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Abstract This article takes off from Johan van Benthem’s ruminations on the
interface between logic and cognitive science in his position paper “Logic
and reasoning: Do the facts matter?”. When trying to answer Van Benthem’s
question whether logic can be fruitfully combined with psychological experi-
ments, this article focuses on a specific domain of reasoning, namely higher-
order social cognition, including attributions such as “Bob knows that Alice
knows that he wrote a novel under pseudonym”. For intelligent interaction,
it is important that the participants recursively model the mental states of
other agents. Otherwise, an international negotiation may fail, even when it
has potential for a win-win solution, and in a time-critical rescue mission, a
software agent may depend on a teammate’s action that never materializes.
First a survey is presented of past and current research on higher-order social
cognition, from the various viewpoints of logic, artificial intelligence, and
psychology. Do people actually reason about each other’s knowledge in the
way proscribed by epistemic logic? And if not, how can logic and cognitive
science productively work together to construct more realistic models of
human reasoning about other minds? The paper ends with a delineation of
possible avenues for future research, aiming to provide a better understanding
of higher-order social reasoning. The methodology is based on a combination
of experimental research, logic, computational cognitive models, and agent-
based evolutionary models.
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1 Introduction

Most logicians are familiar with Johan van Benthem’s ground-breaking contri-
butions to modal logic, the logic of time and information dynamics, and to the
fruitful exploration of the interfaces between logic and language and between
logic and games. Less well-known is the fact that Johan van Benthem has also
made worthwhile contributions to the interface between logic and cognitive
science, as evidenced by [140, 141].

For many decades, logic and cognitive psychology were far apart and the
only point of contact seemed to be a truck-load of papers describing psycho-
logical experiments purporting to show that people do not reason logically,
most (in)famously [165]. These papers usually take a rather black-and-white
view of logic, and they often do not describe the experimental task correctly
in logical terms, as is poignantly described in Johan van Benthem’s position
paper “Logic and reasoning: Do the facts matter?”:

“Advertising ‘mismatches’ between inferential predictions of logical sys-
tems, usually without proper attention to the modelling phase, and what
is observed in experiments with human subjects seems entirely the wrong
focus to me—not to mention the fact that it is silly and boring. The much
more interesting issue is to avail ourselves of what is involved in how
people really reason.”

J.F.A.K. van Benthem [141]

This quote seems to suggest a negative stance towards psychological exper-
imentation, but in fact the rest of Van Benthem’s provocative piece does not
at all deny the value of experiments—indeed, the facts do matter—but argues
instead for more subtle distinctions and richer models of reasoning than have
often been used in the past.

In recent years, many fruitful contacts along the lines suggested by Johan
van Benthem have arisen between logic and cognitive science, witnessed by
three recent special issues on this interface: a special issue of Topoi edited
by Van Benthem et al. [143]; a special issue of Studia Logica edited by
Leitgeb [84]; and a special issue of the Journal of Logic, Language and
Information edited by Counihan [158].

The present article has been inspired by Johan van Benthem’s ruminations
in [141], especially by the question whether the facts matter for logic, and
the question in which fruitful ways a combination of logic, psychology and
computation could lead to plausible “formal models of real people”. Our
article focuses on just one type of reasoning, namely on social cognition, and
more specifically on human higher-order reasoning about mental states of
others. This type of reasoning is closely related to the core of the area that has
come to fruition these last ten years at Johan van Benthem’s initiative: the logic
of intelligent interaction. This article is partly a survey on the state of the art on
social reasoning from the combined viewpoints of cognitive science, logic and
artificial intelligence, and partly a position paper on future research directions
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for investigating questions about human social cognition by combining logic,
behavioral experiments and computational models.

2 Intelligent Interaction and Higher-Order Social Cognition

As humans, we live in a remarkably complex social environment. One cog-
nitive tool which helps us manage all this complexity is our theory of mind,
our ability to reason about the mental states of others. By deducing what other
people want, feel and think, we can predict how our actions will influence them,
and how we should behave to be successful.

Thus, theory of mind is the cognitive capacity to understand and predict
external behavior of others and oneself by attributing internal mental states,
such as knowledge, beliefs, and intentions [109]. This is thought to be the
pinnacle of social cognition [28].

Especially important in intelligent interaction is higher-order theory of
mind, an agent’s ability to model recursively mental states of other agents,
including the other’s model of the first agent’s mental state, and so forth.
More precisely, zero-order theory of mind concerns world facts, whereas
k + 1-order reasoning models k -order reasoning of the other agent or oneself.
For example, “Bob knows that Alice knows that he wrote a novel under
pseudonym” (KBobKAlicep) is a second-order attribution.1

There has been an ongoing debate among philosophers and cognitive
scientists whether our everyday understanding of mental states of others
constitutes a theory, as claimed by the ‘theory-theorists’, or rather that, in order
to understand and predict behavior of others, we directly simulate their mental
states, as claimed by ‘simulation theorists’ [70, 71, 98]. Henceforth, I often use
the term ‘higher-order social cognition’ in the sense of ‘higher-order theory
of mind’. The reason to do this is that in the controversy between ‘theory-
theory’ and ‘simulation theory’, the term ‘theory of mind’ carries the unwanted
connotation that ‘theory-theory’ is preferred.

2.1 Three Levels of Analysis

To delineate the perspective of this paper, it may be fruitful to keep in mind the
three levels of inquiry for cognitive science that David Marr characterized [90]:

1. identification of the information-processing task as an input–output func-
tion: the computational level;

2. speciation of an algorithm which computes that function: the algorithmic
level;

1Hence, ‘higher-order’ refers to a different phenomenon than higher-order logic (allowing quan-
tification over sets and individuals). The orders roughly correspond to the modal depth of a
formula.
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3. physical / neural implementation of the algorithm specied: the implemen-
tation level.

Researchers aiming to answer the question what logical theories may con-
tribute to the study of higher-order social cognition could be disappointed
when it turns out that logic is not the best vehicle to describe higher-order
theory of mind at the implementation level or the algorithmic level. For
example, it may turn out that the simulation theory more closely describes
people’s actual reasoning than the theory-theory does. Still, logic surely makes
a substantial contribution at Marr’s first computational level by providing a
precise specification language for cognitive processes; examples of this role of
logic are sprinkled throughout in this paper. Quite possibly, logic may also
have a fruitful role to play in theories of higher-order social cognition at the
algorithmic level, in the construction of computational cognitive models.2

Let us first see how higher-order social cognition has started to be relevant
for artificial intelligence and, in particular, multi-agent systems.

3 General Background: Artificial Intelligence and Multi-Agent Systems

In the proposal for the famous study at Dartmouth marking the birth of Arti-
ficial Intelligence (AI) in 1956, John McCarthy coined the term ‘Artificial In-
telligence’ as the scientific discipline that is concerned with “making machines
behave in ways that would be intelligent if a human were so behaving” [92]. He
added that “the study is to proceed on the basis of the conjecture that every
aspect of learning or any other feature of intelligence can in principle be so
precisely described that a machine can be made to simulate it” [92]. In the fifty
years since 1956, the scope of research has broadened considerably to study
natural intelligence both in people and in animals. Although a universally
accepted definition of AI is still lacking, researchers have held true to the aim
of seeking to understand and implement aspects of intelligence.

Currently, AI is often conceptualized in terms of building agents [118].
According to a widely accepted definition, “an agent is a computer system,
situated in some environment, that is capable of flexible autonomous action
in order to meet its design objectives” [74]. Their situated-ness distinguishes
agents from classical AI expert systems that needed a user as intermediary of
the information flow from and to their environment. Agents take initiatives
without human interference and interact with other agents in order to further
their own goals or those of others. The abstract concept of the agent has grown
to provide fruitful tools and techniques for engineering complex computational
systems [74].

2It is reassuring that in the slightly different context of closed-world reasoning, Stenning and Van
Lambalgen managed to describe a reasoning task at all three levels: the information-processing
task of credulously incorporating new information was shown to correspond on the algorithmic
level to logic programming, which was then implemented in neural networks [129].
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Multi-agent systems consist of dynamically cooperating computational sys-
tems, engineered to solve complex problems that require expertise and
capabilities beyond the individual components [171]. Multi-agent systems
have found application in complex situations that require multiple types
of expertise, perspectives, and methods, such as air-traffic control [47], car
manufacturing-line control [73], and negotiation [63, 86, 114]. Multi-agent sys-
tems display different types of complex interaction, from outright competition,
through coordination and negotiation, to full cooperation.

In the last decades, research on multi-agent interaction has focused on
idealized software agents with unlimited computational resources and perfect
logical reasoning powers. Nowadays, interaction between humans and com-
puter systems becomes vital for applications such as mixed rescue teams after
earthquakes: a number of robots descend under the rubble to find victims, hu-
mans then rescue these victims, while software agents continually evaluate and
re-plan the collaborative rescue action. In order to coordinate such complex
teamwork, it is vital that team members understand one another. Therefore, it
is high time to make more realistic models of intelligent interaction in mixed
human-computer teams.

Fortunately, investigations into cooperative interactions in the behavioral
sciences, logic and computer science show a marked convergence: after all,
people cooperate, complex software systems cooperate [35, 85], and mixed
teams consisting of software agents, robots and people cooperate, sometimes
even better than people and computational systems separately [122, 132].

In order to develop intelligent systems in interaction, it turns out fruitful to
specify agents in terms of their mental states, representing knowledge, beliefs,
goals, intentions and plans, as well as recursively representing mental states of
others [112]. As an illustration, let us turn to epistemic logic, the particularly
elegant modal logic of knowledge.

4 From the Logical Point of View: Reasoning About Knowledge

As is probably familiar to the readers of this journal, epistemic logic was first
introduced by Von Wright as a bare axiom system without semantics [164],
with axioms such as Kiϕ → ϕ (if agent i knows ϕ, then ϕ is true). The subject
started to flourish after the invention of possible worlds semantics [68, 82]. As
a reminder, one can view worlds that are possible or accessible for a certain
agent i in world w as epistemic alternatives, worlds that are compatible with
agent i ’s information in w . In general an agent i is said to know a formula ϕ in
a world w1 in model M (notation (M,w1) |= Kiϕ), if and only if ϕ holds in all
worlds w2 that are accessible for i from w1 (notation (M,w2) |= ϕ).

Group notions such as common knowledge are essential for formalizing
intelligent interaction in multi-agent systems. Intuitively, ϕ is common knowl-
edge in a group if everyone knows that ϕ, everyone knows that everyone
knows that ϕ, and so on, ad infinitum. Semantically speaking, a proposition
ϕ is common knowledge among group G in world w (notation (M,w) |= CGϕ)
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if and only if for all worlds w ′ in the transitive closure of the union of the
accessibility relations for all agents in G, ϕ holds in w ′ ((M,w ′) |= ϕ).3

4.1 Logic and Life: Children as Epistemic Logicians in the Science Museum

In a recent Kids Lecture about logic for children from the age of about eight
in the Science Museum in Amsterdam, Johan van Benthem called three young
volunteers to the front, let us call them Ann, Bob, and Carol. They received
one card each from the set {red, white, blue}.4

They could all see their own card, but not those of the others. A possible
worlds model of this situation is represented in Model I of Fig. 1a. Each world
represents a card distribution in alphabetical order of the agents, with obvious
color abbreviations. For example, wbr represents the state in which Ann has
white, Bob has blue and Carol has red, corresponding to the real card deal in
Van Benthem’s Kids Lecture. We introduce propositional atoms such as wAnn

for “Ann holds white”, which is true in wbr and wrb but not in the other four
worlds. Because on the basis of her information, Ann cannot distinguish the
factual situation wbr from the world wrb in which her colleagues have been
dealt oppositely, an accessibility relation for Ann is drawn between wbr and
wrb in the picture. Reflexive relations are assumed but have been left out of
the picture. Let MI be the name for the model as a whole, including the worlds,
accessibility relations and the valuation of propositional variables.5

We find that in wbr , Ann doesn’t know that Bob has the blue card
((MI ,wbr ) |= ¬KAnnbBob) because in at least one accessible world for Ann,
namely wrb, Bob does not have blue. More complex propositions can also be
seen to hold in the world wbr , such as “Bob knows that Ann does not know
that Bob has blue” ((MI ,wbr ) |= KBob¬KAnnbBob). This is because in all worlds
accessible for Bob from wbr , namely both wbr itself and rbw , we can see again
that Ann doesn’t know that Bob has blue.

Under the assumption usual in epistemic logic that all participants have
common knowledge of their being perfect logical reasoners, Model I in Fig. 1a
applies; of course they do not know which is the real world, being able to see
only their own card. Indeed when asked by Van Benthem, all three children
said they did not know the cards of the others.

In the formal model, it is easy to see what ideally holds. In situation wbr it is
common knowledge among Ann, Bob and Carol that Ann doesn’t know that
Bob has blue:

(MI ,wbr ) |= C{Ann,Bob,Carol}¬KAnnbBob

This is because all six worlds can be reached from wbr in one or more steps by
accessibility relations for agents in the group, and in each of those six worlds,

3For epistemic treatments of common knowledge, see [14, 50, 154].
4The experiment was inspired by a running example from [155].
5Precise mathematical representations of these notions can be found in introductions to epistemic
logic [50, 145].
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Fig. 1 Possible worlds models for the card-guessing experiment. a Model I. b Model II.
c Model III

it is clear that ¬KAnnbBob holds there because from each world, Ann can access
at least one world in which Bob doesn’t have blue.

Through communication, agents gain knowledge, by which possible worlds
models shrink. How did this work out in the Kids Lecture? Ann was allowed
one question and asked Bob “Do you have the red card?”. Johan van Benthem
then asked, before the answer to Ann’s question was given, if they now knew
the cards of the others and Bob correctly said he did. Apparently he used
a correct first-order knowledge attribution like “Because she asked me this
question, clearly Ann did not know that I do not have red, so she does not have
red herself. Therefore Ann must have white, and Carol has blue”.6 Formally,
under the ‘perfect reasoners’ assumption, the possible worlds model after
Ann’s question is Model II of Fig. 1b, where rbw and rwb, exactly those worlds
in which Ann has red, have been deleted from Model I.7

Now in the lecture, Bob answered Ann’s question in the negative: “No, I do
not have red”. Johan van Benthem asked the three children again who knew
the cards, and now Ann also raised her hand. Apparently she used a correct
zero-order argument such as “if Bob does not have red, he has blue and Carol
has red”.8 Also, both other kids understood that Carol did not know the cards,
a correct first-order attribution.

Still under the ‘perfect reasoners’ assumption, the possible worlds model
after Bob’s public announcement results from Model II of Fig. 1b, from which
wrb and brw , both worlds in which Bob has red, have been deleted. In the
ensuing Model III, both Ann and Bob know the card distribution, whereas
Carol still does not ((MIII ,wbr ) |= KAnn(wAnn ∧ bBob ∧ rCarol) ∧ KBob(wAnn ∧
bBob ∧ rCarol) ∧ ¬KCarol(wAnn ∧ bBob ∧ rCarol)). Indeed the only uncertainty left

6Note that some pragmatic reasoning about informativity is used here, as well as the assumption
that it is common knowledge that the kids are cooperative and do not try to deceive each other.
A very interesting recent take on such pragmatic reasoning, based on default logic, can be found
in [17].
7For treatments of updating possible worlds models after public announcements, see [12, 156].
8In fact, Ann could already have come to the same conclusion at the previous step just after Bob’s
admission of ignorance, by way of the first-order attribution “If Bob had red, he would not know
that I have white; so Bob has blue”.
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is for Carol, as witnessed by her accessibility relation between the two left-over
worlds.

Colleagues from the department of psychology had warned Johan van
Benthem that the children might not be able to solve the puzzle and under-
stand each other’s knowledge or lack of knowledge of the cards, but in my view
the above scenario only requires correct first-order reasoning, combined with
propositional logic, which children should definitely be able to do rather well
by age 8.9 It would be more impressive if the children in the audience, without
seeing any of the cards, had reasoned after Bob’s negative answer to Ann (“No,
I do not have red”) as follows: “Now Bob knows that Carol doesn’t know his
card” (KBob(¬KCarolwBob ∧ ¬KCarolbBob)), a second-order attribution, which 8
to 10 year olds often have great difficulty to apply in game situations [51].

Although in the Kids Lecture, the three participants were bright enough
to provide the correct answers (for which first-order theory of mind was
sufficient), nevertheless in general, dynamic epistemic logic may paint an
overly idealized picture of human behavior.

5 Problems with Epistemic Logic as a Model for Human Social Cognition

In the field of epistemic logic, unlimited rationality is mistakenly taken for
granted. Agents are assumed to be logically omniscient: they know all logical
truths. Logical omniscience is a consequence of using possible worlds seman-
tics [15, 126]. Logical truths hold in all possible worlds, so by the semantical
definition of knowledge, all agents know them: If |= ϕ, then |= Kiϕ. This is
clearly not true for ordinary people, who do not know extremely complicated
logical truths.

Moreover, epistemic logic assumes that agents have positive and negative
introspection into their own knowledge: Kiϕ → KiKiϕ and ¬Kiϕ → Ki¬Kiϕ

hold in the standard system S5.10 In the second half of the twentieth century,
however, cognitive scientists started to study phenomena like implicit cogni-
tion. Experimental subjects could correctly recognize well-formed strings of
abstract languages by learning from examples, without managing to formulate
the complex underlying rule [87, 169]. Hence, humans are often not aware of
their own knowledge and beliefs.

Finally, the epistemic language allows reasoning on any modal depth and
presupposes that agents can immediately decide whether a formula like

9Extracting from the story, Ann only needs zero-order reasoning, from “I have white” and “Bob
does not have red” to “Bob has red and Carol has blue”. Bob needs only one first-order attribution:
From “I have blue” (zero-order) and “Ann did not know that I don’t have red” (first-order), he
concludes “Ann does not have red” (zero-order), and therefore “Ann has white and Carol has
red” (again zero-order).
10Corresponding to the transitivity and euclideanness of accessibility relations, respectively; the
veracity axiom Kiϕ → ϕ corresponds to reflexivity [139].
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KAnn¬KBobKAnnKCarol¬KAnn wAnn is true in wbr .11 Common knowledge has an
infinitary flavor, which makes it impossible to establish by communication in
an untrustworthy communication medium, like the Internet [50, 62, 131].

The above three unrealistic properties of epistemic logic (logical omni-
science, reflective powers and unlimited recursive knowledge attribution)
occur in every logic that is based on possible worlds semantics. Therefore, the
belief-desire-intention (BDI) logics, popular in multi-agent systems [112], are
not sufficiently flexible to take the next step scaling up to mixed teams in which
human participants cooperate with computational ones [132]. Nowadays, it
becomes of paramount importance that software agents learn to reason about
their human colleagues’ cognitive limits with respect to higher-order social
reasoning and their propensity to make mistakes [36, 41].

If one wants to make more realistic models of intelligent interaction in
mixed human-computer teams, a fruitful avenue may be to computationally
model human capacities to reason about mental states of other agents. So, after
having explained ideal logical social abilities, let us have a look at results from
psychology about social cognition in the context of natural intelligence.

6 Natural Intelligence in Interaction: Theory of Mind

Theory of mind, the capacity to reason about mental states of others, seems to
be a characteristically human capacity. As for its development, Wimmer and
Perner [170] showed that children between three and five years of age learn to
distinguish their own beliefs from those of others, which may be false. In the fa-
mous ‘false-belief task’, children have to report their own belief about another
child’s mistaken belief (cf. [8, 33, 58, 100, 124, 166]). Interestingly, children
model goals of others earlier than their beliefs [58, 120, 166]. Between around 6
and 8 years old, children learn to make correct second-order attributions [106].

Let us give an example of a second-order false-belief task, as reported
in [51]. The participants heard a second-order false belief story, the Chocolate
Bar story (see below), accompanied by drawings.12 Afterwards, the partic-
ipants answer several questions, modelled after [136]. The questions test
different aspects of the participant’s understanding of the story, among which
their ability to correctly ascribe a second-order false belief such as “Mary
believes that John believes that the chocolate is in the drawer”.

In the Chocolate Bar Story, John and Mary are in the living room when
their mother returns home with a chocolate bar that she bought. Mother gives
the chocolate to John, who puts it into the drawer. After John has left the
room, Mary hides the chocolate in the toy chest. But John accidentally sees
Mary putting the chocolate into the toy chest. Crucially, Mary does not see
John. When John returns to the living room, he wants to get his chocolate.

11It happens to be true.
12The Chocolate Bar Story is a second-order adaptation of a first-order story by [69].
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Questions asked to the participants are: Where is the chocolate now? (reality
control question), Does John know that Mary has hidden the chocolate in the
toy chest? (first-order ignorance question), Does Mary know that John saw
her hide the chocolate? (linguistic control question), Where does Mary think
that John will look for the chocolate? (second-order false belief question), and
Why does she think that? (justification question). If the children are not able
to correctly attribute second-order false beliefs but otherwise are linguistically
competent, they are predicted to answer the reality control question, the first-
order ignorance question and the linguistic control question correctly, but
give incorrect responses to the second-order false belief question and the
justification question.

In [51], it turns out that a vast majority of tested children of 7 and 8 years
old are able to correctly ascribe second-order attributions in the second-order
false-belief task.

6.1 Adults and Higher-Order Reasoning in Games

Experimental research shows that most adult game-players exhibit first-order
reasoning and many give a passable shot at second-order reasoning, whereas
higher orders are rare [51, 64, 93, 163]. In classical game theory, it is often
assumed that there is common knowledge that players are rational and capable
of perfect reasoning. Game theory has often been criticized for the assumption
of perfect reasoning. In fact, many experimental studies have shown that
people do not always follow rational strategies, for example, they do not do
so in so-called centipede games (introduced in [115]). Let us remind the reader
of these games of perfect information, using the small example of Fig. 2.

In this centipede game, two players take turns choosing either to take a
larger share of the current amount of marbles (down in the picture), thereby
ending the game; or alternatively, to pass the choice to the other player (right
in the picture), which leads to an increase of the total available amount of
marbles. In the picture the pay-offs for each player are represented at the
leaves, and the amount of marbles at the start of the game is one. If player 1
starts choosing down, he receives one marble while player 2 receives nothing;
if, on the other hand, player 1 chooses right, the available amount increases. At

Fig. 2 Game tree for the centipede game
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the next turn, if player 2 chooses down, she receives two marbles while player
1 receives nothing, and so on.

Now we can demonstrate the relevance of common knowledge of rationality
by using backward induction (see also [145, 163]). Let r1 denote that player 1 is
rational, and r2 that player 2 is rational. At the fourth and last choice point from
the left, using r2, we can infer that 2 will prefer four marbles to three ones and
she will choose ‘down’. Since rationality of both players is common knowledge,
we know that K1r2, hence, when in the third choice point, player 1 knows that
player 2 will choose ‘down’ in the fourth choice point, and hence, since player
1 is rational and prefers three marbles over two ones, he will choose ‘Down’.
Since K2K1r2 ∧ K2r1, if player 2 were to reach the second choice point from the
left, she would apply the same reasoning that we just did and conclude that
player 1 will play ‘Down’ in the third choice point, so player 2, being rational,
will play ‘down’ in the second choice point. Continuing this line of reasoning,
and using the fact that K1K2K1r2 ∧ K1K2r1, we can conclude that player 1
will play ‘Down’ at the start. Therefore, if there were common knowledge
of rationality, then backward induction could be used by the first player in a
centipede game to conclude that he should immediately opt for the first dead-
end and stop the game. The second player uses second-order social cognition
to decide this, and we as observers use third-order social cognition to reach
this conclusion.13

However, consider the following interesting alternative argument suggested
by Ram Ramanujam. Just like the induction rule for epistemic logic (“from
ϕ → EGϕ, infer ϕ → CGϕ”), one could formulate an induction principle for
extensive form games presented as finite trees. For a two-player extensive form
game g, the general induction principle would come down to the following,
which is formalizable in a modal logic over trees:

From “whenever both i and his opponent make a rational choice in
each strict subgame of g, player i makes a rational choice in g” (for i ∈
{1, 2}), infer that “both players play rationally in g”.

This principle is formalizable in any modal logic over finite trees. Both
players follow the same principle, which is common knowledge to the players.
Hence, both arrive at the same analysis as provided by backward induction.
Thus, both players only apply first-order reasoning, and the outside observer
only needs to apply a second-order inference predicting rational play!

It seems paradoxical that reasoning on the basis of common knowledge of
rationality leads to a less than optimal outcome for both players. In [157],

13This reasoning applies to any n-player extensive form turn-based game presented as a finite tree.
One level of knowledge is needed for a player reasoning at a node, the second level for the agent
who is playing at the child node, and the third level for the outside observer’s reasoning. The
same applies to the subsequent argument based on the “induction principle” (as observed by Ram
Ramanujam, personal communication).
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Van Benthem and Van Eijck present a Platonic dialogue on Game theory,
logic, and rational choice that offers an intriguing and sophisticated logical
analysis of backward induction and its rival strategies.

Indeed, empirical research has shown that instead of immediately taking the
‘down’ option, players often show partial cooperation, moving right for several
moves before eventually choosing to take the down option [93, 97]. Nagel and
Tang suggest as possible reason for this deviation from the game-theoretic
outcome that players sometimes have reason to believe that their opponent
could be an altruist who always cooperates (by moving to the right).14 In such
a case, it is better to join the altruist in going to the right and then defect on
the last round.

These empirical observations show that the premise of the induction prin-
ciple above is questionable. After all, when a player is unsure that the other
would make rational choices in a subgame of g, she cannot be expected to
make a rational choice in g either. It seems that real-world players do not have
common knowledge of a proposition such as “the other player is rational”,
but rather they get by with at most common beliefs about the procedures they
employ.

Another possible explanation of human behavior in the centipede game
involves error and cognitive limits: if the opponent has not correctly performed
the full backward induction, it may be advantageous to cooperate in the first
rounds. On this line of cognitive limits, Hedden and Zhang have argued that
in reality, players hardly use backward induction at all and make use mostly of
first-order, and only sometimes of second-order social cognition [64]. Hedden
and Zhang used a game of perfect information very similar to the centipede
game and concluded that adult subjects would start using at most first-order
theory of mind. Gradually, a number of subjects would shift to second-order
theory of mind when they started modeling their opponent as a first-order
reasoner [64] (but see [51] for an alternative interpretation and experiments).

A difficulty with this kind of behavioral experiments is that it is very hard
to be sure which kind of reasoning lies behind a player’s choice in the game:
does a player use backward induction or higher-order theory of mind? Or is
he maybe working in parallel by concurrently analyzing the beginning and the
possible endings of the game? A player may also adopt a strategy that is not
couched in terms of others’ mental states at all. For example, he can describe
the game simply as “each step at which a player continues to the right, the pot
is augmented; and each move, the player whose turn it is can terminate and
collect the pot”. He can then base his strategy on this specification: “Continue
as long as you guess the other player will cooperate, and when you guess
the other will not cooperate anymore, terminate”. Such alternative models
call into question what role logic can play at Marr’s algorithmic level (see

14Note that in the induction principle above,“rational” could be replaced by “altruistic” to get a
different pattern of reasoning (also suggested by Ram Ramanujam, personal communication).
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Section 2.1).15 Even asking a subject what reasoning he used may not be
sufficient to be sure what’s going on in his mind. Thus, experiments need to
be designed very carefully.

6.2 Experiments: Understanding Theory of Mind Versus Applying It

A pilot study with children and adults turned up some surprising results
for a game task [51]. Flobbe adapted Hedden and Zhang’s centipede game
experiments from [64]. Conversely to the earlier results, adults were mostly
able to use correct second-order reasoning from the start and profitably
adapted their strategy to their predictions about the other. Children between
seven and eight years, however, acted much more variably. Many were still in
the process of learning to apply second-order attributions, although they could
already understand second-order reasoning in story tasks [51].

This points to a crucial gap between children’s reflective understanding of
theory of mind and its application in tasks such as games; a gap also shown
by adults for first-order and second-order social cognition [78, 163]. Keysar
et al. [78] report on experimental situations in which a speaker uses a term that
could in principle refer to two objects known to the experimental subject, but
only to one object for the speaker, as the latter is unaware of the existence of
the second object, and this unawareness is clear to the experimental subject.
The adult subjects nevertheless often perform as if the speaker referred to the
object that is hidden from him, thus giving precedence to their own perspective
rather than employing first-order social cognition.

The task-dependence of successful application of social cognition allows
several explanations, all of which have implications for the nature of higher-
order social cognition. A first, and very likely, possibility is that there is a
processing cost associated with theory of mind, which causes a failure in
applying the required order of social cognition when the processing demands
of the task are high. Another explanation (not incompatible with the first)
is that (higher-order) social cognition does not necessarily transfer from one
domain of application to another. The ability to understand another’s beliefs
and intentions of a certain order may be present in principle, but to apply social
cognition of the appropriate order, an individual must at least recognize that,
in a given situation, it is to his advantage that this knowledge be incorporated
in his decisions or actions.

In addition, higher-order social cognition may not be readily transferable
from one domain to another until after a developmental process has taken
place that makes this mental ability accessible to other domains, for instance
Representational Redescription as proposed by Karmiloff-Smith [76]. Taking
this reasoning one step further, it is even possible that what we call theory
of mind is not one uniform mental ability to be drawn upon whenever the
situation calls for it, but rather that different applications of social cognition

15This particular alternative was suggested by Keith Stenning (personal communication).
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constitute different kinds of mental ability. These are all avenues of thinking
about the nature of theory of mind that the scientific community may want to
explore, however, their exploration is relevant only if first it is established to
which extent there is task-dependence.

It is against this background that we placed the investigations presented
in [51].We compared two groups of subjects, 8 to 10-year-old children and
adults, on three measures. The first is a standard second-order false belief task,
comparable to Tager-Flusberg and Sullivan [136]. The second is a strategic
game, an adaptation of Hedden and Zhang [64], in which subjects play against
a computer, trying to maximize their reward. The third measure is a linguistic
task, which involves a linguistic phenomenon which is known to be acquired by
children quite late, often after the age of ten: interpreting indefinite subjects of
existential sentences such as “Er ging twee keer een meisje van de glijbaan af”
versus “Een meisje ging twee keer van de glijbaan af”. These are typical Dutch
constructions that have as rough translations “Twice a girl went from the slide”
and “A girl went twice from the slide”.

Children’s application of second-order social cognition was found to be
highly dependent on the task to be carried out and the domain of application.
Whereas almost all children succeeded on a verbal second-order false belief
task, children’s success rate in our second-order strategic game was only
57.2 %. With respect to the sentence comprehension task, only 40 % gave a
bidirectionally optimal interpretation of the indefinite subject of an existential
sentence. Thus, we have found that second-order social cognition is more
difficult to apply than first-order social cognition, for children as well as adults,
and that this is a pattern that does not only hold for verbal false-belief tasks,
but also for a strategic game. Moreover, we have also found that successful
application of second-order social cognition depends crucially on the domain
in which it must be applied. This finding shows that, beyond the question
of how human beings come to have a theory of mind, there looms another
important question: How do we learn to use it?

Because humans do and other animals don’t display higher-order social
cognition, apparently somewhere during evolution hominids have acquired
this capacity. It is important to investigate why and how higher-order social
cognition evolved and which environments foster it. But we have only an
approximate notion of the behavior and mental states of our ancestors. Evolu-
tionary anthropologists have argued that change of environment led to a larger
group size for hominids in pre-history. These groups necessitated new ways
of bonding and establishing hierarchies. This social complexity was in turn
correlated with higher relative brain-size and neocortex size, so that higher
levels of social cognition emerged [2, 37, 38, 46, 52, 81].

Still, controversy about cognitive evolution remains. Some authors claim
that higher-order social cognition arose because of the need for cooperative
planning [57], others that it provided social glue by enabling gossip and
language [38, 123]. Still others maintain that the main purpose of higher-
order social cognition was to manipulate and deceive competitors, the so-called
‘Machiavellian Intelligence’ hypothesis [22, 130, 168].
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7 Problems with Accounts of Natural Social Cognition

Human failures to apply higher-order social cognition are worrisome, because
correct higher-order reasoning often spells the difference between failure and
success in today’s complex society. For example, Begin did far better than
Sadat in the 1978 Camp David negotiations, partly because Sadat had written
a letter to mediator Carter detailing his fallback positions on all major issues,
but then refrained from drawing an important higher-order conclusion: “Begin
may know that Carter knows my fall-back position” [99].

Everyone uses higher-order social cognition to negotiate, cooperate and
compete. Still, the important question how higher-order social cognition
works, how it is learned, how it has evolved, how it sometimes fails, remains
largely an enigma. Hence it is still impossible to design effective interaction
in mixed multi-agent teams including human participants. If software agents
work together with human teammates, it is very important that they take into
account the limits of social cognition of their human counterparts. Otherwise
an international negotiation, for example, fails, even when it has potential for
a win-win solution. In a time-critical rescue mission, a software agent may
depend on a human teammate’s action that never occurs.

Unfortunately, behavioral and neuro-psychological research on human
higher-order social cognition is still scarce, in contrast to the wealth of research
on first-order theory of mind [30, 31, 55, 56, 79, 100, 120, 124]. The ‘higher-
order’ literature only investigates second-order social cognition [51, 89, 107,
163]. Group attitudes such as common belief have been investigated implicitly,
but their complexity has been ignored. For example, Mant and Perner [89]
asked children to judge the moral responsibility of the father in two versions
of a story. His child was disappointed when he changed his previously commu-
nicated plan to go swimming. In one version, both had mutually agreed to go
swimming, in the other version there was no agreement. Contrary to adults,
children younger than nine years judge the father in the no-agreement version
harshly [106]: “He said he would go, so he should have gone”.

Strangely enough, Perner’s analysis by second-order belief attributions [106]
does not explain why children understand the difference between the two
versions only around the age of ten, much later than they understand second-
order beliefs. The concept of social commitment, as defined in [40], illuminates
Mant and Perner’s results. If an agent i socially commits to another agent j
to do action α, then the first agent intends to do so. Moreover, the second
one is interested in this intention. Finally, the agents have a common belief
(“we believe that we believe that we believe...etc.”) about these individual
attitudes [40]:

COMM(i , j ,α) ↔ INT(i ,α) ∧GOAL( j ,done(i ,α))

∧ C-BEL{i ,j}(INT(i ,α) ∧ GOAL( j ,done(i ,α)))

Due to its recursive character, reasoning about common beliefs is more
complex than attributing second-order attitudes. This explains why children
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master agreements later than second-order tasks. Other behavioral research
highlights striking limitations in adults [51, 64, 93, 163].

In conclusion, whereas standard epistemic logic idealizes higher-order social
cognition of agents, empirical research lacks sophisticated representations
needed to solve open problems. Still missing are accounts of how adults im-
prove higher-order social cognition dynamically, how children develop theirs,
in which contexts it arises and what is the nature of cognitive limitations.
Theory and computational models of these issues are needed in order to
implement higher-order social cognition in intelligent systems in interaction.
The sequel of this article delineates some ideas about empirical, logical and
computational methods aiming to fill this gap.

In particular, I will argue that computational cognitive models shed new
light on how higher-order social cognition functions and how it is acquired. A
logical perspective helps to formulate the right questions, design illuminating
experiments, and precisely define suitable levels of aptitude [101, 102]. Finally,
agent-based models settle disputes between theories about evolution of social
cognition. Sections 8, 9 and 10 present the achievements and unmet challenges
of these computational approaches.

Let us now more closely investigate the three computational approaches,
namely computational cognitive modeling, resource-bounded logical modeling,
and agent-based modeling.

8 Computational Cognitive Models Such as ACT-R: State of the Art

In cognitive science, a prime approach to investigating human cognition is by
constructing computational cognitive models. These are used to understand
experimental findings, construct and test theories, and develop new experi-
mental research. The cognitive architecture ACT-R has been developed over
the last thirty years. This ‘implemented integrated theory of cognition’ earned
founder Anderson the first Heineken Prize for Cognitive Science [5–7].

Computational cognitive models are constrained by the architecture of
ACT-R in the way they retrieve, store, and process information. All ar-
chitectural constraints of ACT-R are derived from behavioral and neuro-
psychological experiments on human cognition.16 ACT-R operates at a
symbolic and a subsymbolic level. At the symbolic level, two kinds of memory
operate. Declarative memory contains chunks of information representing
facts (“knowing that”). Procedural memory contains IF-THEN rules, called
production rules, representing actions (“knowing how”).17 Production rules

16See http://www.ai.rug.nl/niels/images/actr.jpg for an illustration of the ACT-R modules and their
relation to brain regions.
17These facts and goal-subgoal production rules make ACT-R reminiscent of logic programming
(see also [129]).

http://www.ai.rug.nl/niels/images/actr.jpg
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compete with each other at the subsymbolic level, where the production rule
with the highest expected utility is executed. At this subsymbolic level, there is
also competition for retrieval of chunks from the declarative level, dependent
on the relevance, recency and frequency of their usage [6, 7].

Higher processing efficiency can be gained by learning through production
compilation [135]. This occurs when two existing production rules are used
consecutively. They are then integrated into one new production rule, resulting
in more automatic processing, which is more efficient if used repeatedly. Pro-
duction compilation has been successfully used to explain several well-known
cognitive phenomena where non-superficial associations are required [66, 133–
135, 160].

8.1 Cognitive Models of Reasoning About Mental States

Obviously ACT-R has not been developed with higher-order social cognition
in mind. Still, there have been several cognitive models in ACT-R of social
reasoning [77, 83, 91, 167]. Models of first-order theory of mind based on differ-
ent cognitive architectures [16, 110] have not been independently validated by
experimental studies. An intriguing ACT-R model with an interactive flavor is
[66]. Hendriks et al. investigate why children, when speaking, choose correctly
between “Bert washes himself” and “Bert washes him”. When listening to
somebody else, however, often they misinterpret him in “Bert washes him” as
co-referring with Bert. The reason is that to interpret “Bert washes him” cor-
rectly, one needs to reason about the speaker: if he had intended co-reference,
he would have chosen the reflexive form himself 18 [65]. The main hypothesis
in [66] is that children do have the ability to optimize bidirectionally, but
fail, because they lack processing efficiency to serially apply the two required
unidirectional optimization processes. Higher-order social cognition has not
yet been explicitly modeled in ACT-R.

In conclusion, the development of social reasoning raises a challenge for
cognitive modeling. There are two main stages of children’s development:
roughly between three and five, they learn first-order social cognition; between
six and nine, they learn second-order social cognition [106]. Why does this take
so long? Do children need to overcome serial processing bottlenecks, as in the
language interpretation task of [66]? This remains an intriguing open question.

18This does not rule out that language users, when viewed from the algorithmic level (see
Section 2.1), could use correct alternative reasoning without any mention of mental states. For
example, they could apply a rule such as “reflexives refer to the subject of a sentence, and
reflexivization of pronouns co-referring within the clause is obligatory, from which it follows
that a non-reflexive pronoun refers outside the clause” (as suggested by Keith Stenning, personal
communication).
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9 Logical Models: State of the Art

The aim to develop cognitively plausible logics for higher-order social cogni-
tion builds on two recent developments to take resource bounds seriously, in
logic and artificial intelligence.

Resource-bounded reasoning In game theory and experimental economics,
comparing bounded rationality to ideal rationality has an impressive his-
tory [11, 26, 117, 125], including a study of ‘team reasoning’, where agents
decide on the basis of the question “what should we do to maximize joint
utility” [10].

Until recently, however, logicians viewed the standards of rigor needed
for mathematics as the norm for reasoning in general. They denounced most
human reasoning as being incorrect or fallacious (see for example the clas-
sical [165]). The past few years, however, logicians have investigated human
reasoning under resource bounds [41, 53, 80, 88, 129, 141].

Let us quote logicians Gabbay and Woods:

“The theorist’s second option is to accept what the empirical record
reveals and give it a central place in his investigations. [...] Once we admit
agents to logic, it is best to admit them as they actually are, warts and
all” [53].

In opposition to the ideal theoretical agent, Gabbay and Woods charac-
terize a practical agent as one who tries to achieve his cognitive goals “with
relatively scant cognitive resources, such as information, time, and storage and
computational capacities, and who sets the cognitive bar at heights that enable
them to be negotiated with the resources at hand” [54]. Gabbay and Woods
point to some possible resource strategies, such as approximating and cutting
short lengthy processes, using efficient feedback mechanisms, and avoiding
irrelevant considerations, thereby putting all reasoning at the service of the
need to take quick action [53].

Gabbay and Woods give an interesting logical analysis of a case study in
which a lawyer decides after a client’s death whether to make a claim on behalf
of the widow from the life insurance company or from the government [54].
The reasoning contains some informal theory of mind about the two institu-
tions. They propose to formalize such practical cases not by using one logical
language, but using several formalisms for different aspects and linking them
together in a suitable meta-logical device.

This meta-logical approach fits well with a proposal by Fenrong Liu [88].
Liu considers some fruitful avenues along which agents may be distinguished,
such as introspection ability, powers of observation, memory capacity, and
revision policies. She considers the combination of different types of agents
in one multi-agent system, leading to the combination of different logics [88].

Efficiency strategies have a strong history in artificial intelligence, too,
because software agents also need to decide quickly on a course of action
when facing uncertain information and scarce resources [24, 162]. BDI systems,
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based on Bratman’s practical reasoning paradigm, are tailored to resource-
bounded action planning in dynamic environments [20, 39, 40, 112].

9.1 Logical Approaches to First-Order Social Cognition

Stenning and Van Lambalgen [127–129] combine logical models with a close
analysis of experiments, taking into account neuro-psychological findings.
They illuminatingly analyze children’s first-order social reasoning in a first-
order false-belief task, using the concept of closed-world reasoning [23]: “if
you do not have evidence that the situation is abnormal for agent b (abb), then
conclude that it isn’t abnormal (¬abb)”, or formally, � : ¬abb

¬abb
.

Van Ditmarsch and Labuschagne model first-order social cognition in terms
of degrees of belief, modeled by a preference relation between possible
worlds [153]. They characterize several general stances that agents might have
with respect to another agent’s preferences. For example, an autistic child
has difficulty in distinguishing her own beliefs from those of others [13, 30]
and may believe “another agent’s preferences are exactly similar to my own”.
Such a general stance turns out to be frame-characterizable by a formula of a
doxastic epistemic logic. Neither of these two studies explicitly treats higher-
order social cognition.

In epistemic logic and multi-agent systems, resource bounds have been
taken into account. However, in those fields the inspiration was not taken
from cognitive science, but from bounds on computational resources and
lack of information. In Section 4 three problems with epistemic logic were
described. One of the ways to treat the problem of logical omniscience has
been to introduce the notion of awareness of formulas [49, 95]; nowadays such
approaches have become more fine-grained, also incorporating the notion of
forgetting [152]. Recently, researchers have proposed alternative ways to ac-
count for limited versions of introspection and logical omniscience [1, 18, 103].
Other researchers have limited the complexity of multi-agent logics in terms of
time and memory, using syntactic restrictions and limits on the application of
deduction rules [4, 42, 43, 61, 162]. It is necessary to distinguish computational
complexity from complexity of human cognitive processes. For example, many
pattern recognition tasks are easy for children, but notoriously hard for
machines [121].19 Unfortunately, logicians have not yet investigated realistic
complexity limits on higher-order social cognition.

In logic and cognitive modeling, usually only present-day cognitive capabil-
ities have been investigated. For true understanding, however, it is also essen-
tial to investigate how such complex capabilities have dynamically evolved.

19At first sight these different complexity measures seem a matter best viewed at Marr’s implemen-
tation level (see Section 2.1): Of course different types of computational complexity would fit the
Von Neumann architecture and the brain. However, recently Van Rooij has shown convincingly
that a complexity-theoretic analysis can help to improve computation-level theories of cognition
as well. She posits the thesis that human cognitive capacities are constrained by computational
tractability, where ‘tractable’ is interpreted as ‘solvable in parametrized polynomial time’ [161].
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10 Agent-Based Models: State of the Art

The technique of agent-based social simulation has proved successful since
the nineties, for modeling multi-agent phenomena as diverse as fighting in
crowds [72], trust in negotiations [63], the evolution of agriculture [148], and
the evolution of language [27, 32, 123]. In particular, models of the evolution
of cooperation have gained tremendously in sophistication since Axelrod’s [9],
for example by modeling how organisms move through space [3, 75]. However,
the emergence of social cognition has only been partially modeled (see [149–
151]).

In general, inputs to a computational agent-based model are the attributes
needed to match the model with a specific social setting, based on observations
(from psychology, biology and anthropology). Outputs are the behaviors of the
computational model through time in a dynamic environment [59].

It is important to distinguish the suggested methodology of agent-based
modeling from that of evolutionary psychology as proposed by Cosmides
and Tooby [34, 138]. Evolutionary psychologists generally combine historical
information with experimental research on present-day human capabilities
(see e.g. [29], criticized in [113, 127]). On the other hand, due to the complexity
of the phenomena, evolutionary optimization models as used in theoretical bi-
ology [104] are not applicable to the evolution of higher-order social cognition.

Agent-based modeling provides a fruitful middle ground between the specu-
lative evolutionary psychology and mathematical modeling. Based on repeated
experiments, it enables to investigate how changes in relevant parameters
affect the complex behavior of an agent society.

10.1 Agent-Based Models as a Laboratory for Theories of Evolution

Do animals have theory of mind? Controversy abounds, because empirical
evidence cannot distinguish use of theory of mind from simple associative
learning from experience [21, 25, 45, 67, 94, 108, 137]. Agent-based models
come to the rescue by testing alternative theories.

Many of our primate cousins and corvids, like humans, must also deal with a
continuously changing set of allies and enemies, dominants and subordinates.
Does this mean that they, too, have a theory of mind? After decades of re-
search, the answer seems to be, with the possible exception of the chimpanzee,
probably not.

Nevertheless, to us as observers, it often seems as if apes and ravens are
acting in ways that require them to think about the beliefs, desires, and
intentions of others [45, 94, 137]. Only in carefully designed experiments do
their limitations become apparent. In other words, although they may behave
as if they have theory of mind, they seem to lack the underlying concepts.
Chimpanzees, ravens, and scrub-jays all display behaviors that seem to imply
that they can reason about who knows what. Yet, some maintain that, instead,
animals are using some combination of instinct, experience and learning, to
perform correctly [108]. Taking into account what humans find difficult about
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information attribution should ease the assessment of this claim. Conversely, if
animals can manage their complex social lives without information attribution,
then perhaps humans solve most of their daily problems without it too.

Van der Vaart’s TopTalent project in Groningen concentrates on the emer-
gence of first-order theory of mind in birds. So far, the project has delivered
a single computational model (inspired by ACT-R) that can replicate the
outcomes of a sizable set of experiments on memory in two types of corvids,
namely Clark’s nutcrackers and scrub-jays. In this way, the first integrated
computational account of different behavioral effects of memory in corvid
food hiding and recovery is provided, and a new explanation for some hitherto
unexplained experimental findings [149, 151]. Thus, the idea of constructing
a single computational architecture of corvid cache and recovery cognition
appears to be a fruitful one, which gives hope for useful computational
cognitive models that can test whether seemingly very smart bird behavior
such as ‘it takes a thief to hide food where other potential thieves can’t find
it’ really requires theory of mind or only depends on simpler mechanisms.

How would agent-based models help to explain the next step: the evolution
of higher-order social cognition, supposedly only displayed by humans? Such
models provide a laboratory to rigorously test several theories concerning the
evolution of higher-order social cognition and its relation to teamwork. For
example, one can investigate how people still perform effectively in mixed-
motive contexts such as negotiations about task division in teams, in spite of
difficulties with higher-order attributions.

After surveying the problems surrounding higher-order social cognition and
the state of the art in computational cognitive models, logic, and agent-based
modeling, let us now turn to the more speculative final sections of this paper: a
sketch of possible avenues to investigate human higher-order social cognition.

11 Future Research

11.1 Computational Cognitive Models for Higher-Order Social Cognition

Some social cognition tasks are done correctly at an early age (recogniz-
ing intentions) [58], others take some years longer (the classic false-belief
task) [33, 170], while very complex tasks, such as multi-attribute negotiation,
are never reliably learnt by the general adult population [51, 64, 163]. For
young children’s failure with first-order attributions, experiments show that
processing difficulties play the lead role rather than working memory limita-
tions [60]. There may very well exist a processing bottleneck for higher-order
social cognition as well.

This hypothesis can be tested by developing a computational cognitive
ACT-R model for the step from first-order towards second-order attitude
attributions occurring between six and nine years of age. At first sight, it
seems that production compilation [133, 135] plays a role in learning to reason
at higher levels. It is expected that a cognitively plausible model of higher-
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order social cognition reasons about other minds, without exactly computing
a complete representation of the other agent’s standpoint, particularly at the
higher orders (cf. [66]).

On the basis of the theory and the modeling results, including virtual
experiments, new ideas for experiments can be developed, for example using
card-guessing (Section 4) and the agreement task [89] (see Section 6). Thus,
predictions about learning to attribute second-order and common beliefs can
be tested. Experiments with normally developing children (6–12 years) may
be performed, taking into account their reaction times. Regression models
may deliver additional detailed information from reaction times about the
strategies used in the children’s reasoning processes [147]. Using tasks with
artificial slow-downs, one can test the following hypothesis: children have the
ability to take another’s perspective about their own mental state already from
the age of six, but fail to apply this correctly, because they lack efficiency
to serially apply the necessary mental operations. Finally, based on the first
cognitive model and the experiments, one may construct a combined cognitive
model of the development of higher-order social cognition for children from 6
up to 12 years of age.

Whereas first-order social cognition is often applied seemingly without
effort, adults find it hard to apply second-order social cognition, and even
harder to apply third- and higher-order social cognition. It is interesting to
investigate what causes this phenomenon. What are the bottlenecks in moving
from level 1 to level 2 and from level 2 to level 3?

A plausible hypothesis is that, in order to apply social cognition, people
need to store information about possible worlds and different viewpoints in
their goal-related memory: the imaginal buffer in ACT-R, corresponding to a
posterior region of the parietal cortex [5, 31]. Possibly, the processes found
in adults learning to apply tasks that demand higher-order social cognition
can best be explained by a combination of the imaginal effect and Salvucci’s
and Taatgen’s threaded cognition model of multitasking [19, 119, 159]. For
example, in a game of imperfect information the first task would be playing ac-
cording to the rules of the game, and a second keeping track of the opponent’s
possible mental states [163].

Similarly as for children, one can incrementally build a computational
cognitive ACT-R model on the basis of a cycle of behavioral experimentation,
initial model building, predictions for further experiments, behavioral and
fMRI studies, culminating in the construction of an integrated ACT-R model
of higher-order social cognition.

11.2 How Logical can Higher-Order Social Cognition be?

One may design resource-bounded variants of standard modal logics for
reasoning about other agents such as [50]. Results from the experiments
and computational cognitive ACT-R models about processing bottlenecks in
complex higher-order attributions may be used to design resource-bounded
variants of standard modal logics for reasoning about other agents such as [50].
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Both experimental results and computational models may help to tailor the
logics to human cognitive capabilities. This deflects the danger of simplistic
formal systems that posit a fixed bound on social cognition: everyone can
reason up to order n but not on order n + 1” [11, 125]. Such a discontinuous
idealization is risky. In physics, one expects one’s idealizations to work out
in a continuous manner: if one deviates from reality by a small amount, one
can always make small corrections. However, in logic, when cutting off an
approximation at a fixed order, the model changes discontinuously in terms
of the truth values of propositions.20

One combined system may model several types of reasoners with different
resource bounds, tuned by parameters such as inferential capabilities, reflec-
tive capabilities, and revision policies, taking off from [40, 88]. It would also
be interesting to model the results of the second-order reasoning experiments
in the constructed resource-bounded logic. Next, one may develop a resource-
bounded logic for reasoning about team attitudes such as common knowledge
(see Section 4), common belief, social commitment, and collective commit-
ment [20, 39, 40, 116]. Then the results of the agreement-experiment [89], in
which common beliefs play a role, can be modeled in the resource-bounded
multi-agent logic.

Multi-agent systems operate in dynamic environments in which mental
states of agents change because of observations and communication. The
environment may in turn change as the result of agent actions. Therefore it
is useful to integrate these dynamic aspects, thereby embedding interacting
intelligent systems in their environment. A good starting-point for such more
dynamic logics are dynamic epistemic logic [144, 155, 156] and temporal
epistemic logics and coalition logics [105, 146], or the recently introduced
synthesis of these two approaches [142]. For example, in dynamic epistemic
logic the communication actions in the card-guessing task of Section 4 can be
formalized in the language as two public announcements: “Ann does not have
red”, followed by “Bob does not have red”. Their effects on the situation can
be formally computed, leading from Model I to Model II and finally to Model
III of Fig. 1 [155]. Van Eijck developed a useful model checker DEMO for
dynamic epistemic logic, that automates this process [44]. Even though people
may not be perfect at drawing the right conclusion immediately, with some
communicative help they are amazingly good at revising their mistakes, and
this should be modeled (cf. [141]).

11.3 Adaptivity of Higher-Order Social Cognition in Context

Why has higher-order social cognition evolved in the first place? One may in-
vestigate several hypotheses concerning the possible evolutionary advantages
and the costs of higher-order social cognition using computational simulation.

20This concern was voiced to us by Johan van Benthem in 2006, referring to a Wittgenstein quote
saying that in logic, every deviation causes a large error.
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There are three main theories explaining why higher-order social cognition
evolved [48]: (1) the need to cooperate with fellow humans [96], (2) the need
to manipulate and deceive others—the Machiavellian hypothesis [22, 130, 168],
and (3) as a by-product of the complex social life in large groups, that
required a large brain [38]. I add another theory: (4) the need of mixed-motive
interactions such as negotiations, with partially shared, partially competing
interests.

Each theory can be tested by creating an environment that presents a
selective problem. For example, for theory (2), one can choose a problem that
cannot be solved individually, like hunting large animals. One can implement
social and environmental selective pressures and see which variables promote
represented higher-order social cognition. The next questions: how does se-
lection happen and how do agents reason with higher-order representations?
Special attention should be given to the logical representation of an agent’s
decision rules and to defining suitable measures of complexity, based on
aspects such as formula-length and operator-depth.

One can investigate whether explicit representation of higher-order mental
states of others gives individuals an advantage over those who only use
behavioral association and first-order attributions. The costs of higher-order
social cognition should be taken into account. One may investigate several
contexts and tasks to test all four theories mentioned above.

Finally, one may study the role of higher-order social cognition in teamwork.
For which tasks and contexts is the presence of higher-order social cognition
in team-mates beneficial for the performance of the team as a whole? Several
teamwork tasks and aspects of teamwork may be investigated, such as negotia-
tion about task division. There, individual goals (such as avoiding a distasteful
task) may conflict with goals of team-mates and the overall team goal. It will be
interesting to find out whether correct higher-order reasoning about members’
preferences helps or hinders team performance, and whether communication
about such preferences improves the team’s overall performance as well as
individual agents’ goals (as claimed in [111]).

For making these agent-based models, logic is vital to provide precision
in the evolving representations of reasoning. Computational cognitive models
provide clues for relevant types of decision rules.

12 Closing Remarks

After reviewing existing work on higher-order social cognition and sketching
how logic may be joined with experimentation and computational modeling to
shed light on some hard questions, let us end by quoting a hopeful vision from
Johan van Benthem’s “Logic and reasoning: Do the facts matter?” [141]:

“Indeed, the above-mentioned logical theories of inference, update,
and interaction all suggest interesting testable hypotheses about human
behaviour, and one could easily imagine a world where a logician who
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has created a new logical system does two things instead of one: like
now, submit to a logic conference, usually far abroad, but also: telephone
the psychologist next door to see if some nice new experiment can
be done. And finally, going yet a bit further, I would think that logic
can also contribute to a better understanding of how humans form and
maintain representations of scenarios and their relevant information, the
stage prior to any significant processing. What this would involve is a
broadening of current ‘model theory’ to a ‘theory of modeling’.”
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43. Dziubiński, M., Verbrugge, R., & Dunin-Kȩplicz, B. (2007). Complexity issues in multiagent
logics. Fundamenta Informaticae, 75(1-4), 239–262.

44. van Eijck, J. (2007). DEMO—a demo of epistemic modelling. In J. van Benthem, D. Gabbay,
& B. Löwe (Eds.), Interactive logic—proceedings of the 7th Augustus de Morgan workshop,
number 1 in texts in logic and games (pp. 305–363). Amsterdam: University Press.

45. Emery, N. J. (2005). The evolution of social cognition. In A. Easton, & N. J. Emery (Eds.),
Cognitive neuroscience of social behaviour (pp. 115–156). London: Psychology.

46. Erdal, D., & Whiten, A. (1996). Egalitarianism and Machiavellian intelligence in human
evolution. In K. Gibson, & P. Mellars (Eds.), Modelling the early human mind (pp. 139–150).
Cambridge: McDonald Institute for Archaeological Research.

47. Hill, J. C., et al. (2005). A cooperative multi-agent approach to free flight. In F. Dignum, et al.
(Eds.), AAMAS ’05: Proceedings of the fourth international joint conference on autonomous
agents and multiagent systems (pp. 1083–1090). New York: ACM.

48. Emery, N. J., et al. (2007). Cognitive adaptations of social bonding in birds. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 489–505.

49. Fagin, R., & Halpern, J. (1988). Belief, awareness, and limited reasoning. Artificial Intelli-
gence, 34, 39–76.

50. Fagin, R., Halpern, J. Y., Moses, Y., & Vardi, M. Y. (1995). Reasoning about knowledge, 2nd
ed., 2003. Cambridge: MIT.

51. Flobbe, L., Verbrugge, R., Hendriks, P., & Krämer, I. (2008). Children’s application of theory
of mind in reasoning and language. Journal of Logic, Language and Information, 17, 417–442.
(Special issue on formal models for real people, edited by M. Counihan.)

52. Foley, R. A. (1996). Measuring cognition in extinct hominids. In K. Gibson, & P. Mellars
(Eds.), Modelling the early human mind (pp. 57–65). Cambridge: McDonald Institute for
Archaeological Research.

53. Gabbay, D. M., & Woods, J. (2001). The new logic. Logic Journal of the IGPL, 9, 157–190.
54. Gabbay, D. M., & Woods, J. (2008). Resource-origins of nonmonotonicity. Studia Logica, 88,

85–112. (Special issue on logic and the new psychologism, edited by H. Leitgeb).
55. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind

reading. Trends in Cognitive Sciences, 2(12), 493–501.
56. Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social

cognition. Trends in Cognitive Sciences, 8(9), 396–403.
57. Gärdenfors, P. (2009). The communicative and cognitive demands of cooperation. In J. van

Eijck, & R. Verbrugge (Eds.), Games, actions and social software. Oxford: Oxford University
Press. (Earlier short version appeared in Hommage à Wlodek: Philosophical papers dedi-
cated to Wlodek Rabinowicz.)

58. Gattis, M., Bekkering, H., & Wohlschläger, A. (2002). Goal-directed imitation. In
A. Meltzoff, & W. Prinz (Eds.), The imitative mind: development, evolution, and brain bases
(pp. 183–205). Cambridge: Cambridge University Press.

59. Gilbert, N., & Troitzsch, K. G. (Eds.) (2005). Simulation for the social scientist. Maidenhead:
Open University Press.



676 R. Verbrugge

60. Hala, S., Hug, S., & Henderson, A. (2003). Executive function and false-belief understanding
in preschool children: Two tasks are harder than one. Journal of Cognition and Development,
4, 275–298.

61. Halpern, J. (1995). The effect of bounding the number of primitive propositions and the depth
of nesting on the complexity of modal logic. Artificial Intelligence, 75, 361–372.

62. Halpern, J. Y., & Moses, Y. (1990). Knowledge and common knowledge in a distributed
environment. Journal of the ACM, 37, 549–587.

63. Harbers, M., Verbrugge, R., Sierra, C., & Debenham, J. (2008). The examination of an
information-based approach to trust. In P. Noriega, & J. Padget (Eds.), Coordination, or-
ganizatiosn, institutions and norms in agent systems III. Lecture notes in computer science
(Vol. 4870, pp. 71–82). Berlin: Springer.

64. Hedden, T., & Zhang, J. (2002). What do you think I think you think? Strategic reasoning in
matrix games. Cognition, 85, 1–36.

65. Hendriks, P., & Spenader, J. (2006). When production precedes comprehension: An opti-
mization approach to the acquisition of pronouns. Language Acquisition, 13(4), 319–348.

66. Hendriks, P., van Rijn, H., & Valkenier, B. (2007). Learning to reason about speakers’
alternatives in sentence comprehension: A computational account. Lingua, 117(11), 1879–
1896.

67. Heyes, C. M. (1998). Theory of mind in non-human primates. Behavioral and Brain Sciences,
21, 101–148.

68. Hintikka, J. (1962). Knowledge and belief. Ithaca: Cornell University Press.
69. Hogrefe, G., & Wimmer, H. (1986). Ignorance versus false belief: A developmental lag in

attribution of epistemic states. Child Development, 57, 567–582.
70. Hurley, S. (2005). Social heuristics that make us smarter. Philosophical Psychology, 18(5),

585–611.
71. Hurley, S. (2008). The shared circuits model: How control, mirroring and simulation can

enable imitation, deliberation, and mindreading. Behavioral and Brain Sciences, 31, 1–22.
72. Jager, W., Popping, R., & van de Sande, H. (2001). Clustering and fighting in two-party

crowds: Simulating the approach-avoidance conflict. Journal of Artificial Societies and Social
Simulation, 4(3). http://jasss.soc.surrey.ac.uk/4/3/7.html.

73. Jennings, N. R., & Bussmann, S. (2003). Agent-based control systems: Why are they suited
to engineering complex systems? IEEE Control Systems Magazine, 23(3), 61–74.

74. Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and
development. Autonomous Agents and Multi-agent Systems, 1, 7–38.

75. Kaplan, F., & Hafner, V. (2004). The challenge of joint attention. In L. Barthouze, et al.
(Eds.), Proceedings of the fourth conference on epigenetic robotics: modelling cognitive devel-
opment in robotic systems (pp. 67–74). Lund: Lund University.

76. Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive
science. Cambridge: MIT.

77. Kennedy, W. G., & Trafton, J. G. (2007). Using simulations to model shared mental models.
In R. L. Lewis, T. A. Polk, & J. E. Laird (Eds.), Proceedings of the eighth international
conference on cognitive modeling (pp. 253–245). London: Psychology / Taylor and Francis.

78. Keysar, B., Lin, S., & Barr, D. J. (2003). Limits on theory of mind use in adults. Cognition,
89, 25–41.

79. Keysers, C., & Gazzola, V. (2007). Integrating simulation and theory of mind: From self to
social cognition. Trends in Cognitive Sciences, 11(5), 194–196.

80. Knauff, M. (2007). How our brains reason logically. Topoi, 26(1), 19–36. (Special issue on
logic and psychology, edited by J.F.A.K. van Benthem, H. Hodges, and W. Hodges.)

81. Krause, J., & Ruxton, G. D. (2002). Living in groups. Oxford: Oxford University Press.
82. Kripke, S. (1959). A completeness theorem in modal logic. Journal of Symbolic Logic, 24,

1–14.
83. Lebiere, C., Wallach, D., & West, R. (2000). A memory-based account of the prisoner’s

dilemma and other 2x2 games. In N. A. Taatgen, & J. Aasman (Eds.), Proceedings of third
international conference on cognitive modeling (pp. 185–193). Veenendaal: Universal Press.

84. Leitgeb, H. (2008). Introduction to the special issue. Studia Logica, 88, 1–2. (Special issue on
logic and the new psychologism, edited by H. Leitgeb.)

http://jasss.soc.surrey.ac.uk/4/3/7.html


Logic and Social Cognition 677

85. Levesque, H. J., Cohen, P. R., & Nunes, J. H. T. (1990). On acting together. In Proceedings
eighth national conference on AI (AAAI90) (pp. 94–99). Menlo Park: AAAI and MIT.

86. Lin, R., & Krauss, S., et al. (2008). Negotiating with bounded rational agents in environ-
ments with incomplete information using an automated agent. Artificial Intelligence Journal,
172(6–7), 823–851.

87. Litman, L., & Reber, A. S. (2005). Implicit cognition and thought. In K. J. Holyoak, &
R. G. Morrison (Eds.), The Cambridge handbook of thinking and reasoning (pp. 431–453).
Cambridge: Cambridge University Press.

88. Liu, F. (2006). Diversity of agents. In T. Agotnes, & N. Alechina (Eds.), Proceedings of
the workshop on resource-bounded agents (pp. 88–98). European Summer School on Logic,
Language and Information, Malaga.

89. Mant, C. M., & Perner, J. (1988). The child’s understanding of commitment. Developmental
Psychology, 24, 343–351.

90. Marr, D. (1982). Vision. New York: Freeman.
91. Matessa, M. (2001). Interactive models of collaborative communication. In J. D. Moore, &

K. Stenning (Eds.), Proceedings of the twenty-third annual meeting of the cognitive science
society (pp. 606–610). Mahwah: Erlbaum.

92. McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955). Proposal for the Dartmouth
summer research project on artificial intelligence. Technical report, Dartmouth College.

93. McKelvey, R. D., & Palfrey, T. R. (1992). An experimental study of the centipede game.
Econometrica, 60(4), 803–836.

94. Melis, A. P., Hare, B., & Tomasello, M. (2006). Chimpanzees recruit the best collaborators.
Science, 311, 1297–1300.

95. Modica, S., & Rustichini, A. (1999). Unawareness and partitional information structures.
Games and Economic Behavior, 27, 265–298.

96. Moll, H., & Tomasello, M. (2007). Cooperation and human cognition: The Vygotskian in-
telligence hypothesis. Philosophical transactions of the Royal Society of London. Series B,
Biological sciences, 362, 639–648.

97. Nagel, R. (1995). Unraveling in guessing games: An experimental study. American Econom-
ical Review, 85, 1313–1326.

98. Nichols, S., & Stich, S. (2003). Mindreading: An integrated account of pretence, self-awareness,
and understanding of other minds. Oxford: Oxford University Press.

99. Oakman, J. (2002). The Camp David Accords: A case study on international negotiation.
Technical report, Princeton University, Woodrow Wilson School of Public and International
Affairs.

100. Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand false beliefs?
Science, 308, 255–258.

101. Pacuit, E., Parikh, R., & Cogan, E. (2006). The logic of knowledge based obligation. Synthese:
Knowledge, Rationality and Action, 149, 57–87.

102. Parikh, R. (2003). Levels of knowledge, games, and group action. Research in Economics, 57,
267–281.

103. Parikh, R. (2007). Logical omniscience in the many agent case. Technical report, City
University of New York, New York.

104. Parker, G.A., & Maynard Smith, J. (1990). Optimality theory in evolutionary biology. Nature,
348, 27–33.

105. Pauly, M. (2002). A modal logic for coalitional power in games. Journal of Logic and
Computation, 12, 149–166.

106. Perner, J. (1988). Higher-order beliefs and intentions in children’s understanding of social
interaction. In J. W. Astington, P. L. Harris, & D. R. Olson (Eds.), Developing theories of
mind (pp. 271–294). Cambridge: Cambridge University Press.

107. Perner, J., & Wimmer, H. (1985). “John thinks that Mary thinks that ...”: Attribution of
second-order beliefs by 5- to 10-year old children. Journal of Experimental Child Psychology,
5, 125–137.

108. Povinelli, D., & Vonk, J. (2003). Chimpanzee minds: Suspiciously human? Trends in Cogni-
tive Sciences, 7, 157–160.



678 R. Verbrugge

109. Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? Behav-
ioral and Brain Sciences, 4, 515–526.

110. Pynadath, D. V., & Marsella, S. C. (2005). PsychSim: Modeling theory of mind with decision-
theoretic agents. In L. Kaelbling, & A. Saffiotti (Eds.), Proceedings of the 19th interna-
tional joint conference on artificial intelligence (pp. 1181–1186). Edinburgh: Professional
Bookcenter.

111. Raiffa, H. (1982). The art and science of negotiation. Cambridge: Harvard University Press.
112. Rao, A., & Georgeff, M. (1991). Modeling rational agents within a BDI-architecture. In

R. Fikes, & E. Sandewall (Eds.), Proceedings of the second conference on knowledge rep-
resentation and reasoning (pp. 473–484). San Francisco: Morgan Kaufman

113. Rose, H., & Rose, S. (Eds.) (2000). Alas, poor Darwin: Arguments against evolutionary
psychology. New York: Random House.

114. Rosenschein, J. S., & Zlotkin, G. (1994). Rules of encounter: Designing conventions for
automated negotiation among computers. Cambridge: MIT.

115. Rosenthal, R. (1981). Games of perfect information, predatory pricing, and the chain store.
Journal of Economic Theory, 25, 92–100.

116. Roy, O. (2006). Commitment-based decision making for bounded agents. In T. Agotnes, &
N. Alechina (Eds.), Proceedings of the workshop on resource-bounded agents (pp. 112–123).
European Summer School on Logic, Language and Information, Malaga.

117. Rubinstein, A. (1998). Modeling bounded rationality. Cambridge: MIT.
118. Russell, S., & Norvig, P. (2003). Artificial intelligence: A modern approach, 2nd ed.

Englewood Cliffs: Prentice-Hall.
119. Salvucci, D., & Taatgen, N. A. (2008). Threaded cognition: An integrated theory of concur-

rent multitasking. Psychological Review, 115, 101–130.
120. Saxe, R., Carey, S., & Kanwisher, N. (2004). Understanding other minds: Linking develop-

mental psychology and functional neuroimaging. Annual Review of Psychology, 55, 87–124.
121. Schomaker, L., Hoenkamp, E., & Mayberry, M. (1998). Towards collaborative agents for

automatic handwriting recognition. In Proceedings of the third European workshop on hand-
writing analysis and recognition. Digest, (Volume 1998/440 pp. 13/1–13/6). London: The
Institution of Electrical Engineers.

122. Schurr, N., Marecki, J., Tambe, M., & Scerri, P. (2005). Towards flexible coordination of
human-agent teams. Multiagent and Grid Systems, 1(1), 3–16.

123. Slingerland, I., Mulder, M., van der Vaart, E., & Verbrugge, R. (2009). A multi-agent systems
approach to gossip and the evolution of language. In N. Taatgen, et al. (Eds.), Proceed-
ings of the 31st annual meeting of the cognitive science society (CogSci’09) (pp. 1609–1614).
Amsterdam.

124. Southgate, V., Senju, A., & Csibra, G. (2007). Action anticipation through attribution of false
belief by 2-year-olds. Psychological Science, 18(7), 587–592.

125. Stahl, D. O., & Wilson, P. W. (1995). On players’ models of other players: Theory and
experimental evidence. Games and Economic Behavior, 10, 218–254.

126. Stalnaker, R. (1984). Inquiry. Cambridge: MIT.
127. Stenning, K., & van Lambalgen, M. (2001). Semantics as a foundation for psychology: A case

study of Wason’s selection task. Journal of Logic, Language and Information, 10, 273–317.
128. Stenning, K., & van Lambalgen, M. (2007). Logic in the study of psychatric disorders: Execu-

tive function and rule-following. Topoi, 26(1), 97–114. (Special issue on logic and psychology,
edited by J.F.A.K. van Benthem, H. Hodges, and W. Hodges).

129. Stenning, K., & van Lambalgen, M. (2008). Human reasoning and cognitive science.
Cambridge: MIT.

130. Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. Oxford:
Blackwell.

131. Stulp, F., & Verbrugge, R. (2002). A knowledge-based algorithm for the internet protocol
TCP. Bulletin of Economic Research, 54(1), 69–94.

132. Sycara, K., & Lewis, M. (2004). Integrating intelligent agents into human teams. In E. Salas, &
S. Fiore (Eds.), Team cognition: Understanding the factors that drive process and performance
(pp. 203–232). Washington, DC: American Psychological Association.

133. Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say “broke”? A model
of learning the past tense without feedback. Cognition, 86(2)(2), 123–155.



Logic and Social Cognition 679

134. Taatgen, N. A., Huss, D., & Anderson, J. R. (2006). How cognitive models can inform the
design of instructions. In D. Fum, F. del Missier, & A. Stocco (Eds.), Proceedings of the
seventh international conference on cognitive modeling (pp. 304–309). University of Trieste.

135. Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to model
complex skill acquisition. Human Factors, 45(1), 61–76.

136. Tager-Flussberg, H., & Sullivan, K. (1994). A second look at second-order belief attribution
in autism. Journal of Autism and Developmental Disorders, 24, 577–586.

137. Tomasello, M., Call, J., & Hare, B. (2003). Chimpanzees understand psychological states –
the question is which ones and to what extent. Trends in Cognitive Sciences, 7, 153–156.

138. Tooby, J., & Cosmides, L. (Eds.) (2000). Evolutionary psychology: Foundational papers.
Cambridge: MIT.

139. van Benthem, J. F. A. K. (2005). Correspondence theory. In D. M. Gabbay, & F. Guenthner
(Eds.), Handbook of philosophical logic (2nd ed., Vol. 3, pp. 325–408). Kluwer: Dordrecht.
(An earlier version appeared in volume II of the first edition of the Handbook.).

140. van Benthem, J. F. A. K. (2007). Cognition as interaction. In Proceedings symposium on
cognitive foundations of interpretation (pp. 27–38). Amsterdam: KNAW.

141. van Benthem, J. F. A. K. (2008). Logic and reasoning: Do the facts matter? Studia Logica, 88,
67–84. (Special issue on logic and the new psychologism, edited by H. Leitgeb)

142. van Benthem, J. F. A. K., Gerbrandy, J., & Pacuit, E. (2007). Merging frameworks for inter-
action: DEL and ETL. In D. Samet (Ed.), Theoretical aspects of rationality and knowledge:
Proceedings of the eleventh conference, TARK 2007 (pp. 72–81). Louvain-la-Neuve: Presses
Universitaires de Louvain.

143. van Benthem, J. F. A. K., Hodges, H., & Hodges, W. (2007). Introduction. Topoi, 26(1), 1–2.
(Special issue on logic and psychology, edited by J.F.A.K. van Benthem, H. Hodges, and W.
Hodges.).

144. van Benthem, J. F. A. K., van Eijck, J., & Kooi, B. (2006). Logics of communication and
change. Information and Computation, 204(11), 1620–1662.

145. van der Hoek, W., & Verbrugge, R. (2002). Epistemic logic: A survey. In L. A. Petrosjan,
& V. V. Mazalov (Eds.), Game theory and applications (Vol. 8, pp. 53–94). New York: Nova
Science.

146. van der Hoek, W., & Wooldridge, M. (2003). Time, knowledge and cooperation: Alternating-
time temporal epistemic logic and its applications. Studia Logica, 75(1), 125–157.

147. van der Maas, H. L. J., & Jansen, B. R. J. (2003). What response times tell of children’s
behavior on the balance scale task. Journal of Experimental Child Psychology, 85, 141–177.

148. van der Vaart, E., Hankel, A., de Boer, B., & Verheij, B. (2006). Agents adopting agri-
culture: Modeling the agricultural transition. In From animals to animats 9: Ninth inter-
national conference on simulation of adaptive behavior. LNCS (Vol. 4095, pp. 750–761).
Berlin: Springer.

149. van der Vaart, E., Hemelrijk, C., & Verbrugge, R. (2009). A cognitive model for corvids:
Learning where (not) to cache. In N. Taatgen et al. (Eds.), Proceedings of the 31st annual
meeting of the cognitive science society (CogSci’09) (pp. 2420–2425). Amsterdam.

150. van der Vaart, E., & Verbrugge, R. (2008). Agent-based models for animal cognition: A
proposal and a prototype. In International conference on autonomous agents and multi-agent
systems (AAMAS) (pp. 1145–1152). New York: ACM.

151. van der Vaart, E., Verbrugge, R., & Hemelrijk, C. (2009). Memory in Clark’s nutcrackers: A
cognitive model for corvids. In A. Howes, D. Peebles, & R. Cooper (Eds.), Proceedings of the
9th international conference on cognitive modeling. Manchester: University of Manchester.

152. van Ditmarsch, H., & French, T. (2009). Awareness and forgetting of facts and agents.
In WLIAMAS, proceedings of the 2009 IEEE/WIC/ACM international joint conferences on
web intelligence and intelligent agent technologies (WI-IAT 2009). Milan: IEEE Computer
Society.

153. van Ditmarsch, H., & Labuschagne, W. (2007). My beliefs about your beliefs: A case study
in theory of mind and epistemic logic. Synthese: Knowledge, Rationality and Action, 155,
191–209.

154. van Ditmarsch, H., van Eijck, J., & Verbrugge, R. (2009). Common knowledge and common
belief. In J. van Eijck, & R. Verbrugge (Eds.), Discourses on social software. Texts in games
and logic (Vol. 5). Amsterdam: Amsterdam University Press.



680 R. Verbrugge

155. van Ditmarsch, H. P. (2002). The description of game actions in Cluedo. In L. A. Petrosjan,
& V. V. Mazalov (Eds.), Game theory and applications (Vol. 8, pp. 1–28). New York: Nova
Science.

156. van Ditmarsch, H. P., van der Hoek, W., & Kooi, B. P. (2007). In Dynamic epistemic logic,
Synthese library series (Vol. 337). Berlin: Springer.

157. van Eijck, J., & Verbrugge, R. (Eds.) (2009). Discourses on social software. Texts in games
and logic (Vol. 5). Amsterdam: Amsterdam University Press.

158. van Lambalgen, M., & Counihan, M. (2008). Formal models for real people. Journal of Logic,
Language and Information, 17, 385–389. (Special issue on formal models for real people,
edited by M. Counihan.).

159. Van Maanen, L., & Van Rijn, H. (2007). An accumulator model of semantic interference.
Cognitive Systems Research, 8, 174–181.

160. van Rijn, H., van Someren, M., & van der Maas, H. (2003). Modeling developmental transi-
tions on the balance scale task. Cognitive Science, 27(2), 227–257.

161. van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32, 939–984.
162. Verberne, A., van Harmelen, F., & ten Teije, A. (2000). Anytime diagnostic reasoning

using approximate boolean constraint propagation. In A. G. Cohn, F. Giunchiglia, & B.
Selman (Eds.), Proceedings of the seventh international conference on principles of knowledge
representation and reasoning (pp. 323–332).

163. Verbrugge, R., & Mol, L. (2008). Learning to apply theory of mind. Journal of Logic,
Language and Information, 17, 489–511. (Special issue on formal models for real people,
edited by M. Counihan.).

164. von Wright, G. H. (1951). An essay in modal logic. Amsterdam: North Holland.
165. Wason, P. C. (1966). Reasoning. In B. M. Foss (Ed.), New Horizons in Psychology I,

(pp. 135–151). Harmondsworth: Penguin.
166. Wellman, H. (1991). From desires to beliefs: Acquisition of a theory of mind. In A. Whiten

(Ed.), Natural theories of mind (pp. 19–38). Oxford: Basil Blackwell.
167. West, R. L., Lebiere, C., & Bothell, D. J. (2006). Cognitive architectures, game playing,

and human evolution. In R. Sun (Ed.), Cognition and multi-agent interaction: From cognitive
modeling to social simulation (pp. 103–123). New York: Cambridge University Press.

168. Whiten, A., & Byrne, R. W. (1997). Machiavellian intelligence II. Cambridge: Cambridge
University Press.

169. Williamson, T. (2000). Knowledge and its limits. Oxford: Oxford University Press.
170. Wimmer, H., & Perner, J. (1983). Beliefs about beliefs: Representation and constraining

function of wrong beliefs in young children’s understanding of deception. Cognition, 13,
103–128.

171. Wooldridge, M. J. (2002). An introduction to multiagent systems. Chichester: Wiley.


	Logic and Social Cognition
	Abstract
	Introduction
	Intelligent Interaction and Higher-Order Social Cognition
	Three Levels of Analysis

	General Background: Artificial Intelligence and Multi-Agent Systems
	From the Logical Point of View: Reasoning About Knowledge
	Logic and Life: Children as Epistemic Logicians in the Science Museum

	Problems with Epistemic Logic as a Model for Human Social Cognition
	Natural Intelligence in Interaction: Theory of Mind
	Adults and Higher-Order Reasoning in Games
	Experiments: Understanding Theory of Mind Versus Applying It

	Problems with Accounts of Natural Social Cognition
	Computational Cognitive Models Such as ACT-R: State of the Art
	Cognitive Models of Reasoning About Mental States

	Logical Models: State of the Art
	Logical Approaches to First-Order Social Cognition

	Agent-Based Models: State of the Art
	Agent-Based Models as a Laboratory for Theories of Evolution

	Future Research
	Computational Cognitive Models for Higher-Order Social Cognition
	How Logical can Higher-Order Social Cognition be?
	Adaptivity of Higher-Order Social Cognition in Context

	Closing Remarks
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


