v is the Godel number of a term"; 
* Fmla(v) for "v is the G6del number of a formula"; 
* Prf, (u, v) for Fmla(v)A "u is the G6del number of a proof of the formula 

with Godel number v from the set of axioms given by formula ae (x) ". When 
it is clear that the axioms of a theory T are given by the formula oa, we 
sometimes write PrfT instead of Prf,,; when ae and T are clear from the 
context, we drop the subscript altogether. 

* Prove, (v) := 3u Prf,, (u, v); we sometimes abbreviate Prov( '_p) as ELDh. 
The predicates Seq, Len, Term, and Fmla are A'-definable in S2, and so is Prf, 

where the formula oa is Ah with respect to S1. The condition on oa is not a severe 
restriction. To any recursively enumerable set one can associate a polynomial time 
function having that set as its range, therefore one can suitably axiomatize any 
theory T which has a recursively enumerable set of axioms including BASIC. 

Notation 2.14. Instead of the usual numerals SkO of Peano Arithmetic, we use 
canonical numerals k defined inductively by 

* 0 =0; 
* 2k+1 2k+ (SO); 
*2k+2 (SSO).(k+ 1). 
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Note that the length of the term k is linear in the length of the binary repre- 
sentation of k, a property that the Sko obviously do not satisfy. The shortness of 
canonical terms plays a crucial role in many proofs, for example in Buss' proof 
that SI enjoys provable Lb-completeness. 

SI can XS-define a function Num(x) such that Num(x) stands for the 
G6del number of the term x. For ease of reading, we will however abuse nota- 
tion; thus, if A(x) is a formula with free variable x we write rA(a)7 instead of 
Sub('A',. , Num(a)). Sometimes we are even more sloppy and leave out the 
numeral dashes altogether. In those cases the context should provide enough 
material for the reader to know what is meant. 

THEOREM 2.15 (provable Lb-completeness, Buss). Let A be any L b-formula. Let 
a1, . . . ak be all the free variables of A. Then there is a term t(a1, . . .ak) such that 

SI [ Val,., ak(A(al,* ., ak) -* 3w < t Prf(w, 'A(al, . . ., ak)')). 

PROOF. See [Bu86, Theorem 7.4]. 0 
Using Theorem 2.15, we can easily see that L6b's logic is arithmetically sound 

with respect to S1. In particular, this means that we can, in the standard way, 
prove G6del's Second Incompleteness Theorem and its formalized version for SI. 

Sometimes, we will use the name IAo + Q21 for Buss' theory S2 (see Definition 
2.12), in which induction for formulas from the hierarchy of bounded arithmetic 
formulas in a language containing # and I I is allowed. Because S2 is a conservative 
extension of IAo + Q1, the name change has no repercussions on results that do 
not hinge on the details of formalization. 

2.4. Definable cuts. Because PA proves induction for all first-order formulas, 
no proper cuts of models of PA can be defined by formulas. In the context of 
weaker theories where induction is restricted to a proper subset of all formulas, 
on the contrary, definable cuts have proved to be highly useful tools. 

DEFINITION 2.16. Let T D Q be a Lb -axiomatized theory. A T- cut is a formula 
I such that 

(1) TF I (0); 
(2) T KVxVy(I (y) A x < y -1(x)); 
(3) T FVx(I(x) - I(Sx)). 

DEFINITION 2.17. Let T D Q be a St-axiomatized theory. A T-initial segment 
is a formula J such that 

(1) T F J(0); 
(2) T KVxVy(J(y) A x < y -3 J(x)); 
(3) T KVxVy(J(x) A J(y) -3 (J(Sx) A J(x + y) A J(x * y))) 

REMARK 2.18. For cuts I, we frequently write x E I instead of I(x). 
LEMMA 2.19. Suppose that T D IAo and let I be a T-cut. Then there is a formula 

J such that 
(1) T -Vx(J(x) -3 I(x)); 
(2) J is a T-cut; 
(3) T [ VxVy (J (x) A J (y) - J (x + y)), i.e., J is closed under +. 

PROOF. Take 

J(x) >-*I (x) A Vy(I (y) -3 I (x + y)) 
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It is easy to see that T F- Vx(J(x) -* I(x)) and that J is a T-cut. 
For closure under +, reason in IAo and suppose that xl, X2 E J and that y E I. 

Then by definition of J we have, first, xI + x2 E I. Also, y + xI E I; thus, 
y + (xl + x2) = (y + xl) + x2 E I. We may conclude that xl +x2 E J. El 

LEMMA 2.20 (Solovay's shortening lemma [So76b]). Suppose that T DIAo, and 
let I be a T-cut. Then there is a formula K such that 

(1) T F- Vx(K(x) - I (x)); 
(2) K is a T-initial segment. 

PROOF. First construct J from I as in Lemma 2.19. Next define 

K(x) : +- J(x) A Vy(J(y) -3 J(x .y)). 

We leave it to the reader to prove that K is indeed the desired T-initial segment. El 
The following Lemma 2.21 is used in almost all applications of cuts. Note that 

it is essential that we use the efficient numerals x which are based on the binary 
expansion of x. 

LEMMA 2.21 (Pudlak). Suppose J is a T-initial segment, where the set of axioms 
of T is given by the formula a. Then there is a polynomial P such that, for all n, 
T F- J(n) by a proof of length < P(In ). Also we have IAo +?2, F- Vx ProVa(rJ( ) ). 

PROOF. We give only a sketch, and leave the formal details to the reader. Es- 
sentially, in the proof of J(x), we follow the Ix steps it takes to build Yx from 0. 
At every step we instantiate either the proof of Vy(J(y) -* J(Sy)) or the proof of 
Vy(J(y) -* J(SSO . y)) with the appropriate efficient numeral. By using Modus 
Ponens a total of Ix times, we finally derive J(ix). The length of the proof can 
evidently be bounded by a polynomial in IxI. 

By inspection of the proof we see that it can be formalized to get IAo + 2, F 
Vx Prov,,(jJ(zx)7). Also, it is useful to remark that in the proofs of J(-x), only 
formulas of a fixed complexity depending only on J are used. Ol 

?3. X-completeness and the NP = co-NP problem. In this section, we will prove 
that, under the assumption that NP 7? co-NP, the following holds: 

IA/0 + Q12 VbVc (3a(Prf(a, c) A Vz < a- Prf(z, b)) 

- Prov(3a (Prf (a.) A Vz < a -Prf (z, b)) ')). 

In the proofs of the lemmas leading up to this result, we will frequently, often 
without mention, make use of the following proposition and its corollary 

PROPOSITION 3.1 ([Bu86]). Suppose A is a closed, boundedformula in the the 
language of S2, and let R be a consistent theory extending S2. Then R F- A ifj 
co tA. 

COROLLARY 3.2 ([Bu86, Proposition 8.3]). Suppose A(s) is a bounded formula 
in the language of S2, and let R be a consistent theory extending S2 . If R F- VX0A&), 
then co t Vx*A(&*). 

In this section, we will use the name IAo + K2, for Buss' theory S2 (see Definition 
2.12) in which induction for formulas from the hierarchy of bounded arithmetic 
formulas in a language containing I I,L I X], and # is allowed. Because S2 is conser- 
vative over IAo + K2 , the name change has no repercussions on the results of this 
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section. (In the next section, where we need to construct formalized satisfaction 
predicates, we will be more careful.) 

In order to prove the main theorem of this section, we need to prove a few 
seemingly far-fetched lemmas. Their proofs borrow heavily from the formalization 
carried out in [Bu86]. To make these lemmas understandable, we will give some 
details of the formalization of the predicate Prf. Buss uses a sequent calculus 
akin to Takeuti's (see [Ta75]). He considers a proof to be formalized as a tree, 
of which the root corresponds to the end sequent, and the leaves to the initial 
sequents of the proof. Every node of the proof tree is labeled by an ordered pair 
(a. b). The second member of this pair codes a sequent, and the first member 
codes the rule of inference by which this sequent has been derived from the sequents 
corresponding to the children of the node in question. For leaves, the first member 
of the corresponding ordered pair codes the axiom of which the initial sequent is 
an instantiation. 

The only extra fact we need here is that logical axioms are all numbered 0; in 
particular, for all terms t, the tree containing just one node labeled K0, r-* t = P') 
is a proof of -* t = t. Because of a peculiarity in the encoding of trees, by which 
0 and 1 are reserved as codes for brackets, Buss encodes the proof just mentioned 
by (0. F t = t') + 2. 

In the sequel, we will sometimes abuse Buss' conventions in order to keep the 
formulas legible. Thus, we will write 

for Buss' KG (0 * Arrow) * *(I'd_ * Equals * *FId')) ? 2. 
LEMMA 3.3. Let qi(d. b) be the formula Vz < KO. - d = dj) Prf(z, b). The 

predicate represented by V is co-NP-complete. 
PROOF. Straightforwardly, q is a Hb -formula; hence, it represents a co-NP 

predicate. For the other side, viz. co-NP-hardness, begin by taking A (a ,. . ak ) E 
co-NP, We will polynomially reduce A to V. (For definitions of the complexity 
theoretic concepts that we mention, see Definition 2.7 and Definition 2.8; and see 
Remark 2.10 or [Bu 86, Theorem 1.8]). 

By provable Lb -completeness (see Theorem 2.15), there is a term r (c) such that 

IAo + Q? F- -,A(5) - z < r (d) Prf(z. -A(al ... . ak)n) 

and thus, 
co t -,A(d) -* 3z < r(5)Prf(z.^ -A(ai... . .ak). 

Because r (d) < rr(d) < (0, -* r(d) = r(d)') we also have 

(1) co t -,A(d) - * <K K O - r(5i) = r(5i)j)Prf(z.,-'A((-.,. . .ak) 

On the other hand, by Proposition 3.1 and the consistency of IAo + Q1, we have 

(2) co t 3Z < (0. r- r(d) =r(a) Prf(. 5 (A(,a..). ) 3 a 

From (1) and (2), we conclude that 

co< W- Ash (l \/_ Vz < r 0.St __ -.Sr 6) r Y_ Dys Pr z.FA (a, t ... il- 
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This means by the definition of V that 

co t= A (aY) +- V (r (iY).'--A (a, I... akc)n 

As both 5 A(aj...., ak) and r(aY) can be computed from a' by polynomial 
time functions, we have reduced the co-NP predicate A to V. O 

LEMMA 3.4. Let B(al.. .. akc) be a 17'1-formula representing a co-NP complete 
predicate. If NP 7& co-NP, then 

IA\o + K2, Y Va'(B (a) -- Prov (I-B(a, I.. akc)). 

PROOF. An application of Parikh's Theorem for IAo + -F, (cf. Theorem 2.13). 
We leave the details, which are similar to part of the proof of [Bu86, Theorem 8.6], 
to the reader. EL 

LEMMA 3.5. If NP 7? co-NP, then 

IJAo?Ql VbVd (Vz < (0, )- d d') -Prf(z, b) 

-* Prov(5Vz K KG. r* )d 
- 

d )Prf (zb) )). 

PROOF. Directly from Lemma 3.3 and Lemma 3.4. 0 
LEMMA 3.6. IAo + K2, proves the following: 

VbVd ( Prov(53a (Prf(a. r- d d) A Vz < a- 
Prf(zb)). 

) 

- Prov(-Vz < 0, 3- d = d-) Prf(z, b))) 

PROOF. It is not difficult to see that for Buss' formalization of Prf, we have the 
following: 

IA0o + 2 F- VdVa(Prf(a, r- d =d) d a > (0, r-* d = d')), 

and thus, 

IAo + Qi FV bVd (3a (Prf(a, r- d d _) A Vz < a- Prf(z, b)) 

-*Vz < (KO, r d - d'Prf(zb)). 

This in turn immediately implies our lemma. L 
THEOREM 3.7. IF NP 7? co-NP, then 

IAo + Q, } VbVc (3a(Prf(a, c) A Vz < a- Prf(z, b)) 

- Prov(F:a(Prf(a. c) A Vz < a-' Prf(z, b))')). 

PROOF. Suppose that NP 7? co-NP, and suppose, in order to derive a contra- 
diction, that 

IAo + Q1 H- VbVc (3a(Prf(a, c) A Vz < a- Prf(z, b)) 

* Prov(~3a (Prf (a, c) A Vz < a -Prf (zb)))). 
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Then, in particular, 

IAo+?21HVbVd Prf ((O, d =d7), F d =d7) 

AVz <K( O-d = d') Prf(z,b) 

(3) - Prov( Ea(Prf(z, F- d = d') A Vz < a Prf(z,b)) )). 

We know that 

IA\o + Q21 - Vd (Prf(O Q 0, d = d' d = d'1)) 

Combined with (3), this implies the following: 

IAo + K2, F- VbVd (Vz <? 0, - d =d7) Prf(z, b) 

- Prov( 3a(Prf(a, - d = d ) A Vz < a-' Prf(z,b))')). 

Now we apply Lemma 3.6 to derive 

IAo + 1 FV bVd (Vz < KOF r d =d 7) -Prf(z, b) 

- Prov(7Vz < 0, d = d')O-Prf(zb))), 

in contradiction with Lemma 3.5. 0 
REMARK 3.8. We can prove that provable Xn-completeness fails already for a 

much simpler Fjb-formula y(a. b. c) defined as follows: 

Z(a, b, c) := Vx < cVy < c(a * x2 +b *y 7& c). 

The fact that ZO-completeness fails for x follows immediately from Lemma 3.4 and 
the following lemma, to which A. Wilkie attracted our attention. 

LEMMA 3.9 (Manders and Adleman, see [MA 78]). The set of equations of the 
form (a * x2 + b * y = c), solvable over the natural numbers, with a, b, c positive 
natural numbers, is NP-complete. 

Note that Lemma 3.9 implies that the formula 3x < c:y < c(a * x2 + b .y = c) 
represents an NP-complete predicate, and thus that x as defined above represents 
a co-NP complete predicate. 

?4. The small reflection principle. In this section, we will present a proof of the 
fact that IAo + K2, proves the small reflection principle, i.e., for all o: 

IAo + 21 K VxO(Fxo -) *), 

where D1 is an abbreviation for Prov(5F ') and Djxo is a formalization of the fact 
that o has a proof in IAo + K2, of Godel number < x. 'In fact, all arguments 
that we use can be carried out already in Buss' S , as the reader may check for 
him/herself. 

In the proof, we will use the existence of partial truth- (or satisfaction-) pred- 
icates Satn for formulas of length < n. The intended meaning of Satn (x, w) will 
be "the formula of length < n with Godel number x is satisfied by the assignment 
sequence coded by w". Pudlatk [Pu86] has constructed partial truth predicates 
much like the ones we need. (An analogous construction, where Satn is related 
to quantifier depth instead of length, can be found in [Pu87].) 
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However, our construction departs from Pudlak's in two ways. Firstly, whereas 
Pudlak presents his results for theories in relational languages, we allow function 
symbols. 

Secondly and more importantly, IAo + K2, is neither finitely nor sparsely axiom- 
atized. Regrettably we cannot even apply to IAo + K2, a trick of Pudlak's which 
turns some nonsparse theories like PA and ZF into sparse ones (see Theorem 5.5 of 
[Pu86]). Therefore, we introduce new satisfaction predicates SatA (x, w) with as 
intended meaning: "the Ao-formula of length < n with Gddel number x is satisfied 
by the assignment sequence coded by w". Using these satisfaction predicates, we 
will be able to prove by short proofs that the AO-induction axioms are true. 

In order to start the construction of short satisfaction predicates, we need a 
few more assumptions and definitions. First of all, when formalizing, we view 
IAo + K2, in a restricted way more akin to Paris and Wilkie [WP87] than to Buss 
[Bu86]: see Definition 2.1. 

For this system, we can define the appropriate At-predicates Term(v), Fmla(v), 
Sent (v), Prf (u, v) in Sl. 

In Buss' formalization of sequences, * stands for a function which adds a new 
element to the end of a sequence; ** stands for a function which concatenates two 
sequences; and /?(t, w) stands for the function giving the value of the tth place in 
the sequence coded by w. 

In this paper, we denote concatenation of sequences sloppily by juxtaposition, 
and we leave our some outer parentheses; thus, for example, y -Q7z stands for 
Buss' (O * LParen) * *(y * Implies) * *(z * RParen). 

DEFINITION 4.1. We formally define four concepts that we need in order to 
construct truth predicates. 

* w w Len(w) = Len(w') A Vt(t < Len(w) A t 7 i -*/(t,w) = 
/B(t, w')), i.e., the only possible difference between the sequences coded by 
w and w' is at the ith value, 

* Fmlan (v) := Fmla(v) A Len(v) < n, i.e., v is the G6del number of a formula 
of length < n; 

* Fmlan.A(v) := Fmlan(v) "and v codes a AO-formula"; 
* Evalseq(x, w) will mean that the sequence coded by w is long enough to 

evaluate all variables appearing in x, i.e., 

Evalseq(x, w) Seq(w) A (Fmla(x) V Term(x)) 

A Vi ("the variable vi occurs in the term or formula 

with Godel number x" > Len(w) > i). 

Furthermore, we introduce the following two abbreviations: 
* Evalseqn (x, w) Fmlan(x) A Evalseq(xw); 
* Evalseqn. (x, w) = Fmlan.A(x) A Evalseq(x, w). 

Next we define, by Buss' method of p-inductive definitions, a function Val such 
that if t (vi,... vi/, ) is a term of the (restricted) language of IAo + Q I and w codes 
a sequence evaluating all variables vi, ... vi,, appearing in t, then Val(rP', w) gives 
the value of t[fl(i,w),.. .,(in,w)]. 
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DEFINITION 4.2. Let Val satisfy the following conditions: 
* - Term(t) V --Evalseq(tw) -> Val(t,w) 0; 
* the p-inductive condition: 

Term(t) A Evalseq(t, w) ->(t = Aon A Val(t, w) 0) 

V 3i < t(t =vif / AVal(t, w) = W/3(i w)) 

V 3tl, t2 < t(Term(ti) A Term(t2) 

A ((t = rSntI A Val(t, w) S(Val(ti, w))) 

V (t t I+'t2 A Val(t, w) = Val(tI, w) + Val(t2, w)) 

V (t t I'rt2 A Val(t, w) Val(tI, w) * Val(t2, w)))). 

By induction, we can show that t#w will be a bound for Val(t, w). Thus, by 
[Bu86, Theorem 7.3], Val is Ab-definable (thus, provably total) in S2; furthermore, 
the definition of Val in S2 is intensionally correct in that properties of Val can be 
proved in S2 (and thus also in IAo + Q?1) by the use of induction. 

REMARK 4.3. Note that we cannot construct in IAo + Q?i a correct valuation 
function Val for a language that contains #. Indeed, to any a we can associate a 
formalized ferm f (a) given informally as 1#2# ... #2, where the number of 2's is 
a 1. A correctly defined Val should give Val(f (a), w) = exp(exp( a I + 1) - 2) > 

exp(a) (cf. [Ta88]). Therefore, by Parikh's Theorem (cf. Theorem 2.13), Val could 
not be AO-definable and provably total in IAo + 9?1. 

In the sequel, we will freely make use of induction for AO(Val)-formulas in 
IAo + -2 1, as is justified by the IAo + -,1 -analogs of Buss' Theorem 2.2 and Corollary 
2.3. We will especially need the following lemma. 

LEMMA 4.4. There exists a constant c such that for every term t with free variables 
among vi. . . ., vi,.. and for every n with Len(rtn) < n, we can prove the following 
by proofs of length < c * n: 

IAo + Q? F- Evalseq(rt', w) -> Val(rtn, w) - t[(il w), .M. ,i(in1i w)]. 

PROOF. Straightforward by induction on the construction of t. E 
For the definition of satisfaction predicates, we need one more definition. 
DEFINITION 4.5. We formally define the following: 

s(i x, w) (Subseq(w, 1, i) * x) **Subseq(w, i + 1, Len(w) + 1). 

Thus, if w is a sequence of length > i, s (i. x, w) denotes the sequence which 
is identical to w, except that x appears in the ith place. 
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DEFINITION 4.6. We say that Satn (x. w) is a partial definition of truthforformulas 
of length < n in IAo + Q?i if 

IA +?Q1 [-Evalseqn(x w) -> {Satn (xw) 

[3t, t' < x(Term(t) A (Term(t') A x = t ='t' A Val(t, w) = Val(t'. w)) 

V 3t. t' < x (Term(t) A Term(t') A x = tI<nt' A Val(t. w) < Val(t', w)) 

V 3y < x(x = r'Ey A -iSatn(y w)) 

V Ely, z < x (x = yr I--->_z A (Satn (Y w) --> Satn (ZWM) 

V ]y. i < x(x = 7Vvi'y A Vw'(w =i -w/> Satn(y. w/))) 

V ly. i, t < x(Term(t) A x =- 7(vi <ntF)2y 

A Vw' < s (i, Val (t W)7 w) (w =iw' A P (i, w) < Val (t, w) --> S atn (Y, w'))] I. 

We denote the part between brackets [] on the right-hand side of the equivalence 
by I(Satn; X, w); note that these are just Tarski's conditions. 

Similarly, we say that Satn.A (x, w) is a partial definition of truth for Ao-formulas 
of length < n in IAo + 4?1 if 

IAo + 4?i F- Evalseqn.(x, w) -> {Satn A(x, w) W) 

[3t. t' < x(Term(t) A Term(t') A x = t =/t' A Val(t, w) = Val(t', w)) 

V 3t. t' < x(Term(t) A Term(t') A x = tr<2t' A Val(t, w) < Val(t', w)) 

V 3y < x(x = 'ly A Satn.A(y, w)) 

V 3y. z < x(x = yr z>' A (Satn.A(y, w) > Satn.A(z. w))) 

V 3y, i, t < x(Term(t) A x = 7(Vvi <'tF)-y 

A Vw' < s (i. Val (t. W)7. w) (w =iw' A,6(i, w) < Val (t . w) > Satn -A(Y7 w')))]}. 

We denote the part between brackets [] on the right-hand side of the equiva- 
lence by XA(Satn.A; x, w). Note that the only difference between E(Satn; X, w) and 
EA (Satn.A; X7 w) is that in the latter, the disjunct for the unbounded quantifier V 
is left out. 

In the proof of the main theorem of this section, we will reason inside IAo + 
4?1, and we will need the existence of Godel numbers representing formulas Satn 
that provably satisfy the conditions of the preceding definition. Therefore, in the 
unformalized proofs below, we take care that the formulas Satn and the proofs that 
they have the right properties be bounded by suitable terms. The following lemmas 
provide us with such formulas. In [Pu86], [Pu87] Pudlak proves similar lemmas 
for a language without function symbols. Below, we sketch the adaptation of his 
method to our case. The parallel construction of a Ao(Val, L 1 X. #)-formula 
Satn.A which works for AO-formulas is particular to this paper. We use the formula 
Satn.A only in our proof that Satn preserves the AO-induction axioms, but there its 
use is essential. 
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LEMMA 4.7. There exist formulas Sat, (x, w) for n = 0, 1,2, ... of length linear 
in n, and such that, by a proof of length linear in n, 

IA0 +Ql F- Evalseqn+l(xw) -> (Satn+l(x,w) +-* X(Satn;x,w)). 

PROOF. Satn is constructed by recursion. We can define Sato arbitrarily, as there 
are no formulas of length < 0. If we have the formula Satk, we obtain Satk+l by 
substituting Satk for Satn in the formula X(Satn; x, w) defined in Definition 4.6. 

Remember that we have to ensure that the length of the formula Satn grows 
linearly in n. However, if we straightforwardly used E(Satn; x, w) as defined above, 
the length of Satn would grow exponentially in n, because X(Satn; x, w) contains 
more than one occurrence of Satn. 

Ferrante and Rackoff (in [FR79, Chapter 7]) describe a general technique for 
writing short formulas, due to Fischer and Rabin. Using these techniques, one 
can replace E(Satn; x, w) by a formula V(Satn; x, w) which contains only one 
occurrence of Satn and which is equivalent to E(Satn; x, w) in a very weak theory- 
say predicate logic plus the axiom SO /& 0. 

Ferrante and Rackoff use the inclusion of +-* in the language of the theory in an 
essential way. However, Solovay sent us a different construction of short formulas 
which circumvents the use of <-> . With his kind permission, we present a sketch 
of his proof. 

Solovay's basic idea is to shift attention from sets to characteristic functions. 
Without restriction of generality, we may assume that we work with unary pred- 
icates Satn (x) instead of Satn (x, w). Let 

Fn(xy):= (y = SO A Satn (x)) V (y = 0 A-Satn (x)) . 

If we can find a formula Hn equivalent to Fn of length proportional to n, it will 
be easy to define using this formula our desired formula Satn+l. 

Let L be the language of IAo + Q?i enriched with a new binary predicate let- 
ter G. We can find a formula (D of L in prenex normal form, having only the 
variables x and y free, such that if G is interpreted as Fn, then PD is interpreted 
as Fn+?. We show how to find a formula T which is equivalent to (D and which 
has only one occurrence of G. Assume that (D starts with the string of quantifiers 
(Qlxl) ... (QrXr) and that there are k occurrences of G in the matrix of 0, say 
G(t1,ml),..., G(tkmk). The formula T will have the form 

((?IXI) ..(QrXr)(3l OY .. OM[M A S]. 

Here Yl, I. . . Yk are fresh variables (for the moment-in the final definition we will 
be less liberal with variables). The formula M is obtained from the matrix of (D 
by replacing each occurrence of G (ti, mi) by mi = yi. The job of S is to ensure 
that the yi's are chosen correctly. It is defined as follows. 

S:=Vw:w22[G(wl W2)A \(wl= t -* W2=Yi) 

If we define Hn+1 from Hn using T, then we get a formula of length proportional 
to n log n, because at every step we introduce fresh variables in order to avoid 
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clashes. There are, however, tricks to get by with a finite set of variables, as the 
reader may enjoy figuring out (or look up in [FR79, Chapter 7]). 

We will write 1'(Sat,; x, w) for the equivalent of I(Sat,; x, w) resulting from an 
application of the techniques described above. The length of Sat, thus constructed 
via iterated application of L' to Sato is indeed linear in n. Moreover, for all n the 
shape of the proof of X(Satn; x, w) +-+ >'(Satn; x, w) is the same. Thus, the proofs 
of E(Satn; x, w) +-> E'(Satn;x,w) grow linearly in n. Hence, as Satn+1 (x, w) 

1'(Satn; x, w), we have the following by proofs of length linear in n: 

(4) IAO + -Q F- Satn+1(x, w) +- > (Satn;xw) C 

LEMMA 4.8. IAo + -F proves, by a proof of length of the order of n2, that the 
formula Satn as constructed in Lemma 4.7 is a partial definition of truth forformulas 
of length < n. 

PROOF. We want short proofs showing that Satn is a partial definition of truth 
for formulas of length < n in IAo + Q1, i.e., 

IAO + Q1 F Evalseq, (x,w) -i (Satn (Xw) +-* I(Satn;XW)). 

By (4), it suffices to show that, by proofs of length of the order n2, 

IAO + Q1, F- Evalseqn (X,,W) -* (Satn(X, w) > Sat?+1 (X, W)). 

This can be proved by external induction on n. In fact, when we define 

(Dn := VxVx(Evalseqn (x,w) -> (Satn (x,w) +-> Satn+?I(x,w))), 

the proofs of Dn --> Dn+1 in IAo + Q1, will have a shape which does not depend on n. 
(We refer those readers who seek elucidation by examples to [Pu86, Lemma 5.1].) 
We can observe that every proof in IAo + Q1, of (Dn > -Dn+1 is the instantiation 
of a single proof scheme. Thus, the length of the proofs of (Jn 1in+1 increases 
only linearly in n, so that the length of the proof in IAo + Ql of 

VxVw(Evalseqn (x, w) -> (Satn (x, w) (-> Satn+ (x, w))) 

is of the order n2. l 

LEMMA 4.9. There exist formulas SatnA(x, w) for n = 0, 1,2,... of lengths 
linear in n, and such that IAo + Ql proves, by proofs of length linear in n, that 
Satn+l.A (x, w) +-> YA(Satn.A; x, w). The resultingformulas Satn-A (X, w) are AO (Val)- 
formulas. 

PROOF. The proof is completely analogous to the proof of Lemma 4.7. Because 
ZA(Satn.A; x, w) contains only bounded quantifiers, and because all quantifiers 
introduced by the Solovay method can be bounded, the resulting formulas are 
indeed AO (Val). El 

LEMMA 4.10. IAo + - l proves by a proof of length of the order of n2 that the 
formula Sat,,A (x, w) as constructed in Lemma 4.9 is a partial definition of truth for 
An-formulas of length < n. 



800 RINEKE VERBRUGGE AND ALBERT VISSER 

PROOF. We adapt the proof of Lemma 4.8, incorporating the fact that we are 
concerned with Ao-formulas only Thus, instead of On, we define 

On.A VxVW(Evalseql N(X, W) -> (Satn.A(x, W) +-> Satn+ lA(x, W))). 

The proof of (Dn.A > Dn+1.A runs along the same lines as the proof of On -> n+l, 

using the extra fact that if x = yEr ,z and Fmlan+l?A(x), then Fmlan.A(y) and 
Fmlan.A(z), etc. E 

We now show that the partial definitions of truth can, by proofs of quadratic 
length, be proven to satisfy Tarski's conditions, which justifies their name. 

LEMMA 4.11 (cf.[Pu86], [Pu87]). There exists a constant c such that for every 
formula o with free variables among vi .... vi,,, andfor every n with Len(pfl') < n, 
we can prove the following by proofs of length < c * n 

IAo + Qi? F- Vw ( Evalseq(- '1, w) 

(5) >(S atn (F' ~OW) +- [ 
V(i, W), , f(im 1, W)]) 

and if p is a Ao-formula, then we can also prove the following by proofs of length 
< c -n2: 

IAo + Q I F- Vw ( Evalseq(- 'K1, w) 

(6) --> (S atn. a(7F' ~w) +- 3V(i , w) .... .l ,(im 1, w)]) 

PROOF. By cases. If p is an atomic formula t < t' of length < n and with free 
variables among vi .... vi,,,, Lemma 4.8 implies that we can prove the following 
by proofs of length linear in n: 

IAo + Q I F- Vw ( Evalseq(Et < t'' w) 

>(Satn ('_t <_ t'_', w) +-> Val ('_t -', w) <_ Val (7',w))) . 

By Lemma 4.4, we can then conclude that we can prove the following by proofs 
of length linear in n: 

IAo + Q F- Vw ( Evalseq(rt < t'', w) 

>(Satn (F-t <_ t'-', w) >(t <_ tV [(i -W) ..... P(in,w)])W. 

The case for t = t' is analogous. 
For the nonatomic cases, we define 

Tk (Vf) := Vw (Evalseq(FV 
-I 

W) --> (S atk (7F ', W) [f (ilW) . .. * fl(ill1, WT)]) 

Every formula p of length < n is constructed from atomic formulas in at most n 
steps. Therefore, we would like to prove the following in IAo + Ql by proofs of 
length linear in k: 

(1) Tk-l(qI) --'> Jk (-qi) for Len(E 'q/fl) < k 

(2) Tk-I(qi) A Tk-I(Z) > Tk(V > x) for Len(Eq, q--x) < k; 
(3) Tk-I(qI) >) Tkk(VVi V) for Len(EVvi q/f) < k; 
(4) Tk-I(qI) > Pk((VVi < t) q) for Len(E(Vvi < t) q) < k. 



SMALL REFLECTION PRINCIPLE 801 

If we can find these short proofs, then we have for every formula 0 of length 
< n a proof of Tn (Gp) of length of the order of n2, and we are done. We will leave 
the easy proofs of the four cases to the reader. E 

LEMMA 4.12. IA0 + Q, proves by a proof of length of the order of n2 that Satn 
preserves the logical rules (Modus Ponens and Generalization) for formulas of length 
<n, i.e., 

IA0 + Q, F- Evalseqn(YV > ZIw) A Satn(Yw) A Satn(y Wr QZ w) -> Satn (Z W) 

and 

IA0 + Q1, F- Evalseqy(EVi'Y w) A Vw'(w w' > Satn(y. w')) 

-Satn(EVvi'y.w). 

PROOF. The lemma follows immediately from Lemma 4.8. D 
LEMMA 4.13. IAo + Q1 proves by a proof of length of the order of n2 that Satn 

preserves the logical axioms and the equality axioms for formulas of length < n, 
e.g., axiom scheme (1) of [WP87]: 

IAO + Ql H- Evalseqn (y - (2zr> -yr)2 W) 

(PW1) >Satn (Y'--> (7r- ->,y,), W) 

Similarly, the other propositional schemes (2) and (3) are preserved. Correspond- 
ing to axiom schemes (4), (5), and (6) we have the following: 

(PW4) (corresponding to axiom (4) of [WP87]). 

IAo + Q?i F- Evalseq ( -Vv1y -> Sub(y, EviQ, t). w) A SubOK(y FviQ, t) 

> Satn (7Vvi 'y -> Sub (y, Evis ' t), w), 

where SubOK(y, EviQ t) is Buss' formalization of "the term with Godel number t 
is free for the variable v1 in the (term or) formula with Go5del number y 

(PW5) (corresponding to axiom (5) of [WP87]). 

IA0 + Q1, F- Evalseqn(FlVvi( yfY ->n) (y -> VVi z ), W) 

A "vi does not appear free in the formula with Godel number y" 

Satn(FlVvi(-yE -> z) > ( y -> VVi zl)2,W) 

(PW6) (corresponding to axiom (6) of [WP87]). 

IA0 + Q1 F- Evalseqn (VI F=1 viw) -> Satn (VI -V1I, W) 

and 

IA0 + Q1 F- Evaseqn, ((Y )Y W) 

A SubOK(y, rv '. rv '1) A Somesub(z y, EvQ 1 rv. ') 

- Satn(vizi =vjl> (-yr*2zr)2.W) 

where Somesub(zy, rvirv i ') is the formalization of "the formula with Godel 
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number z is the result of substituting the term vj for some of the occurrences of 
vi in the formula with Godel number y". 

PROOF. For the propositional axiom schemes (PW1), (PW2), and (PW3), the 
results follow almost immediately from Lemma 4.8. For (PW4), we need proofs 
in IAo + Q, of length of the order of n2 of the following "call by name = call by 
value" lemma: 

Evalseq (FVvi y > Sub(y, rvi', t), w) 

A SubOK(y, rvi ', t) > [Satn (Sub(y, rvi' t), w) 

S > atn (Y,- S (i,. Val (t, w). w))] 

This can be proved by induction on n, in a way similar to the proof of Lemma 
4.8. The rest of (PW4) then follows by Lemma 4.8 itself. 

For (PW5), we need proofs in IAo + Q, of length of the order n2 of the following: 

Evalseqn /-Iv (y z) -> (yr F-> Vvi rz)-, W) 

A "vi does not appear free in the formula with Godel number y" 

A w = i w' I > [Satn(Y, W) +-> Satn (Y, W)]. 

This can also be proved by induction on n; again, the rest of (PW5) follows 
by Lemma 4.8. 

The first equality axiom of (PW6) is proved immediately by Lemma 4.8. The 
second one has a proof similar to that of (PW4). D 

LEMMA 4.14. IAo + Q, proves by a proof of length of the order of n2 that Satn 
preserves the basic nonlogical axioms for formulas of length < n, e.g., 

IAo + Q, F- Evalseqn ('-O < O A -SO < WI, W) ,-- Satn ('-O < O A --SO < O--, W). 

Similarly for the otherfive basic axioms relating the symbols 0. S. +,*, and < of the 
language. 

PROOF. The lemma follows immediately by Lemma 4.8 and Lemma 4.4. D 
LEMMA 4.15. IAo + Ql proves by a proof of length of the order of n2 that Satn.A 

agrees with Satn on Ao-formulas of length < n, i.e., 

EvalseqnA ^(X, w) --> [Satn.A (x. w) ( > Satn(X.- w)].- 

PROOF. The proof is by induction on n as in the proof of Lemma 4.10. Here, 
we take 

(Dn :=VxVw (Evalseqn.A(X, W) --> (Satn.A(X , W) +-> Satn (X, W))) . 

As in Lemma 4.10, we use the fact that if x = yr->nz and Fmlan+l.A(x), then 
Fmlan A(y) and Fmlan A(z), etc. D 
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LEMMA 4.16. IA0 + Q1 proves, by a proof of length of the order of n2, that Satn 
preserves the AO-induction axioms of length < n, i.e., 

FmlanA (y) 

A Evalseqn (Sub(y, rvl ', O)7AVvl (flyfl-> >'Sub(y, rvi- , Sv1 )f) Vv1 ny, w) 

-> Satn (Sub(y, rvl -',O)I-AVvl ('yr -->-' Sub(y, rvl a, Svl )r-) ->Vvl ny, w) . 

PROOF. We work in IAO + Q1 and assume 

Fmlan.A (Y) 

A Evalseqn (Sub(y, ,vl ', 0) AVvi ('yr An Sub(y, rv1 a, Svl )fl) Vv1> Vvy, w). 

Because Satn is a partial satisfaction predicate for formulas of length < n, we 
can, by a proof of length of the order of n2, prove that the formula 

Satn(Sub(y, rv'1, 0)'AVvI (2y'_ >1 Sub(y, 'vj7, SvI)-) -> Vv ly, w) 

is equivalent to the following formula: 

Satn (Sub (y, 'vi I0)w) 

A Vlw'(w' =1 w --> (Satn (Y, W' Satn (Sub (y, 1-v I , S v),w') 

--> Vw' (w' = i w --> Satn (Y, w') . 

This formula in turn is equivalent to: 

Satn (Sub (y, 1v I 1. ), w) 

AVx (Sat (Y, S(I ,x W)) --> Satn (Sub (y. 1v I ',SvI),s (I. xw))) 

--> Vx Satn (Y, S , X, WA 

where s (I. x, w) is as defined in Definition 4.5. This last formula is then, by a 

proof of length of the order of n2 of a "call by name = call by value" lemma 
analogous to the one proved in Lemma 4.13, equivalent to the following formula: 

Sat (Y , S (I 0, w)) A Vx (Satn (Y, S (I x, W)) --> Satn (Y, S (1, SX, WM) 

--> Vx Satn (Y, S (1, x, W)) . 

This looks almost like an instance of induction. However, because Satn is not 
A0, we replace it by its Ao(Val,#,I L xi)-equivalent SatnA, as is allowed by 
Lemma 4.15 and the assumption Fmlan.A (y), and we obtain the equivalent formula 

Satn.A (Y , S(1, 0, W)) A Vx (Satn.A (Y, S(1, x, W)) --> Satn.A (Y, S 0, SX, WM) 

--> Vx Satn.A (Y, S(I ,x W)) . 

As a true instance of AO (Val, #, I I2x )-induction, the above formula is at last 
provable from the assumptions. D 

Now that we have the partial truth predicates in hand, we can proceed with the 
proof proper of the main theorem of this paper. We suppose that the reader is 
familiar with IAo + Q l-cuts and IAo + Q l-initial segments, and also with Solovay's 
method of shortening cuts (see Definition 2.16, Definition 2.17, and Lemma 2.20). 
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We have the following. 
LEMMA 4.17. If K is an IAo + Ql-initial segment, then 

IAo + Qi F- Vx Prov( K(K )2), 

where ix stands for the "efficient numeral" based on the binary expansion of x. 
PROOF. See Lemma 2.21. It is not difficult to see that the proofs of K(Y) are 

of length of the order Jx12. 
However, in the formalized context in which we will use the result, the length 

of the formula K and the length of the proof p I(K) of Vy(K(y) -> K(Sy)) and 
the proof p2(K) of Vy(K(y) -> K(SSO * y)) also play a part in the computation 
of the length of the total proof, thereby making the length of the total proof of 
the order Ix12. *KJ + jpj(K)j + Ip2(K) . 

In fact, if we analyze the proof, we find that 

IAo + Q i - VJVx(0Z(J "is an initial segment") -*> E(J(x))). E 

DEFINITION 4.18. We formally define the following: 

LPrfv(u. 7x2) := "u codes a proof of x in IAo + Ql involving only 

formulas of length < v". 

LEMMA 4.19. The following is provable in IAo + Qj: 

Vx Prov('-Vy < x-(Prf (y, rF)(>Lrl~ y n)) 

PROOF. Formalize the following observation: if a formula v occurs in a proof 
y where y < x, then Len(v) < IvI < IYI < IxI. E 

THEOREM 4.20 (small reflection). For all sentences p the following holds: 

IAo + Qi F- Vx Prov(7Vy < x-(Prf(y, n. ) ,* 

PROOF. By Lemma 4.19, it suffices to prove 

IAo + Q1 F- Vx Prov(FVy < Yx(Prf ,I (y, r4-) > (P) -1 

We reason inside IAo + ? , and we take an x which we shall use to make a cut. 
The idea behind the proof is to find a Godel number K, standing for a formalized 
"Prov-initial segment" such that we have 

Prov (K (Y)r ' -> Vy < Yx-(LPrf y(yFrp) (p)n 

(By abuse of notation we write K, (Y) for the Godel number that results by the 
appropriate application of the substitution function to K..) In the construction 
of the Prov-initial segment Ky, we will need the formalized versions of the lemmas 
which we proved above about the existence and the properties of partial satisfaction 
predicates for formulas of length smaller than some standard numeral n. In our 
formalized context, jxj plays the role of "standard numeral", as will become clear 
when we define K, Again by abuse of notation, we let Sat1,I (v, w) stand for a 
Godel number instead of a formula; we will use the appropriate formalizations of 
lemmas we proved about the formulas Satn (v, w) to derive formalized facts about 
the G6del number Satjxy (v. w). 
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Keeping these cautionary remarks in mind, we start the proof by defining the 
Gddel number J of a formalized "Prov-cut" (later to be shortened to the Prov- 
initial segment Ki that we need) as follows: 

h(s) : = Vy. v < s (LPrf ,I (y, v) -> Vw (Evalseq(v, w) -' Sat1 1 (v, w)Y)) . 

By the formalized version of Lemma 4.7, we may assume that this G6del number 
exists, because the length of Satl vl(v, w) is linear in x . (Note that we are reasoning 
inside IAo + Ql all the time!) It is not difficult to prove directly from the definition 
of Ja (and from the fact that JT is small enough) that the following holds: 

Prov(J(O)rAVy8z(-'J(z)Ay < z 

To prove that Ja is closed under successor, we remark that 

Prov('LPrf -I (y, v) -> Len(v) < Ix I ae). 

Therefore, we can formalize Lemmas 4.12, 4.13, 4.14, and 4.16 to conclude by a 
proof of length of the order Ix12 that Sat,, I(v. w) is preserved by all logical and 
nonlogical axioms and rules for formulas of length < jxj, and thus, indeed, 

Prov (1-y('y (Y)r >n (Sy),-)n 

proving JT to be a Prov-cut. 
By a formalization of the proof of Lemma 2.20, we can shorten the Prov-cut 

J to a Prov-initial segment Ki of length linear in Ix . The proof that K& is a 
Prov-initial segment is of length polynomial in jxj. 

Carefully analyzing the proof of Lemma 4.17 (see the remark at the end of that 
proof), we find, by proofs of length polynomial in jxj, that 

Prov(K& (x-)) A Prov(K&(riPd)) . 

Thus, because we have Prov(FVy( K-(y)r >'J(y)Fl)fl), we conclude that, by def- 
inition of JX, 

Prov(FVy < x(LPrfIXI (y, rnp ) > Vw(Evalseq( o , w) -A Sat1 lx (nF lp w)F))n) . 

Because we have Prov(FVy < ix(LPrf xI(y, Flop) > Fmla Ix (Fnf))7), we can apply 
the formalized version of Lemma 4.11, taking note that p is a sentence. Therefore, 

Prov(FVy < x (LPrf 1 (y, rn) Vkw (Evalseq(Fo, w) -* 

This in turn is equivalent to the desired 

Prov(FVy < YX(LPrf XI(y 
F nrO > S0 

Stepping out of IAo + Ql again, we conclude that indeed, 

IAo + Ql F- Vx Prov(FVy < x(LPrf (y, rF-f) > (p)fl). D 

REMARK 4.21. Looking carefully at the proof of Theorem 4.20, we notice that 
it is also possible to derive the following result, which is a little bit stronger: 

IAo + Qi F- Vv (Sent(v) -> Vx Prov(FVy v x(LPrf (y' Fva) -vF)n). 

Theorem 4.20 and its proof can also be adapted for the case that p is a formula 
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instead of a sentence (or, in the stronger result mentioned above, Fmla(v) instead 
of Sent(v)). 

COROLLARY 4.22 (Svejdar's principle is provable in IAO + Q1). For all sentences 
p, qi, we have the following: 

i.e., 

IA0 + fil QF~-x Prf(x, ran) 

-Prov(7Ely(Prf(y,flqY1) AVz < y - Prf(z, nP)) -*q> q) 

PROOF. We work inside IAO + Q1 and suppose Prf(x, rood) By provable b 

completeness, this implies Prov(7Prf(Nx, r% 2). Hence, we have 

Prov(73y(Prf(y,Y) AVz < y- Prf(z, r7n) >Ey ? x Prf(y, rf)n). 

Theorem 4.20 gives Prov(r3y < YPrf(y, f') > q'); therefore, we have the 
following: 

Prov(73y (Prf(y,.I2) A Vz < y- Prf(z, ra)) -a 

Jumping outside IAO + Q1 again, we conclude that 

IA0 + Q IF -x Prf(x, r n) 

Prov(7Ey(Prf(y,F ) A Vz < y- Prf(zran)) - E) L 

REMARK 4.23. Analogously to Remark 4.21, we may strengthen Svejdar's prin- 
ciple to the following: 

Io + f1i F Sent(u) A Sent(v) A Prov(u) -* Prov(7Prov(v) < Prov(u) ->v). 

Svejdar introduced a modal system in order to study generalized Rosser sen- 
tences, and he derived the formalized version of Rosser's Theorem in it [Sv83]. 
Because of Corollary 4.22, Svejdar's system is sound with respect to IAo + Q1, 
and Rosser's Theorem holds in IAo + f?j. 

Below, we use an argument similar to Svejdar's to derive a more general theorem. 
For the case of PA, this theorem has been proved by Montagna and Bernardi (see 

[JM87]). 
THEOREM 4.24 (Montagna-Bernardi in IAO + s1). For every function h which 

is S-definable in IAO + nj and maps sentences to sentences, there is a sentence C 
such that 

IA0+ Q-1- Prov(nC2) +-+Prov(h(_C )) 

PROOF. Define C by diagonalization such that 

IA0 + Q1 F- C +-* Prov(h(7C')) < Prov( C ). 

Reason inside IAO + Q1, and assume first that Prov(rC'). Then, by definition, 

Prov( Prov(h( C')) < Prov( C')'). 
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Meanwhile Corollary 4.22 gives 

Prov(7C7) -> Prov(7Prov(h(7C2)) < Prov(7C') -> h(7C2)2). 

Combined, these two yield Prov(7C') -> Prov(h(7C')). 
For the other side, we assume that Prov(h(7C')). This implies 

Prov(7Prov(h (7C'))2), 

and thus, 

Prov(7Prov(h (_C')) < Prov(_C') V Prov(-C') < Prov(h (r Cn))n ). 

By definition of C, we derive 

Prov(_ C V Prov(_ C ') < Prov(h (_ C 7) ) -)). 

Now we apply Corollary 4.22 to conclude that because 

Prov(h (_ C 7)) -> Prov(rProv(r C n) < Prov(h (_ C 7)) --> C ) 

indeed Prov(h(7C')) > Prov(7C'). E 
Note that the formalized version of Rosser's Theorem follows immediately from 

this construction. If we take R such that 

IA0 + Q F- R +-> Prov('-iR') < Prov(7R'), 

we derive IAo + Qi H- Prov(7R') +-> Prov(- -,R'), and thus IAo + Qi H- Prov(ERfl) 
Prov(' I) and IAo + Q?i H- Prov('-iR') > Prov(' I). 

?5. Injection of small (but not too small) inconsistency proofs. Using the small re- 
flection principle, we can strengthen Haijek's, Solovay's, and Krajicek and Pudlak's 
results on the injection of inconsistencies into models of IAo+ EXP [Hat83], [So89], 
and [KP89]. Instead of only injecting an inconsistency proof, we also take care to 
respect a fair number of consistency statements. Moreover, we do not need full 
exponentiation in our original model. 

We cannot immediately apply the lemmas of [KP89], but the essential steps in 
our proof are the same as in that article. We first apply Pudla's version of Godel's 
Second Incompleteness Theorem (see [Pu86, Theorem 3.6]) to show that we can 
indeed inject an inconsistency proof; then we use the Omitting Types Theorem to 
prevent extra elements from creeping into the lower part of the new model that 
contains our injected inconsistency proof. 

THEOREM 5.1. Let T D IAo + Q?i be a lb-axiomatized theory for which the 
small reflection principle (see Theorem 4.20) is provable in IAo + Qi. Let ConT (x) 

be a formalization of the consistency of T up to proofs of length x. Let d/ be a 
nonstandard countable model of IAo + Qi. Let a, c be nonstandard elements of d/ 

such that the following conditions hold: 
* exp(ac) ; 
* d/ k- ConT(ak) for all k < . 

Then there exists a countable model X of T such that a G X and 
(1) f [ a = X [ a, 
(2) W [ exp(ak) )C X for all k < co, 
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(3) X k-ConT(aC ), 
(4) X ConT(ak) for allk <CO, 
(5) XH 2 . 

PROOF. Define X := {x c Id1x < exp(ak) for some k < co}. Then exp(a") e 
AW\A(; thus, XW is a proper end-extension of 4X. Therefore, by Theorem 1 of 
[WP89], A1 t BE 1. (Remember that BEI is IAo + the scheme Vt (Vx < t:yp (x, y) 
:JaVx < t:y < a~p(x. y)) for o e Z?.) Also, it is easy to see that AX t Qi. 

On the other hand, one of our assumptions is that X 1= ConT(ak) for all k <,co. 
By Ao-overspill we conclude that there is a nonstandard d < c in XW such that 
X 1= ConT(a"). Thus, by Theorem 3.6 of [Pu86], there is a k < co such that X A 
ConT+ ConT(clI") (a(d/k), so certainly X t ConT+?ConT(" )(ad/k). Indeed, because 
d/k is nonstandard, we even have A t Con(U), where U := T + --1 ConT(a"). 

At this point we need some definitions analogous to the ones in [KP89]. Let 
L(A() be the language of arithmetic expanded with domain constants for the 
elements of Ar. We define a translation t from L(A() to X by t(A(a1. .. . ak)) 
7A4(al .(... ak), where ai is the efficient numeral of aj. We need one more defi- 
nition: 

U* := {A(a) c L(X)AX t Provu(t(A(d)))}. 

It is easy to show that U* is closed under the rules of predicate logic; that 
U C U*; and that Diag(Q1) C U*. Also, because X t Con(U), we can conclude 
that U* is consistent. 

Moreover, by the small reflection principle for IAo + Qj, we have 

X t Vx Provu (-ConT (I X-i ) ); 

thus, for all k <t, ConT(ak) U *. 
Finally, using Solovay's cuts, we can show that IV t Vx Prov(r2' 1'); thus, 

2 CU* 
We construct the required model X by the Omitting Types Theorem in order 

to take care that X will contain no new elements below a. Let r be the type in 
L(QI) defined by 

r(x) := {x < a} U x 4 blb cW al}. 

Claim 1. U* locally omits r. 
Proof. Take any A(x), and suppose that for all b < a in IV we have U* F- -A(b) 

and that U* F- A(x) -> x < a. We want to show that U* F -3xA(x). By definition 
of U*, it is sufficient to prove the following: 

X Vb <a Provu(- -A((b)) -Provu(Vx < a -A(x-A ). 

So suppose Al t Vb < a Provu(7-'A(b)'). By BE,, there is a q c Al such that 

A t lVb < a p < qPrfu(p - -A((bn). 

Now we can use AO(col)-induction to show that we can combine these proofs for 
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all b < a into one proofp of Vx < a -A(x), where lpI < a * (IqI + k a Ia) < atm 
for some standard k, n, m; thus, p E 4X. We conclude that indeed 

X t Provu(7Vx < a -A(x)'). E 

At last we can construct a model X of U* omitting r. Using the facts that we 
proved about U*, we conclude that X satisfies all the properties that we want. E 

In Theorem 5.1, we require that T D IAO + Ql is a St-axiomatized theory for 
which the small reflection principle is provable in IAO + 1-j. Examples of such 
theories are finite extensions of IAO + 1-l itself, IAO+ EXP, and PA. We hope to 
give an exact characterization of theories amenable to methods analogous to those 
of ?4, [Pu86], and [Pu87] in a later paper. 

Theorem 5.1 is only a slight extension of [KP89, Theorem 2.1]. We use the 
small reflection principle only to show that the length of injected inconsistency 
proofs can be bounded from below as well as from above. 

A variation on the proof of Theorem 5.1 gives the following theorem. Its proof 
contains a more surprising use of the small reflection theorem than the proof of 
Theorem 5.1. In Theorem 5.3 we use it even in our application of the Omitting 
Types Theorem. 

Recently, some papers (see [WP89], [Ad9O], [Ad93]) appeared that partially 
answer the end extension problem which was formulated by Kirby and Paris in 
1977 as follows: does every model of IA0O + BE, have a proper end extension to 
a model of IAO? The theorem below gives a sufficient condition for a countable 
model of IAO + BE, to have a proper end extension to a model of IAO: if the model 
additionally satisfies Ql + Con(IAO) and provable completeness for FJb-formulas, 
then it does have such an end extension. 

First, we need a definition. 
DEFINITION 5.2. CFrl (U) is the scheme 

A(al,..., ak) - Provu(rA((a,, . . .ak)') 

for A(al.. .. ak( ) C F2J. 
THEOREM 5.3. Let U D Q be a Lb-axiomatized theory, and suppose X/ is a 

countable model of BE1 + n, + CFIb (U) + Con(U), then there exists a countable 
model X of U such that X is an end extension of X. 

PROOF. Define U* from U, IV exactly as in the proof of Theorem 5.1. Again 
we construct the required model X of U* using the Omitting Types Theorem. 
This time we define for all a C IV the type Tc, in LQ(X) by 

Ta,(x) := {x < a} U {x 7 bib X/ C a}. 

Claim 2. U* locally omits Tc, for all a C X. 
Proof. Take any a C IV and any formula A(x). As in the proof of Claim 1, it 

is sufficient to show the following: 

f I= Vb < a Provu (- A(b)') >b Provu (FVx < -a--A (x)). 

So suppose 
,If= Vb < a Provu (--A(b)'). 
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By BE1, there is a q C X such that 

,IV k Vb < a p < q Prf u(p, ' A(b)'). 

Now by CJI7J (U), we derive 

,IV f 3q Provu (Fb < -a3p < q Prf u (p, ' A (b>1>1). 

Therefore, by the small reflection principle, 

I I= Provu(rVb < Ja--A(b)'). D 

We can now construct a countable model 5 of U* omitting all Td, for a C IV. 
As before, it is easy to see that U C U*, so 5 k U. 

By the way, note that by the small reflection principle for IAo + Q1, or simply 
by the isomorphism, we have Conu(lxl) C U*, and thus 5 1= Conu(IYI) for all 
x If. D 
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