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Abstract

Somehow-possibly explanationshaveepistemicvaluebecause theyareepistem-
ically possible; we cannot rule out their truth. One paradoxical implication of that
proposal is that epistemic value may be obtained frommere ignorance. For the less
we know, then the more is epistemically possible. This chapter examines a particu-
lar class of problematic epistemically possible how-possibly explanations, viz. epis-
temically opaque how-possibly explanations. Those are how-possibly explanations
justified by an epistemically opaque process. How could epistemically opaque how-
possibly explanationshave epistemic value if they result fromaprocess aboutwhich
we lack knowledge or understanding? This chapter proposes three different strate-
gies to salvage epistemic value from epistemic opacity, namely salvaging value from
1) functional transparency, 2) modal operator interpretation, and 3) pursuitworthi-
ness. It illustrates using cases from deep neural networkmodeling.
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1 Introduction

What epistemic role highly idealizedmodelsmayplayhas recently received a lot of atten-
tion. One prevalent proposal that has emerged is that thesemodels provide how-possibly
explanations (HPEs) (e.g. Bokulich 2014; Forber 2010; Grüne-Yanoff 2013; Reutlinger,
Hangleiter, and Hartmann 2018; Rohwer and Rice 2013; Verreault-Julien 2019; Ylikoski
and Aydinonat 2014). One alleged type of epistemically valuable HPEs are those con-
sidered as epistemically possible (Brainard 2020; Grüne-Yanoff 2013; Grüne-Yanoff and
Verreault-Julien 2021; Sjölin Wirling and Grüne-Yanoff 2021; Verreault-Julien 2019). In
a nutshell, epistemically possible HPEs are possible explanations that are not ruled out
by our knowledge. Although potentially fruitful, this approach to epistemic value also
has a paradoxical implication; the less we know, the more epistemically possible HPEs
we have, which implies that ignorance itself would be a driver of epistemic value.

In this paper, I examine a particular class of puzzling epistemically possible HPEs
that I call epistemically opaque HPEs (EO-HPEs). EO-HPEs are HPEs obtained by an
epistemically opaque process such as computational simulation or deep neural network
(DNN) models. In short, a process is epistemically opaque when an agent lacks knowl-
edge or understanding of why the process yields the results that it does (e.g. Beisbart
2021; Durán and Formanek 2018; Humphreys 2009). The notion of EO-HPEs aims to
capture a particular reason why we lack justification for the HPE, viz. the very process
used to establish it. Contrary to HPEs acquired via a transparent process (e.g. an analyt-
ical model), EO-HPEs seem to face different justificatory and validation challenges. The
problem EO-HPEs raise is the following: How could EO-HPEs have epistemic value if
they result from a process about which we lack knowledge or understanding?

I argue that, in practice, the process’s opacity is not always an obstacle to EO-HPEs’
epistemic value. More specifically, I present three ways EO-HPEs may have epistemic
value despite their opacity. First, some EO-HPEs result from a process which is func-
tionally transparent: we have some understanding of how the algorithmworks. Second,
someEO-HPEs are only opaque according to some interpretations of themodal operator:
again, this implies having some knowledge of the process’s capacities. Third, some EO-
HPEs are pursuitworthy even if they result from an opaque process; theymay be promis-
ing despite a lack of justification. I illustrate using cases fromDNNmodels.

This chapter makes two chief contributions. First, it elaborates on a recent and
promising account of the value of HPEs as epistemically possible explanations. In
particular, it identifies an obstacle to that account, namely the epistemic opacity of
some modeling processes. Second, it present different ways to salvage the epistemic
value of these models despite their opacity.
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2 The Epistemic Value of HPEs

Highly idealized models often seem or actually fall short of faithfully representing the
world. As a result, what sort of epistemic contribution they may make and why it is
valuable is a source of contention. One proposal that has gained a lot of ground recently
is that these models provide HPEs (e.g. Bokulich 2014; Forber 2010; Grüne-Yanoff 2013;
Reutlinger, Hangleiter, and Hartmann 2018; Rohwer and Rice 2013; Verreault-Julien
2019; Ylikoski and Aydinonat 2014). There are various accounts of HPEs (e.g. Brainard
2020; Bokulich 2014; Brandon 1990; Dray 1968; Forber 2010; Hempel 1965; Verreault-
Julien 2019), but arguably all of them emphasize that HPEs have modal features that
differentiates them from how-actually explanations (HAEs). For my purposes, I will
follow Verreault-Julien’s (2019) account. According to him, explanations are sets of
propositions (see also Strevens 2013). An explanation contains two subsets of propo-
sitions; the explanans, the propositions that do the explaining, and the explanandum,
the propositions that describe what is explained. Explanations have to satisfy internal
and external conditions of adequacy (see also Strevens 2013). The former refer to the
form or structure of the explanation, the latter to the ontological match. For instance, a
deductive-nomological (DN) explanation (Hempel and Oppenheim 1948) has to have
the form of a deductive argument (internal conditions) andmust have a true explanans
and explanandum (external conditions).

In Verreault-Julien’s terminology, HPEs have the general form ‘⋄(p because q)’ where
p is the explanandum, q the explanans (e.g. generalization plus initial and auxiliary con-
ditions), and⋄denotes amodal operatormeaning ‘it is possible that’ according toagiven
an interpretation of the operator. HAEs are simply propositions of the form ‘p because
q’. The key difference lies in the introduction of a modal operator ⋄ in front of the ex-
planation. In a nutshell, whereas HAEs are actual explanations, HPEs are possible expla-
nations. The modal operator is in front of the whole ‘p because q’ to reflect that either
the explanans, the explanandum, or the explanatory relation can be possible. For in-
stance, sometimes scientist use actual causes and initial conditions to derive a possible
explanandum, other times they start with an actual explanandum and try to generate it
with possible initial conditions, etc.1

One crucial feature of that characterization of HPEs is that they have a truth value:
‘It is possible that (p because q)’ can be true or false.2 Another key feature is that the
modal operator can be interpreted in differentways. For instance, an explanation can be
logically, mathematically, nomologically, causally, etc. possible. To assess whether an
HPE is true or false, we thus need to know the interpretation of the modal operator.

One important interpretation of the operator is in terms of epistemic possibility (see
Brainard 2020; Grüne-Yanoff 2013; Grüne-Yanoff and Verreault-Julien 2021; Sjölin

1See Grüne-Yanoff (2013) for various concrete examples.
2This is an important contrast with accounts that view HPEs as not satisfying any external conditions (e.g.

Hempel 1965).
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Wirling and Grüne-Yanoff 2021; Verreault-Julien 2019). Epistemic possibility tells us
ways things might be relative to a given body of knowledge. In a nutshell, an HPE is
epistemically possible iff our knowledge doesn’t rule it out.3 Epistemically possible
HPEs are often those scientists submitwhen considering the set of possible explanations
for a phenomenon. For instance, there might be a multitude of epistemically possible
explanations for ‘Why p?’. pmight be because q, r, or another explanans. These possible
explanations can be incompatible with one another, but since our knowledge cannot
rule them out, they are all epistemically possible. To eliminate some epistemically
possible explanations, we need additional evidence to update our knowledge and be
able to rule out some of the possible explanations.4

To give a more concrete example, consider the phenomenon of people developing
unusual blood clots following an injection of the COVID-19 Vaxzevria (AstraZeneca) vac-
cine in winter and spring 2021. Initially, the scientific community considered unlikely
that the vaccinemight be responsible for these clotting events. However, they could not
rule it out.

But the finding leaves researchers wrestling with a medical mystery: why
would a vaccine trigger such an unusual condition? “Of course, there are
hypotheses: maybe it’s somethingwith the vector, maybe it’s an additive in
the vaccine,maybe it’s something in theproductionprocess… Idon’t know,”
says Sabine Eichinger, a haematologist at the Medical University of Vienna.
“It could be any of these things.” (Ledford 2021, 334)

Further data collection and analysis supported the hypothesis that the vaccine was
the cause (e.g. Whiteley et al. 2022). Modeling and experimental evidence, in turn, iden-
tified the adenovirus vector as the likely suspect (Baker et al. 2021), thus contributing to
rule out other causes, such as the production process or the additives.

In winter and spring 2021, explaining the clotting by citing the vaccine was an epis-
temically possible HPE. An inasmuch as theHPEwas true, it was valuable. However, this
account of the epistemic value of HPEs has paradoxical features. Epistemic possibility is
constrained by a body of knowledge. Thus, the less we know, the less epistemic possi-
bilities are constrained. And the less epistemic possibilities are constrained, the more
true epistemically possible HPEs we will have. This seems to be an infelicitous result.
How could epistemic value derive from mere ignorance? Consider the hematologist in
the quote above listing possible explanations and saying “I don’t know”. Her knowledge
ruled out some explanations, but not others. Now, suppose a laypersonwouldhave been
asked about possible explanations for the clotting. Presumably, that person’s knowl-
edgewould have ruled out even less possible explanations. Shouldwe conclude that the

3The semantics of epistemicmodals is fraughtwith difficulties, which are outside the scope of this chapter.
See Egan andWeatherson (2011) for an overview of key issues.

4A proponent of inference to the best explanationmay also add that theoretical virtues can provide a basis
for elimination (see e.g. Lipton 2004).
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layperson’s candidate explanations have epistemic value, especially compared to those
of the expert scientist? Wemaywant to resist that conclusion. Butwhat if ignorancewas
built in the process of obtaining some epistemically possible HPEs?

3 Epistemically Opaque HPEs

In this section, I want to draw attention to the fact that the process for justifying HPEs
is sometimes epistemically opaque. Epistemic opacity refers to the general idea that we
do not always know or understand all the epistemically relevant features of a process
(e.g. Beisbart 2021; Creel 2020; Durán and Formanek 2018; Humphreys 2009). What are
these epistemically relevant elements? Various proposals have beenmade. Creel (2020)
distinguishes between functional, structural, and run transparency, transparency here
understood as the reverse of opacity.5 Durán and Formanek (2018) identify the relevant
elementswith the justificatory steps; a process is opaque for anagent if shedoesnothave
access and cannot survey all the steps. Zednik (2021) argues that what these relevant el-
ements are depends on the interests of particular stakeholders. Beisbart (2021, 11644)
considers that the application of amethod is opaque if it has a “disposition to resist epis-
temic access”.

That being said, most accounts of epistemic opacity agree on the following two fea-
tures. First, epistemic opacity can be agent-relative or process-relative. Agent-relative
opacity depends on the cognitive capacities of agents or epistemic communities. An
otherwise transparentmodelmay be epistemically opaque for an agentwho lacks the re-
quired skills or knowledge to grasp the epistemically relevant features. Process-relative
opacity, also sometimes called ‘essential opacity’ (Alvarado 2021; Humphreys 2009),
depends on the nature of the process itself. To make an analogy, one can fail to see
through a window because of one’s myopia (agent-relative) or because a film is applied
to it (process-relative), making it opaque. Similarly, DNN models are often considered
to have features that make them opaque, irrespective of the agents involved. In the rest
of this chapter, I will only be concerned with process-relative opacity.

Second, process-relative opacity affects the justification we have for a process’s re-
sults. One reason for this is because we cannot as easily assess the process’s reliabil-
ity. For instance, consider the now classic case of deep learning classifier for images of
wolves (Ribeiro, Singh, and Guestrin 2016). Given an image as an input, the model out-
puts whether it contains a wolf or a husky. The model is accurate in the test data, but
unbeknownst to the user, the model picks out wolves from the presence of snow in the
background. In that sense, theprocess is not reliable because its classificationdoesn’t de-
pend on the features that wolves possess. It would therefore likely fail when presented
with a picture of a wolf in a grassy environment. The field of explainable artificial intel-

5I will discuss Creel’s account in more detail in section 4.1.
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ligence (XAI) aims to make some features of deep learning models more transparent in
order to help assess a process’s reliability.

Two common examples of epistemically opaque processes are computational sim-
ulations and deep learning models. They are often considered to be ‘black-boxes’. Yet,
they are sometimes used for explanatory purposes. I call HPEs justified by an epistemi-
cally opaque process epistemically opaque HPEs (EO-HPEs).6 EO-HPEs are prima facie
problematic because we lack justification for the process that provides evidence for the
HPEs. As we have seen, epistemically possible HPEs need to be suitably constrained if
they are to have value. Otherwise, ignorance would increase value, which is an unde-
sirable implication. However, it seems this is precisely what epistemically opaque pro-
cesses do: they generate results via a process aboutwhichwe lack knowledge. Therefore,
our knowledge cannot suitably rule out epistemic possibilities and thus run the risk of
overgenerating HPEs. For instance, assume we want to explain phenomenon p. We can
simulate how different aspects of the phenomenon interact with each other. If we can
generate the phenomenon’s features, wemay be tempted to infer that we have properly
identified the phenomenon’s explanans. However, because of the simulation’s opacity,
we do not (always) know if the results are due to the explanans or some other aspects of
the process. For instance, a computational artefact may have caused the results. Or, we
might just be unable to identify the explanans within the simulation process and thus
lack an understanding of why we obtain particular results. How possibly can EO-HPEs
have epistemic value if they are justified by an epistemically opaque process?

4 Salvaging Epistemic Value

In this section, I argue that despite the opacity of the process, we may have reasons to
attribute value to the resulting EO-HPEs. I examine three cases from DNN models and
propose three different strategies for salvaging epistemic value from the resulting EO-
HPEs. They consist in salvaging value from 1) functional transparency, 2) modal opera-
tor interpretation, and 3) pursuitworthiness. These strategies are notmutually exclusive
in two senses. First, two strategies may be available for the same EO-HPE, e.g. we may
want to consider the EO-HPE functionally transparent and pursuitworthy. Second, the
strategies may not always be logically independent. For instance, one might consider
functional transparency necessary for selecting which modal operator should apply.7

Nonetheless, I believe they constitute sufficiently different approaches to assessing the
epistemic value of EO-HPEs.

6I borrow the terminology from Šešelja (2022), who uses it in a different way.
7Räz and Beisbart (2022) argue that understanding the model is necessary for explanatory understanding

of phenomena. Here I remain agnostic regarding that claim.
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4.1 Functional Transparency

There are many scientific questions related to animal coloration (Cuthill et al. 2017).
What are the best colors to avoid detection in particular environments? Do the colors
depend on the observer’s visual system? Why, for instance, is tiger’s fur orange? From
an evolutionary perspective, wemightwant to knowwhy species have evolved the color
processing they have or why they have the colors that they do.

Tomake progress on these questions, Fennell et al. (2019) put a DNN towork to help
identify which colors optimize or minimize detectability. This is crucial to understand
the fitness effects of some phenotypes which, in turn, may explain why they were se-
lected. In theory, it is possible to test empirically every single possible color on human
subjects. In practice, it is impractical because color spaces are very large. For instance,
testing the whole RGB gamut of 16,777,216 different colors would be a costly and time-
consuming endeavor. Fennell et al. thus proposed to use a neural network to predict de-
tection time on empirically untested colors. First, the researchers collected training data
by carrying out an experiment with human subjects. They observed how much time it
took humans to detect a randomly colored target in two simulated environments, a tem-
perate forest and a semi-arid desert. They also processed images in order to simulate
detection time for dichromats, i.e. species that perceive color via only two channels. Hu-
mans are trichromats and perceive colors through three channels, butmost non-human
mammals are dichromats and are effectively red-green color blind; red appears green to
them. Then, the researchers trained a DNN to interpolate between experimented inputs
and predict detection time. Suppose we have experimental data on magenta and cyan
objects, but not on blue ones. The neural network interpolates between magenta and
cyan to create the blue color and then estimate a detection time. By doing this for every
shade, the researchers obtained predicted detection times for thewhole RGB color space.
As a result, the DNN allowed to identify the best and worst colors for detection.

Later in the article, Fennell et al. suggest that the resultsmay help explainwhy some
predators, e.g. tigers, are not green despite the optimal concealment it would provide.
Consider the following question: ‘Why is tiger’s fur orange and not green?’ The HPE
they submit can be formulated as follows: ‘It is epistemically possible that tiger’s orange
furwas selected for because it provides excellent concealment fromdichromats’. Or, put
slightly differently, there is little evolutionary pressure for tigers to evolve a green coat
insofar as orange appears green for their preys.

This HPE relies on the hypothesis that the shade of green dichromats see in place of
orange is actually hard to detect for them. Although seemingly obvious, that dichromacy
enhances detection ability is also a serious hypothesis (e.g. Melin et al. 2007). More
importantly, it relies on the prediction that shades close to the “dark olive” optimumare
actually difficult to detect for dichromats in a temperate forest environment. However,
if we do not understand why the model made the predictions that it did, how can we
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be sure it identified actual optima and minima? Identifying actual optima and minimal
doesn’t imply that we would have an HAE because other factors may be responsible for
coloration. But it makes the HPE amore serious candidate.

Here, it is useful to differentiate ways a process can be opaque. Creel (2020) distin-
guishes between functional, structural, and run transparency. Functional transparency
consists in knowing the functioning of the algorithm. By ‘functioning’, Creel doesn’t
mean knowing how the computational system instantiates the algorithm, but simply
knowing what algorithm it instantiates. Knowing how the code produces the algorithm
is structural transparency. Run transparency consists in knowing how a computational
system was run in a particular instance, including the hardware implementation and
how the program interacts with data. According to Creel, these different types of trans-
parency are logically independent. One may not know how a programwas run in a par-
ticular occasion (run transparency), yet know the algorithm’s functioning (functional
transparency).8

This taxonomy suggests one first line of defense for the value of EO-HPEs. We may
say that an EO-HPE results from a process that lacks structural or run transparency, but
which is functionally transparent. In the context of explanation, functional transparency
is important since it allows us to identify the difference-makers a model captures (Räz
andBeisbart 2022). And if an algorithm is functionally transparent, the process’s opacity
is less of a problem thanwhether themodel provides a valid representation of the target
(Sullivan 2022).

One important aimof thefieldof explainable artificial intelligence (XAI) is to increase
transparency in one or the other of these senses. XAI methods (e.g. Lundberg and Lee
2017; Mordvintsev, Olah, and Tyka 2015; Ribeiro, Singh, and Guestrin 2016) can increase
functional transparency by telling us why the algorithm made the decision it did on a
particular ormultiple inputs.9 In turn, XAImethods can help uncover HPEs (Zednik and
Boelsen 2022). Whether somemethods will provide the required functional knowledge
of the algorithm ultimately depends on the context (Zednik 2021). Some systems may
be more difficult to interpret than others. In other cases, the amount of information we
needmight beminimal.

Do we have functional transparency in the case of the DNN for color detection? The
algorithm is to some extent functionally transparent for two reasons. First, as Fennell
et al. note, the problem the DNN needs to solve in that context is relatively low dimen-
sional as only the color of the spheres changes between images of a particular environ-
ment. High dimensionalitymakes systems less transparent (Domingos 2012), but this is
not the case here.10 Second, Fennell et al. did carry out a limited validation experiment

8In a slightly different context, Sullivan (2022) also argues that “implementation black-boxes” may not
prevent understanding the higher-level functioning of an algorithm.

9To what extent XAI methods can make a process functionally transparent is open to debate (e.g. Babic et
al. 2021; Rudin 2019). My goal is not to settle it. Instead,my aim is to point out that this is an available strategy.

10It should be noted that the researchers believe their approach could also be useful for studying color de-
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in which they tested with human subjects detection times of twenty-five ‘easy’, ‘inter-
mediate’, and ‘hard’ colors. They found the predictions consistent with the experimen-
tal results for both the dichromat and trichromat conditions. The validation experiment
plays a role akin to that of explainability techniques, viz. it helpedmake transparent that
the DNN did pick out actual features that increase or decrease detection time.11

Despite the process’s opacity in some respects, we do have knowledge of some of
its epistemically relevant parts, viz. the functioning of the algorithm. In turn, this sort of
transparency improves the justificationwehave in the process and indicates that the EO-
HPEs we obtain is not a mere product of ignorance. This strategymight not be available
for all DNNs. Despite our best XAI efforts, the model might remain functionally opaque.
In this case, it may be better to justify the value of the EO-HPE differently, for instance
by using the other lines of defense I propose below.

4.2 Modal Operator Interpretation

How the brain works remains for all practical purposes amystery. It has been suggested
that artificial neural networks (ANNs), especially deep convolutional neural networks
(DCNNs), may provide candidate explanations of how the brain computes inputs into
outputs (see e.g. Hassabis et al. 2017; Kriegeskorte 2015; Yamins and DiCarlo 2016).
DCNNmodels seem to replicate, among others, how the brain processes visual sensory
inputs using a hierarchy of representations that lead to object recognition. In particular,
they are relatively good at predicting neurological data. Empirical results tend to show
that artificial computer vision systems with an architecture that resembles that of bio-
logical organisms outperform those that do not. According to Kriegeskorte (2015, 431),
“[t]his observation affirms the intuition that computer vision can learn from biological
vision. Conversely, biological vision science can look to engineering for candidate com-
putational theories”. In short, the idea is that if models based on the architecture of the
brain perform aswell as better than biological systems, then these samemodelsmay ex-
plain how the biological systemswork. However, the opacity of DCNNs is an obstacle to
their explanatoriness. Indeed, sincewe do not understand how exactly themodels build
the representations and transform them, how could they provide an (etiological) expla-
nation of brain sensory information processing? Insofar as we do not understand all the
epistemically relevant features of these DCNSS, they provide EO-HPEs of neurological
phenomena.

EO-HPEs are justified by an epistemically opaque process. As the previous section
showed, having an EO-HPE does not imply that we are ignorant of all the relevant epis-
temic aspects. Sometimes, a DNNmight be functionally transparent. Here, I would like
to apply a slightly similar strategy and show that there are valuable things we know de-

tection in higher dimensionality spaces (see also Fennell et al. 2021; Talas et al. 2020).
11Here, I ambracketing the issue ofwhether testing onhuman subjects is a goodproxy for other non-human

species.
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spite being in the presence of an EO-HPE.
In section 2, we have seen that HPEs have the general form ‘⋄(p because q)’. In this

formulation, the modal operator ⋄ can receive different interpretations. As a result, we
may reach different conclusions of epistemic possibility depending on which interpre-
tation we adopt. For instance, one HPE may be only logically possible whereas another
may be nomologically possible. In the case of DNNs, even though we lack justification
for the process’s results, this lack of justification might only concern some interpreta-
tions of the modal operator. In particular, I want to suggest that we may be justified in
themathematical results, but not, e.g., the causal ones.

Although we lack a complete and full understanding of the capacities of DNNs (see
e.g. Zhang et al. 2021),wedohave someunderstandingof theirmathematical properties.
In particular, we know that they are so-called universal function approximators (see e.g.
Cybenko 1989; Goodfellow, Bengio, and Courville 2016, sec. 6.4.1; Hornik, Stinchcombe,
andWhite 1989; Zhou 2020). What do universal approximation theorems imply for the
epistemic value of derived EO-HPEs? Universal approximator theorems are proofs that
any network with at least one hidden layer and a sufficiently large number of hidden
units can approximate any function between inputs and output. This mathematical re-
sult is important because “it takes off the table the question of whether any particular
function is computable using a neural network. The answer to that question is always
‘yes’. So the right question to ask is not whether any particular function is computable,
but rather what’s a goodway to compute the function” (Nielsen 2015, ch. 4, emphasis in
original). Assuming that biological neural activity can be represented by a function, uni-
versal approximation theorems prove that DNNs can approximate it. In otherwords, if a
problem can be expressed by amathematical function, then a DNN can solve it.

However, as the quote above alludes to, knowing that the network represents a logi-
cally possible function still leaves several questions unanswered. First, it does not tell us
whether a given DNNwill be able to learn the function. Second, we may not even know
what function the DNN instantiates.12 Third and relatedly, if we do not knowwhat func-
tion theDNN instantiates, thenwe can hardly assesswhether it is a good approximation
of the real function. Therefore,wedonot knowwhether this is actually the function com-
puted by the brain nor how the brain actually computes the function. But, crucially, we
know it ismathematically possible for DNNs to represent and approximate this function.

Although sciences are oftenmore interested inHPEs that are causally possible, know-
ing that a problem has a possible mathematical solution is a valuable, albeit first step,
in explaining a phenomenon. All that is epistemically causally possible is also logically
possible. But not all that is logically possible is also causally possible. Determining the
logical possibility of an explanation does some minimal headway into its causal possi-

12Perhaps onewayof understanding this is bydecomposingCreel’s (2020) functional transparency inmulti-
ple components. Here,wemaywant to say thatweknowhowthe algorithmworks at a veryhighmathematical
level, but not at a lower representational or semantic one.
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bility. For instance, in the context of economics, Verreault-Julien (2017) argues that the
mathematical proof of the existence of a general equilibrium contributed to providing a
mathematical HPE. So sometimes our ignorance will concern the causally possible, and
not the logically possible, as is with ANNs of neurological computation.

4.3 Pursuitworthiness

One important aspect of the ‘protein folding problem’ (e.g. Dill and MacCallum 2012)
concerns the ability to predict the three-dimensional shape of proteins—their structure
— from its amino acid sequence. AlphaFold, a neural-network developed by DeepMind
(Jumper et al. 2021), made a breakthrough contribution to solving that problem. It sur-
passed by a wide margin other models in the 14th Critical Assessment of protein Struc-
ture Prediction (CASP14), a biennial competition pitting different prediction methods
against each other. AlphaFold is trained on the Protein Data Bank (PDB), a database of
experimentally verified protein structures. The structure of proteins can be determined
experimentally using, for instance, X-ray crystallography or cryo-electron microscopy.
However, it is a difficult and expensive process. Since we know the amino sequence of
manymoreproteins thanwedoof their structure, it isuseful topredict structures fromse-
quences. Theoretically, since thebiological functionof aproteindependson its structure,
this holds the promise of improving our understanding of protein function. Practically,
knowing protein structure may, among others, significantly speed up the development
of new drugs.

For all its success at predicting, we do not have a full understanding of how or why
AlphaFold works so well.

Last, andperhaps themore immediate problem, AlphaFold2models cannot
be explained or externally validated. From our human perspective, it’s es-
sentially ‘alien’ technology that is currently beyond our understanding, so
‘asking’ why it predicted something in a particular conformation is clearly
not feasible. (Jones and Thornton 2022, 18)

The model architecture is constrained by some scientific knowledge (Jumper et al.
2021), but the associations it establishes between known structures and sequences is
opaque to users. It states the confidence it has in its predictions, which provides some
informationwith respect to their potential reliability. Yet, albeit useful, this information
doesn’t make the model transparent in any of Creel’s (2020) senses. We are thus in the
presence of a model that is relatively good at predicting the structure of proteins, but of
which we are ignorant of how it arrives at those predictions.

Although it is still early to assess the epistemic contribution of AlphaFold and simi-
lar models (e.g. Baek et al. 2021; Yang et al. 2020), to say that the scientific community
was enthusiastic about the potential uses of themodelwould be an understatement (e.g.
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Callaway 2022; Thornton, Laskowski, and Borkakoti 2021). To illustrate, consider the
case of the SARS-CoV-2 virus responsible for the COVID-19 pandemic. The virus’s pro-
teins determine how it interacts with other biological systems, like humans. The func-
tion of a protein depends on its structure. Thus, knowing the structure can contribute to
answering explanation-seeking questions such as ‘Why protein p has function f ?’, ‘Why
are some variants more infective or virulent than others?’, or ‘Why is drug d effective
against COVID-19?’. Unfortunately, we do not have experimentally validated structural
models of all proteins, which limits our capacity to answer such questions (see e.g. Yan
et al. 2022).

In March 2020, DeepMind (2020) released structural models for the SARS-CoV-2
membraneprotein, Nsp2, Nsp4,Nsp6, and the Papain-like proteinase.13 These structural
models have then served as the basis of possible explanations of phenomena related to
the virus. One notable example is due to Sadek, Zaha, and Ahmed (2021), who investi-
gated the higher infectivity of the Omicron variant using AlphaFold andwithout relying
on further experimental results. SARS-CoV-2 enters the host via the so-called spike pro-
tein. There are experimentally validated structures of the spike protein. However, how
the many mutations translated into structure changes was unknown. Sadek et al. used
AlphaFold to predict how these mutations would impact the structure. They concluded
the following.

Our study suggests that the higher infectivity of theOmicron variant can be
explained in part by on the significantmutations in the RBD and the postfu-
sion enhancement of the FP. Importantly, these results require further val-
idation by X-ray crystallography and/or cryo-EM of the Omicron variant S-
protein. (Sadek, Zaha, and Ahmed 2021, 5)

Another study relied on themodel of proteinNsp6, which is involved in the infection
process. One way it does it is by interacting with sigma receptors, which themselves
are linked to the endoplasmic reticulum stress response. It was suggested that drugs
that target the sigma receptors might reduce the reproduction of the virus. Two drugs,
haloperidol and dextromethorphan, target the sigma receptors. Researchers remarked
that haloperidol seemed to reduce viral production, while dextromethorphan increased
it (Gordon et al. 2020). However, therewas no explanation for this difference. Pandey et
al. (2020) used AlphaFold’s Nsp6 structural model to simulate how it interacts with the
drugs. They concluded Nsp6 binds differently with the drugs, which may explain their
differential effect on viral reproduction.

Other researchers (Gupta et al. 2021) used AlphaFold’s predicted structure for Nsp2
to guide and validate their experimental cryo-electron microscopy data. The result was
a complete structure of the Nsp2 protein. Analyzes of that structure suggested various

13They released updated versions in April and August 2020.
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possible explanations involving the interactionbetween thehost andNsp2 forwhy some
variants of the virus were more virulent.

Although epistemically opaque, AlphaFold is used to generate EO-HPEs. One reason
for this, I submit, is because AlphaFold’s results/models are pursuitworthy.14 A scientific
hypothesis or theory deserving attention is often said to be fruitful or pursuitworthy.15

The idea of pursuitworthiness allows to demarcate between the hypotheses that should
be pursued from those that should not. That HPEs should be fruitful or pursuitworthy is
not a novel idea.16 Notably, Resnik (1991, 142) argues that “a how-possibly explanation is
better than a pseudo-explanation, since it has other important explanatory virtues, such
as simplicity, testability, precision, fruitfulness, and the like”.

Of course, what exactly pursuitworthiness entails is contentious (e.g. Šešelja and
Straßer 2014; Shaw2022) and I do not aim to settle this here. Formypurposes, it suffices
to note that pursuitworthiness becomes relevant whenwe lack sufficient epistemic sup-
port to otherwise discriminate between hypotheses. Indeed, if we knew that a givenHPE
was epistemically superior, we could just cease considering the other possibilities. But
EO-HPEs, by virtue of being epistemically possible, are equally epistemically justified;
they are all consistent with our knowledge.

Despite AlphaFold’s opacity, as the immense interest surrounding it testifies, the sci-
entific community clearly considers its results to be epistemically significant. Moreover,
scientists would not engage in costly and time-consuming experiments if they did not
believe the predicted models were useless. AlphaFold opens up new areas of investiga-
tions and suggests possibilities researchers had not and could not have contemplated
before. In short, its results are pursuitworthy. Of course, this does not mean that all of
its results are equally valuable. AlphaFold seems to fare better in some areas than others,
although its predicting ability is also surprising in others. But some of the EO-HPEs we
obtain with AlphaFold’s assistance manifestly deserve our attention.

5 Conclusion

ManyHPEs have epistemic value because they are epistemically possible, viz. we cannot
rule out their truth. Epistemically possible HPEs play a central role in scientific progress
and reasoning since they are often the precursors to how-actually explanations. When
scientists want to explain a phenomenon, they submit a list of explanations consistent
with what they know and then try to rule them out.

Although attractive, this picture of the value of HPEs also has an undesirable feature;
more ignorance leads to more epistemically possible HPEs. Surely those HPEs cannot
be as valuable, if they are at all valuable? In this chapter, I have examined a class of po-

14To be clear, I am not claiming this is the only reason or perhaps even the best one.
15See Kuhn (1977) and Laudan (1977) for early and influential accounts.
16See, e.g., Hempel (1942) on ‘explanation sketches’.
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tentially problematic HPEs, namely HPEs that originate from an epistemically opaque
process. Looking at different cases of suchHPEs stemming fromDNNmodels, I have pro-
posed three different strategies to salvage value in the face of opacity, namely salvaging
value from 1) functional transparency, 2) modal operator interpretation, and 3) pursuit-
worthiness. All these strategies provide a rationale for attributing value to the HPE even
though some ignorance is involved in howwe obtain them.

Interestingly, not all strategies have an equally obvious connection to truth. Sal-
vaging value from functional transparency or the modal operator interpretation have
one; opacity is not amajor obstacle becausewe do have some knowledge of epistemically
relevant parts. However, salvaging value from pursuitworthiness has a more elusive re-
lationship with truth. Perhaps this makes this strategy worthy of future attention.
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