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Abstract
The thesis of Weak Unrestricted Composition says that every pair of objects has
a fusion. This thesis has been argued by Contessa (Analysis 72(3):455–457, 2012) and
Smith (Erkenntnis 84(1):41–55, 2019) to be compatiblewith theworld being junky and
hence to evade an argument against the necessity of Strong Unrestricted Compo-
sition proposed by Bohn (Analysis 69(1):27–31, 2009a, Philos Q 59(235):193–201,
2009b). However, neither Weak Unrestricted Composition alone nor the dif-
ferent variants of it that have been proposed in the literature can provide us with a
satisfying answer to the special composition question, or so we will argue. We will
then go on to explore an alternative family of purely mereological rules in the vicinity
of Weak Unrestricted Composition, Cardinal Composition: A plurality of
pairwise non-overlapping objects composes an object iff the objects in the plurality
are of cardinality smaller than κ . As we will show, all the instances for infinite κs
determine fusion and are compatible with junk, and every instance for a κ > ℵ0 is
furthermore compatible with gunk and dense chains of parthood.

1 Rules of Composition

When does a plurality of objects compose an object? Most philosophers believe that
one can answer this special composition question by pointing to certain rules of com-
position – rules that provide necessary and jointly sufficient conditions for when some
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objects compose an object, a fusion of them.1 A prominent candidate-answer to the
special composition question consists in the rule of Strong Unrestricted Com-
position that says that every plurality of objects has a fusion. However, it has been
shown in the recent literature (Bohn 2009a, b; Cotnoir 2014) that this candidate-answer
has the feature that it is incompatible with the world being junky, i.e. being such that
every object is a proper part. This result has ignited a discussion about weaker rules
in the vicinity that are compatible with the world being junky. The aim of this paper
is to contribute to this debate by arguing against extant proposals in the literature and
exploring a novel family of purely mereological answers to the special composition
question. As we will argue, many members of this family are both philosophically
satisfying and compatible with gunky objects, the world being junky and dense chains
of parthood. Before turning to the topics of gunk, junk and dense chains of parthood
below, we will now first clarify what it is for an answer to the special composition
question to be purely mereological and what we take it for such an answer to be
philosophically satisfying.

A purely mereological answer to the special composition question does not take
recourse to anything but mereological structure. Everything a purely mereological
answer is sensitive to when it comes to determining whether some of them compose
a further object are the relations of parthood the objects in a scenario stand in. Below,
we will introduce the notion of a mereological model that provides one with a set of
objects and a binary relation of parthood defined on the elements of this set. Purely
mereological answers are only sensitive to what is represented in such models. Surely,
some philosophers believe that the rules of composition are sensitive to more than
just their mereological structure. For example, van Inwagen (1990) believes that some
objects compose a further object only if the object they compose is a living organism,
and Carmichael (2015) holds that whether some objects compose a further object
often depends on whether they partake in an event of a special sort. Nevertheless, it
is a worthwhile task to investigate whether there are plausible purely mereological
candidate-rules available to the friend of junky worlds.

We take it that a philosophically satisfying answer to the special composition ques-
tion is one that is neither trivial nor arbitrary, and that, moreover, determines whether
some objects have a fusion in a sense to be specified below.

FollowingMarkosian (1998a), we define a trivial answer as one that is an instance of
the schema “The xx compose an object iff φ(xx)”, where “ φ(xx)” is synonymous to
“there is an object composed of the xx”.2 Concerning arbitrariness, Ted Sider (2001)
has argued that a rule of composition is arbitrary if there is “a pair of cases connected by
a continuous series such that in one, composition occurs, but in the other, composition
does not occur.” (Sider 2001 p. 123). As an example of a continuous series, Sider
mentions spatial distance and he upholds that a sharp cut-off point in a continuous

1 A dissenter with respect to this thesis is Markosian (1998a).
2 In the main text, we formulate matters in terms of pluralities in order to enhance readability. Our official
idiom is set-theoretic, however. We assume ZFC including, in particular, the axiom of choice. Whether
discussions of the special composition question should be approached in terms of plural logic, first-order
logic with set theory, first-order logic using sentence schemas, or in higher-order logic is a contentious
question that we cannot hope to address in this paper (cf. Hovda 2009). We leave the question of which
considerations of this paper could be redeemed within another setup for another time.
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series would be metaphysically arbitrary and a “brute fact [that] seems particularly
hard to stomach.” (Sider 2001 p. 124). Sider also maintains that every answer to the
special composition question except for Strong Unrestricted Composition and
nihilism is arbitrary in this sense. We take the considerations in what follows to show
that this is not the case.

The core idea behind the demand that a rule of determination should determine
fusion is this: In order for it to provide us with a satisfying answer to the special
composition question, a rule of composition has to be strong enough: Intuitively, it
has to settle all, as opposed to only some cases of fusion. Below, we will formally
make precise what it means to settle all cases of fusion. For now, it will be enough to
provide an intuitively necessary condition (thatwewill show to be telling against extant
proposals in the literature): A purely mereological answer to the special composition
question determines fusion only if it is not compatible with two worlds that both
include nothing but a certain number of simples and fusions of such simples, but one
world includes a fusion of all these simples (i.e. a universal object) and the other one
does not. The underlying idea is quite simple: When we have a number of simples in a
world and there is a purely mereological answer to the special composition question in
place, then this answer should at least tell us whether these objects fuse to an universal
object.

Concerning the modal status of the rules of composition, the standard position is
necessitism, which we identify with the following thesis:

Nec Every rule that governs composition holds with necessity.
Our results are relevant for necessitists, for we have a rule to propose to them

that allows them to accommodate both gunk and junk. Some (e.g. Cameron 2007)
deny Nec and hold that it is a contingent matter which rules govern composition.
We also have something to offer to contingentists who accept that necessarily some
mereological rules govern fusion. We can treat these contingentists to an entire family
of available rules, as will become clear in Sect. 3.

Inwhat follows,wewill assume that the relation of parthood forms a partial ordering
relation (i.e., it is a reflexive, transitive and antisymmetric relation), and that the axiom
of Strong Supplementation holds.3 This amounts to assuming that mereology is
extensional, i.e. that no two objects have the same proper parts. Although it would be
an interesting question which of the considerations of the paper could be redeemed
within an intensionalist setting, for reasons of space, we have to leave this discussion
for another occasion.

We will say that y is the fusion, or sum, of the xx iff y overlaps all and only
those objects that overlap one of the xx .4 Given this notion of fusion, we may define
a notion of overlap-equivalence between pluralities of objects, according to which

3 Throughout this paper, we will use “�” to denote parthood and “�” to denote proper parthood. As it is
standard, we define overlap as follows: Oxy ≡de f ∃z(z � x ∧ z � y). With this notation and definition in
place, Strong Supplementation can be expressed as follows: ¬x � y → ∃z(z � x ∧ ¬Ozy).
4 This definition of fusion is proposed as “the natural compromise” for those who do not wish to commit to
the principle of Strong Supplementation by Achille Varzi in Varzi (2019). In extensional mereology, it
is equivalent to the alternative definition that y is a fusion of the xx iff every one of the xx is a part of y and
every part of y is overlapped by one of the xx (cf. Varzi 2019). Note also that, in extensional mereology,
fusion is unique (cf. Lemma6 in the appendix) and we can thus indeed speak of the fusion of the xx .
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two pluralities xx and yy of objects are equivalent iff the following holds: An object
overlaps one of the xx iff it overlaps one of the yy. Fusion can then be conceived of as
a case of overlap-equivalence that is singular on one side: An object y is the fusion of
a plurality xx iff y is overlap-equivalent to the xx . Following van Inwagen (1990) p.
29, we will say that some objects compose an object iff they do not pairwise overlap
and some object is the fusion of them.5

On a first glance, given that composition concerns exclusively not pairwise-
overlapping objects, rules of composition would seem to provide us only with a
partial answer to the question ofwhen an arbitrary—overlapping or non-overlapping—
plurality of objects has a fusion. Luckily, however, the following result can be shown
to hold:

Connection: For every plurality of objects yy, there is a plurality of pairwise non-
overlapping objects xx that are parts of the yy such that xx and yy
are overlap-equivalent.6

Given that overlap-equivalent pluralities have the same fusions, in order to deter-
mine whether a given plurality of objects has a fusion, it suffices to consider an
overlap-equivalent plurality instead. The principle of Connection now guarantees
that, for any given plurality, we will find one whose members do not pairwise overlap
– and hence, one to which we can apply rules of composition.

In this way, Connection coordinates between fusion and composition, and allows
us tomove back and forth between the two.Wewill proveConnection in the appendix
of this paper.

2 Strong andWeak Unrestricted Composition

After having set out the necessary background on rules of composition, we now turn
to the topic of junky worlds. Bohn (2009a) has objected to the necessity of Strong
Unrestricted Compositionwith an argument based on the following two premises:

(A) Possibly, every object is a proper part of some object.
(B) Necessarily, if Strong Unrestricted Composition holds, then there is an

object that is not a proper part of some object.

Premise (A) says that the world might have turned out to be junky, i.e. such that
every object is a proper part. Together with premise (B), it yields the result that the rule
of Strong Unrestricted Composition does not hold with necessity. In this paper,
wewill accept premise (A)without argument.7 The questionwe address in this paper is
which necessary rules can determine composition, given that junkyworlds are possible.

5 The xx are pairwise non-overlapping iff for every x and every x ′ that are distinct and both among the xx ,
there is no z that is a part of x and a part of x ′.
6 We assume here that there is no empty plurality, i.e., a plurality that has no objects among it. If the empty
plurality were admitted, the talk of “pluralities” here and in what follows would have to be replaced by talk
of “non-empty pluralities”. Moreover, given our set-theoretic approach, we presuppose that every plurality
of objects is “set-sized”, i.e., that there is a set of all the objects among the plurality.
7 See Bohn (2009a) for a defence of the possibility of junky worlds.
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Premise (B) can be proven to hold if the principle of Weak Supplementation, the
principle that if x is a proper part of y, then some part of y does not overlap x , holds.8

By the definition of fusion, every fusion of all objects overlaps every object. From
Weak Supplementation it follows that no object can be a proper part of some
object, unless there is an object it does not overlap. Therefore, no object has a fusion
of all objects as a proper part.

Defenders of unrestricted composition who wish to accept the possibility of the
world being junky have reacted to this argument by replacing the thesis of Strong
Unrestricted Composition with the thesis of Weak Unrestricted Composi-
tion that says that every pair – rather than every plurality – of objects has a fusion.9

As it stands, however, the rule of Weak Unrestricted Composition clearly
fails to provide an answer to the special composition question: It merely yields a
sufficient, but not a necessary and sufficient condition for when a plurality of objects
has a fusion. And it is obviously also a non-starter to hold that all and only pairs of
objects have a fusion. For this overly restrictive rule would preclude the possibility of
any world with at least three distinct objects x, y, z. According to the given rule, x and
y would have a fusion, [x, y], and there would be a fusion of [x, y] and z, [x, y, z].
At the same time, the rule would yield the result that [x, y, z] does not exist, for it is
the fusion of more than two objects.

In the literature, one can find two candidates for rules that entail Weak Unre-
stricted Composition, are weaker than Strong Unrestricted Composition,
and provide an answer to the special composition question. In what follows, we shall
argue, however, that they both have undesirable features and thus fail to yield con-
vincing answers.

The first candidate has it that all and only finite pluralities of objects have a fusion,
and is discussed in Bohn (2009a). This rule has some prima facie plausibility, for it
pays justice to the idea that every object is constructed by finitely many applications
of pairwise fusion. To see that it is compatible with the world being junky, consider a
world wa which contains nothing but countably infinitely many simples and fusions
thereof, in which the given rule applies, and mereology is extensional.

However, this candidate rule has the undesirable feature of ruling out the existence of
gunkyobjects, i.e., objects that have proper parts and that are such that every proper part
of themhas a proper part:10 In every gunky object, one can find an infinitely descending
chain of proper parthood. And given the principle of Weak Supplementation,
every object from which an infinitely descending chain of proper parthood descends
has infinitely many non-overlapping proper parts.11 Given that the motivation for
accepting the possibility of gunky objects is at least as strong as the motivation for

8 Given that proper parthood is asymmetric, Weak Supplementation follows from Strong Supple-
mentation (cf. Cotnoir 2010).
9 See Contessa (2012) and Smith (2019) for a recent defence.
10 See also Bohn (2009a) p. 30 for a similar point against this candidate rule.
11 Let x1, x2, . . . be such an infinitely descending chain. According to Weak Supplementation, there
is a proper part of x1 that does not overlap x2 , say x11. Likewise, there is a proper part of x2 that does not
overlap x3 , say x22, and so on. Now, x11 and x22 do not overlap, since x11 does not overlap with x2 and
x22 is a part of x2. And given the transitivity of parthood, x11, x22, . . . are proper parts of x1. Thus, the
sequence x11, x22, . . . forms an infinite plurality of non-overlapping proper parts of x1.
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accepting that the world is possibly junky, the present candidate-answer to the special
composition question does not constitute much progress. We should continue to look
for an answer that allows for both gunk and junk.

The second candidate consists in adding the following rule to Weak Unre-
stricted Composition: Every object that is not a simple is the fusion of exactly
two further objects. We will call this rule Weak Unrestricted Splitting. This
idea has been proposed in the literature by Smith (2019).12 If Weak Unrestricted
Composition is combined withWeak Unrestricted Splitting, one arrives at the
following answer to the special composition question: A plurality of objects xx have
a fusion iff there is only one xx , or there are two objects y1 and y2 such that y1 and
y2 are jointly overlap-equivalent to the xx .13

An answer to the special composition question that combines Weak Unre-
stricted Composition with Weak Unrestricted Splitting does not rule out
either gunky objects or that the world is junky. For a world that validates the two com-
bined rules and is junky, it suffices to consider once again our world wa .14 Moreover,
gunky objects are also compatible with the given combination of rules, as long as the
gunky object is such that every part of it can be decomposed into two further parts.

We argue against the combination of Weak Unrestricted Composition with
Weak Unrestricted Splitting not by showing that it rules out scenarios that
should not be ruled out, but by showing that it fails to determine fusion (and hence
to be philosophically satisfying in the sense introduced above). Recall that a purely
mereological answer to the special composition question determines fusion only if
it is not compatible with two worlds which both include nothing but a certain given
number of simples and fusions of these simples, but one world includes a fusion of all
the simples (i.e. a universal object) and the other one does not.

The combination of Weak Unrestricted Composition and Weak Unre-
stricted Splitting, however, allows for the existence of two such worlds: For a
world without a universal object, on the one hand, consider the already introduced
junky world wa . For a world with a universal object, on the other hand, consider
a world wb in which there is nothing but countably infinitely many simples and
fusions of them, and mereology is classical, i.e. extensional and such that Strong
Unrestricted Composition holds. Strong Unrestricted Composition entails
Weak Unrestricted Composition, and wb clearly also validates Weak Unre-
stricted Splitting. Consequently, both wa and wb validateWeak Unrestricted
Composition and Weak Unrestricted Splitting, and in both wa and wb every

12 Smith writes that the xx have a fusion “when and only when either there is only one x [among the xx]
or the xx can be coherently described as constituting two objects each of which is consistent with weak
mereological universalism.”(Smith 2019). It is not entirely clear to us what Smith exactly means with some
objects being such that one can “coherently” describe them as “constituting two objects each of which is
consistent with weak mereological universalism”, but we take the combination of Weak Unrestricted
Composition andWeak Unrestricted Splitting to be the natural candidate for a precisification of her
claims.
13 To see this, recall that, if y1 and y2 are jointly overlap-equivalent to the xx , then y1 and y2 have a fusion
iff the xx have, and their respective fusions are identical.
14 To see that wa validates Weak Unrestricted Splitting, note again that every object x in wa is the
fusion of the members of a finite plurality of simples s1, ...sn . Thus, x is e.g. the fusion of s1 with the fusion
of s2, ...sn .
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object is a simple or the fusion of at most countably infinitely many simples. At the
same time, inwa there is no universal object and inwb there is a universal object. This
allows us to apply our necessary criterion for rules determining fusion and shows that
the combination of Weak Unrestricted Composition andWeak Unrestricted
Splitting fails to determine fusion.

This has a noteworthy consequence for those philosophers who not only hold Nec
(the thesis that rules of composition hold with necessity), but also subscribe to the
following thesis:

Det Necessarily, a purely mereological rule determines fusion.
This thesis says that every possible case of fusion is determined by a purely mere-

ological rule. The combination of Nec and Det is incompatible with:
P- wa /wb: Both wa and wb are possible.
If every case of composition is determined by a rule that holds with necessity, then

either countably infinitely many simples have a fusion in every world, or in no world.
What is the general idea behind the necessary criterion just used? Informally, some

rules of composition can be said to provide a satisfying answer to the special compo-
sition question only if the following holds: The rules of composition have to settle not
only some, but rather, all cases of composition in order to provide a satisfying answer
to the special composition question.

Remember that the necessary condition on what it is for rules to determine fusion
we used so far is based on the idea that, in an atomistic world, the rules of composition
cannot determine fusion if they are silent about whether there is an universal object
composed of all of them.We can generalize in two ways: First, the underlying motiva-
tion generalizes to all objects, not only to the universal object. Secondly, it generalises
to worlds where not every object is composed of simples.

We wish to capture the idea that if every object in a world is composed of the xx ,
then the rules of composition ensure for every subplurality of the xx whether it has a
fusion or not. In this way, the rules of composition settle each case of fusion.

To formally spell out the idea of mereological determination, we need the notion
of a mereological model. Let M = 〈D,�〉 be a model that consists of a set of objects
D (the domain of M) and �, a binary relation on D. We take models to represent
the mereological structure of a world, with the members of D representing all the
concrete objects in the world and � representing the relations of (proper or improper)
parthood between them. Given that we assume parthood to be reflexive, transitive and
anti-symmetric, we only consider po-models in what follows, i.e. models in which �
is a partial ordering on D. In the remainder of the paper, “model” is thus always to be
understood as “po-model”.

In what follows, we will abstract away from the particular cases and provide a
general criterion that rules of composition have to meet to provide a satisfying answer
to the special composition question. To do so, we will think of rules of composition as
constraints on admissible mereological models, principles that rule out some models
as impossible. We say that M is admissible with respect to a set of mereological rules
iff it respects these rules.
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In our formal definition of mereological determination, we employ the notion of
a submodel. As is common, we say that a model M1 = 〈D1,�1〉 is a submodel of
D2 = 〈D2,�2〉 just in case D1 ⊆ D2 and �1 is the restriction of �2 on D1, i.e. such
that x �1 y iff x �2 y and x, y ∈ D1.

Next, we define the notion of a base of objects, i.e., a set of objects that allows us
to fuse every object in a given model: A model M1 is a base for another model M2 iff
M1 is a submodel of M2 such that every object in D2 is the fusion (with regard to M2)
of objects in D1.15

Now we can render precise what it is for a rule to determine fusion: A rule of
composition determines fusion iff, for all models M1, M2 that are admissible with
regard to this rule: If M1 is a base for M2, then M1 = M2.

To see how this definition works out in the case of Weak Unrestricted Com-
position and Splitting, note that, clearly, every model for a world like wa can be a
base for a model for a world like wb, and yet the models are not identical.

Note that the idea of mereological determination has the idea of an order from the
composing objects to the composed objects built in. This pays justice to the fact that
rules of composition are (as the name suggests) supposed to govern the relation of
composition, a relation that brings us from parts to the wholes they compose.

To see that the demand for determination of fusion has also a broader application,
consider e.g. the following rule of Moderately Unrestricted Fusion, a proposal
in the vicinity of Weak Unrestricted Composition due to Bostock (1979): If there is
an object y such that all of the xx are parts of y, then the xx have a fusion z. Now,
in extensional mereology, if z is the fusion of the xx , then all of the xx are parts
of z. Hence, the right-to-left direction of Moderately Unrestricted Fusion is
guaranteed to hold, and the principle can be strengthened to a biconditional, thus
yielding a rule of composition in our sense. This rule, however, would likewise fail to
determine fusion. To see this, note that the rule would be e.g. compatible with both
a model M1 that contains only two simples x and y, and a model M2 that contains x
and y and a fusion z of them. Clearly, M1 is a base for M2, and yet M1 = M2.

We have seen that Weak Unrestricted Composition and Weak Unre-
stricted Splitting together are too weak to determine fusion. This observation
motivates the question which rules that entail Weak Unrestricted Composition,
but not Strong Unrestricted Composition, do so. In the remainder of this paper,
we will now suggest and further explore a variety of such rules.

3 Cardinal Composition and Countable Composition

Our proposal consists in the following rule-schema of Cardinal Composition:

Cardinal Composition (CC): The xx compose an object iff the xx are pairwise
non-overlapping and of cardinality smaller than κ .

15 What we mean by saying that some object x ∈ D2 is the fusion of some plurality yy of objects with
regard to M2 is that, for every object z in D2, z and x have a common part in D2 iff z and one of the yy
have a common part in D2.
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CC yields a rule of composition for every cardinal number κ . We will designate
the corresponding instance for κ with ‘Cardinal Compositionκ ’/ ‘CCκ ’. As we
will discuss in short, necessitists will have to pick one instance of CC. And also
contingentists have good reasons to not accept CC in full generality, but restrict it to
specific kinds of cardinals.

CC1 is incompatible with there being any objects whatsoever. If a world contains
at least one object, the left-to-right direction of CC1 sets the unfulfillable demand that
the plurality consisting solely of this object has a cardinality smaller than 1. CC2 is
simply the well-known rule of compositional nihilism. In those cases in which κ is
larger than 2, but still finite, CCκ precludes the existence ofmore than κ-many pairwise
non-overlapping objects, for reasons analogous to those discussed in the context of
the rule that all and only pairs of objects have a fusion. The problem is this: If κ is
larger than two but still finite, fusing less than κ many objects which individually have
less than κ many non-overlapping parts can result in an object that does not have less
than κ many parts. And then, CCκ would on the one hand license the existence of
each of the individual objects and demand that there be a fusion of them, but on the
other hand conflict with the existence of the resulting fused object.

As we will show in the appendix, this problem arises more generally if and only if
κ is a so-called singular, as opposed to regular cardinal. A cardinal κ is regular iff it
has a cofinality that equals κ . The cofinality of κ is the smallest cardinal λ such that
some union of λ many sets of cardinality less than κ has the cardinality κ . A cardinal
κ is singular iff it is not regular, that is, iff it either has no cofinality or a cofinality that
does not equal κ .

A couple of examples might help to clarify the definition of regularity. Among the
non-zero finite cardinals, 2 is the only regular cardinal.16 1 is singular since 1 has
no cofinality. And every finite cardinal larger than 2 is singular because it has 2, and
thus a cardinal smaller than itself as its cofinality.17 If you take any finite number of
sets, each of which has finitely many members, then the union of this set also has
finitely many members. It takes the union of countably infinitely many sets of finite
cardinality to arrive at an infinite cardinality. Hence, the cofinality of the first infinite
cardinal ℵ0 (the limit-cardinal of the finite cardinals) is ℵ0. This makes ℵ0 a regular
cardinal. The limit-cardinal ℵω, by contrast, is an example of a singular cardinal. It is
defined as

⋃
n∈N ℵn . For any n ∈ N, ℵn < ℵω and |N| = ℵ0 < ℵω. ℵω is thus the

union of ℵ0 many (and hence less than ℵω many) sets each of which has a cardinality
smaller than ℵω. And in consequence, the cofinality of ℵω is smaller than ℵω, making
ℵω a singular cardinal.

Since problems with CC arise if and only if κ is singular, we will put the instances
of CC for singular κs to the side and restrict attention to the instances where κ is
regular. In what follows, we will thus take ‘κ’ to range over regular cardinals only, and
reserve the terms ‘Cardinal Composition/CC’ for the corresponding instances.

16 Often, the terminology of regular versus singular cardinals is exclusively applied to infinite cardinals.
It should be also noted that different available definitions of cofinality that lead to the same results in the
realm of the infinite cardinals lead to different results when applied to finite cardinals.
17 To construct two sets of cardinality less than n (for n > 2) such that their union has cardinality n, let
e.g. the first set be the set of the even and the other set be the set of the odd cardinals smaller than n.
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Every instance of CC provides an answer to the special composition question.18

However, one might also wish to know when an arbitrary – pairwise overlapping or
non-overlapping – plurality of objects has a fusion. By invoking Connection, every
instance of CC can be shown to be equivalent to the corresponding instance of the
following schema, as we will prove in the appendix:

Cardinal Composition* (CC*): The xx have a fusion iff there is a plurality yy
of parts of the xx that are overlap-equivalent to the xx , and such that the yy are
pairwise non-overlapping and of cardinality smaller than κ .

As advertised above, the instances of CCwill be of interest to the contingentist who
holds that no rule of composition governs composition in every possible world, but
that, in every possible world, some rule governs composition. The schema provides
them with a stock of purely mereological rules that they might take to hold in some
worlds: either in all of them, or at least in some of them.

The necessitist, by contrast, will have to pick an instance of CC that they take to
necessarily govern composition. We take the natural candidate to be the instance for
κ = ℵ1, the successor of the cardinality of the natural numbers. According to this rule –
which we call ‘Countable Composition’ – a plurality of pairwise non-overlapping
objects compose a further object iff it has at most countable many members:

Countable Composition:The xx compose an object iff the xx are pairwise non-
overlapping and countably many (i.e., either finitely many or countably infinitely
many).

As we will show below, Countable Composition is the most restrictive instance
of CC (i.e., the one that yields the ‘fewest’ fusions) that is compatible with both gunk
and junk. By contrast, there is no least restrictive instance, given that there is no largest
regular cardinal.19 In this way, Countable Composition ‘stands out’ among the
different instances of CC, thus providing us with some defeasible reason for favoring
this instance over others.Moreover, itmight be argued thatCountable Composition
is the only instance of CC that allows for gunk and junk whilst being compatible
with the view that every composite object is the result of successive applications of
a binary fusion-operation, an idea that seems to stand in the background of Weak
Unrestricted Composition (see also Cotnoir 2014 p. 656 on this).

We take the following (somewhat picturesque) consideration to suggest that (i) it is
conceptually possible that an object that has countablymany pairwise non-overlapping
parts is the result of successive applications of a binary fusion-operation and that (ii)

18 One might think of the following alternative rule schema CC’ and wonder how it relates to the rule
schema CC proposed here:
CC’: The xx compose an object iff the xx are pairwise non-overlapping and of cardinality smaller than
or equal to κ . Now, given that a cardinality is smaller-or-equal to κ iff it is smaller than κ + 1, CC’κ is
equivalent to CCκ+1. That is, every instance of CC’ corresponds to an instance of CC. Moreover, since
every infinite successor cardinal is regular, every instance of CC’ for an infinite κ corresponds to an instance
of CC for a regular κ . However, the converse fails: If κ is a regular limit cardinal, then there is no instance
of CC’ that corresponds to CC’κ . In particular, no instance of CC’ corresponds to CCℵ0 , the rule according
to which every finite plurality has a fusion. And since CCℵ0 is (as we will show later in the paper), the only
instance of CC that is compatible with world wa , CC but not CC’ is compatible with wa . For this reason,
we believe that CC should be preferred over CC’. We thank a reviewer for discussion.
19 That there is no largest regular cardinal follows from the fact that every successor cardinal is regular.
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Fig. 1 The gunky object g

objects with uncountably many pairwise non-overlapping parts cannot be generated
in this way:

You find an old lady in a hut, the mistress of composition, and she shows you an
object that can be decomposed into simples and that she claims to have produced by
successively fusing the previous day’s results with a new simple every single day.
Astonished, you find out that the object has countably infinitely many parts. Did the
old lady lie? Not necessarily, for both the world and the lady might be infinitely old,
forever having added a simple to the object for every single day. For every simple you
point to, she can tell you how many days ago she added it to the object. An analogous
story doesn’t work for an object that is composed of uncountably many simples. If the
object the lady shows you has more than countably many parts, then it cannot be the
result of successive applications of a binary fusion-operation. For some simple parts
of the object, she won’t be able to tell you how many days ago she added it to the
object. To see how gunky objects can be conceptualised as the result of successive
applications of pairwise fusion, consider the following variant of the story: Today the
old lady fused objects g1 and g2 to produce gunky object g. Yesterday she fused g11
and g12 to produce g1. Two days ago she fused g21 and g22 to produce g2. Three days
ago she fused g111 and g112 to produce g11 and so on ad infinitum.20

We take a scenario to be conceptually possible iff it does not invoke any logical
or conceptual contradiction. Assuming that there are infinitely many past days, an

20 A line of reasoning similar to the one employed here seems to stand in the background of the discussion
of gunk and Weak Unrestricted Composition in Smith (2019) §2, where Smith describes a gunky
object that at every “level” can “be taken to be properly composed of two objects” (p. 48). We acknowledge
that the case of gunk is not analogous to every way of how the creation of a fusion of countably infinitely
many simples can be conceptualised. To see this, consider the case of the quick fuser who starts with fusing
simples s1 and s2, then adds s3 and manages to fuse all si for i ∈ N in a finite amount of time. The quick
fuser might do so by accelerating: They fuse s1 and s2 in half an hour, add s3 in the next quarter of an
hour, add s4 in the following eighth of an hour and so on ad infinitum. If we assume that this is possible (a
question that points to issues concerning the philosophy of supertasks we cannot tackle in the context of
this paper), the quick fuser can complete the fusion of countably infinitely many simples in an hours time.
Such a story arguably cannot be told for gunky objects, for they do not have a simple part the quick fuser
could start with. We thank a referee for discussion.
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infinitely old lady does not generate a logical or conceptual contradiction. Hence,
our story supports the claim that if we wish to countenance every object that can be
generated by successive applications of pairwise fusion, then we should countenance
all and only those object that are given by Countable Composition.

We take this to suggest that, from amereological point of view,Countable Com-
position is the natural choice for the necessitist.

That being said, we acknowledge that some necessitist’s independent philosophi-
cal commitments might provide reasons to choose a κ different from ℵ1. Here is an
example: According to certain substantivalist views on the nature of spacetime, space-
time points qualify as concrete objects and thus also fall under the scope of rules of
composition. Countable Composition would exclude the existence of regions of
spacetime with a Lebesgue measure greater than zero, given that such regions would
contain uncountably infinitely many spacetime points.21 Another example (which
we owe to a referee) concerns the relation between objects and the regions they are
located at. Countable Composition rules out that any object meets the following
two conditions: (i) There is an object located at a region that has uncountably many
spacetime-points as subregions and (ii) each subregion of a material object contains a
part of that object.22 It should also be clear that a defender of Necwhoholds that neces-
sarily every case of composition is governed by the rule of Countable Composition
cannot accommodate the possibility of the junky world wa . We take the possibilities
of wa and wb to be equally prima facie plausible. And (as already mentioned above)
the possibility of both of them (i.e. P- wa /wb) is incompatible with the combination of
Nec and Det. We take this to suggest that there is no perfect rule for the necessitist.
The best thing the necessitist can do is to settle for the rule that accommodates the
widest array of prima facie possibilites while being relatively simple (and fulfilling
further theoretical desiderata, such as being non-arbitrary and determining fusion).
We provide them with a stock of candidates and, despite its potential shortcomings,
we suggest that Countable Composition might be the best rule for necessitists all
things considered.

At this point the reader might worry (and an anonymous referee did) that this makes
our proposal inferior to denying Det and replacing it with:

N- WUC/S: Weak Unrestricted Composition and Weak Unrestricted
Splitting hold with necessity.

Althoughwe do not have a knock-down-argument against this position,we can offer
some considerations that contribute to making this option seem a bit less attractive.
Presumably, the conceivability-considerations that speak in favour of the possibility of
wa allow for simples of any kind that stand in any kind of relations (spatial or whatnot)
as inhabitants of wa . The same goes for wb. Now, if one wonders for what reasons
in wb the simples compose a universal object and in wa they do not, one will have to

21 Philosophers worried by this result who wish to uphold Countable Composition for objects other
than spacetime points could adopt a pluralist take on rules of composition, thus maintaining that which rules
of composition apply to objects is kind-dependent (cf. van Inwagen 1990), and that, in particular, separate
rules of composition apply to spacetime points.
22 In this context it should be noted, though, that a number of philosophers deny (ii) because it is incom-
patible with extended simples in a pointy space (see e.g. van Inwagen 1990; Markosian 1998b).
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accept that this is just a brute and contingent fact. We wonder why someone inclined
to accept brute and contingent cases of composition should be an ardent defender of
Nec. Of course, the defender of Nec might stick to their guns and maintain their
position irrespective of the costs. But we hope that this consideration might move
some philosophers sympathetic to P- wa /wb and N- WUC/S to consider the following
alternative view.

If one is prepared to give up Nec, then one can have all of P- wa /wb, Det, and
N- WUC/S by subscribing to the following claim:

NCC: Necessarily, there is a regular infinite κ such that CCκ governs all cases
of composition.

CCℵ0 is the rule that all and only finite collections of non-overlapping objects have
a fusion. This rule is compatible with wa . In contrast, for any regular κ > ℵ0, the
rule CCκ has it that in a world that contains just countably many simples and fusions
thereof, every plurality of objects has a fusion. This makes NCC compatible with
wb. Moreover, NCC clearly entails Det and Weak Unrestricted Composition.
Finally, that every instance of CCκ entailsWeak Unrestricted Splitting will be
shown in the appendix (Theorem6). We contend that these properties make adopting
NCC an attractive option for the friend of P- wa /wb and N- WUC/S.

Although none of our proposals will convince the ardent defender of Nec and P-
wa /wb, our paper will also be of interest to them: First, we developed andmade precise
the notion of fusion-determination, which gives us a novel criterion for evaluating
rules of composition. This allows us to clarify an important distinction between rules
like Strong Unrestricted Composition (any xx whatsoever have a fusion) and
the combination of Weak Unrestricted Splitting and Weak Unrestricted
Composition. Second, our paper answers the question whether there are purely
mereological positions that are weaker than Strong Unrestricted Composi-
tion and stronger than the combination of Weak Unrestricted Splitting and
Weak Unrestricted Composition (i.e. rules that entail this combination but are
not entailed by it). NCC gives us one such a position.

After these dialectical considerations, we will now go on to show that all the
instances of CC have a number of welcome features, and can overcome all the prob-
lems that Strong andWeak Unrestricted Composition face. No instance of CC
is trivial or arbitrary in the sense specified by Sider. Furthermore, every instance of
CC determines fusion, as we will prove in the appendix.

To see that for every infinite κ , CCκ is compatible with the assumption that the
world is junky, take a world wc with an extensional mereology in which there are
more than κ many simples and CCκ holds. In such a world, for every plurality of κ

many simples xx , there is another plurality of κ many simples such that: All objects
among the xx are among the yy, but not vice versa. Since the object composed of the
xx is a proper part of the object composed of the yy, every object is a proper part, i.e.,
the world is junky.

To see that for every κ > ℵ0, CCκ is compatible with a gunky object, consider the
gunky object g that is composed of g1 and g2, which in turn are composed of g11, g12
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and g21, g22, respectively, and so on. The gunky object is such that every part of it is
composed of some of the gi .23

We depart from the observation that such a gunky object is clearly compatible with
classical mereology, i.e., the combination of extensional mereology with Strong
Unrestricted Composition. If we can show that g does not have uncountably
many pairwise non-overlapping parts, then this guarantees that it is also compatible
with CC, and, more generally, with all instances of CCκ that allow for objects having
countably infinitely many parts. This can be shown as follows: Every part of g is the
fusion of some of the gi . Let G be the set of the gi . Let Par(g) be the set of parts of
g. Let f be the function from P(G)\∅ (the set of non-empty subsets of G) to Par(g)
that maps every non-empty subset of G to the part of g the members of this subset
fuse. This function is not injective (e.g. {g} and {g1, g2} are both mapped to g), but it is
surjective. It is surjective because every part of g is the fusion of some gi . It is easy to
see that every two subsets of G that have a member in common are mapped onto two
overlapping objects. It follows that for every S ⊆ P(G)\∅: The subset of Par(g) the
members of S are mapped to is such that its members are pairwise non-overlapping
only if the sets in S are pairwise disjoint. Given this and the surjectivity of f , in order
to show that every subset of Par(g) whose members are pairwise non-overlapping
has at most countably many members, it suffices to show that every subset of P(G)\∅
whose members are pairwise disjoint has at most countably many members. Every
subset of P(G)\∅ such that its members are pairwise disjoint is a subset of some
partition of G. No partition of G has more elements than the finest partition of G that
consists of all and only the singletons of the members of G. This partition has as many
members as G. As can easily be shown by diagonalization, the gi are countably many
and hence G has countably many members.

Obviously, the existence of a gunky object like g is compatible with the existence
of more than κ many simples (or more than κ many mereological duplicates of g). In
scenarios of this sort, we have a gunky object in a junky world (or even a junky world
in which all objects are gunky). The present proposal thus also allows for such hunky
worlds.24

For κ > ℵ0, CCκ is also compatible with dense chains of proper parthood, as a
further examination of the gunky object g shows. Consider two members of G, gx and
gy , such that gx � gy . Then, byWeak Supplemenation, there will be a gi ∈ G that
does not overlap gx and is a proper part of gy . Now, take some g j � gi and consider
a fusion of gx and g j . This fusion will be a proper part of gy , and gx will be a proper
part of it.

This observation bears relevance to arguments by Cotnoir (2014) that purport to
show thatWeak Unrestricted Composition is in tension with the following prin-
ciple:

Remainder: y � x → ∃z∀w(w � z ↔ (w � y ∧ ¬Owx))

Cotnoir points out that the principle entails that if y has a proper part x , then there is
a remainder that “has as parts all and only the non-x-overlapping parts of y.” (Cotnoir

23 Here i ranges over all finite sequences of the digits “1” and “2”, including the empty sequence consisting
of no digit as a limit case.
24 See e.g. Bohn (2018) and Cotnoir (2014) for uses of the notion of hunk.
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2014 p. 657). Cotnoir claims that the “weak universalist cannot simply stipulate the
remainder principle as an axiom” (Cotnoir 2014 p. 657), for she could not guarantee
that all remainders can be constructed by pairwise fusion. We show in the appendix
that the Remainder holds in all extensional models that are admissible according to
CC. Cotnoir suggests that worlds that involve dense chains of parthood and worlds
that are hunky create problems for the remainder-friendly weak universalist. To this
charge we can respond with the observation that CC allows that the world is both
hunky and contains dense chains of parthood, even though the Remainder principle
holds in all models.

We have seen that CC does not fall prey to any of the problems that either Strong
Unrestricted Composition or the different variants of Weak Unrestricted
Composition that have been proposed in the literature face: Any instance of the
schema is compatible with all the different mereological scenarios that have been
argued in the literature to constitute genuine possibilities—i.e., gunky objects, junky
worlds, hunkyworlds and dense chains of parthood – and is nevertheless strong enough
to determine fusion. Moreover, the instances of CC are neither trivial nor arbitrary,
and constitute purely mereological rules of composition. For the contingentist, CC
offers a stock of rules that she can take to hold in some worlds. For the necessitist one
particular instance of CC—Countable Composition—suggest itself as the natural
choice for a necessarily true rule of composition.
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Appendix

The aim of this appendix is to prove the following results for any cardinal number κ:

– Connection holds.
– If κ is a regular cardinal, then: If S is a set of less than κ many objects which each
have less than κ many non-overlapping parts, every fusion of S has less than κ

many non-overlapping parts.
– If κ is a singular cardinal, then there is no model of CCκ with at least κ many
objects in its domain.

– CCκ is equivalent to CCκ .
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– The Remainder Principle holds in all extensional models of CCκ .
– For every extensional model of CCκ : Every object x that has a proper part is the
fusion of two objects distinct from x .

– CCκ determines fusion in extensional mereology.

Unlike in the main text, where we used plural talk in order to enhance readability,
we will use exclusively our official set-theoretic idiom in this appendix.

Definitions and notation:

– A (mereological po) model M is a pair 〈D,�〉, where D – the domain of M – is
a set of objects, and � – the relation of parthood on D – is a partial order.

– Two objects x and y overlap iff they have a common part, i.e., if there is an object
z such that z � x & z � y. We write “Oxy” for this.

– A set of objects is overlap-free iff no two distinct objects in the set overlap.
– Two sets S and S* of objects are overlap-equivalent iff, for every object x , x
overlaps an object in S iff it overlaps an object in S*. We write “S ≡ S*” for this.

– An object x is a fusion of (the objects in) set S iff {x} ≡ S.
– (The objects in) set S compose(s) x iff x is a fusion of S and S is overlap-free.
– For S ⊆ D, Par(S) is the set of all the parts of objects in S, i.e.: Par(S) = {x ∈

D | ∃s(s ∈ S & x � s)}.
– A set of objects S* is a tessellation of another set of objects S iff: (i) S*⊆ Par(S),
(ii) S* is overlap-free, and (iii) S*≡ S.

Lemma 1 O is symmetric and reflexive.

Proof Clear. ��
Lemma 2 ≡ is an equivalence-relation.

Proof Clear. ��
Lemma 3 If x � y and Ozx, then Ozy.

Proof Clear. ��
Theorem 1 (Connection) Every set S of objects has a tessellation.

Proof Let S be a set of objects, and P := Par(S). By the Well-Ordering Theorem, P
has a well-ordering. Let ‘≤’ denote the chosen well-ordering, and ‘<’ the associated
strict order.We define a family of sets (Ta)a∈P by transfinite recursion in the following
way:

(Def) If there is no x ∈ ⋃
i<a Ti such that a and x overlap, Ta = ⋃

i<a Ti ∪ {a}.
Otherwise, Ta = ⋃

i<a Ti .

We now show that then,
⋃

i∈P Ti is a tessellation of S, i.e.: (1)
⋃

i∈P Ti ⊆ Par(S),
(2)

⋃
i∈P Ti is overlap-free, (3),

⋃
i∈P Ti ≡ S.

(1) Clear.
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(2) Suppose for contradiction that
⋃

i∈P Ti is not overlap-free. Then, there are two
distinct overlapping objects x, y ∈ ⋃

i∈P Ti . Since x and y are distinct, one must
be smaller. Suppose, without loss of generality, that it is x . Now, given the con-
struction, x will be clearly the smallest i ∈ P such that x ∈ Ti , and y the smallest
i ∈ P such that y ∈ Ti . Hence, x ∈ Tx ⊆ ⋃

i<y Ti . Thus, given that x and y
overlap, by (Def), Ty = ⋃

i<y Ti . Since y ∈ Ty , it follows that there is an i < y
such that y ∈ Ti . Contradiction with the fact that y is the smallest i ∈ P such that
Ti contains y.

(3) Left-to-right: Let x be an object that overlaps some y ∈ ⋃
i∈P Ti ⊆ P = Par(S).

Hence, by Lemma3, x overlaps an object in S.

Right-to-left: Let x be an object that overlaps an object in S. Thus, there is a y that is
part of x and part of an object in S. Hence, y ∈ P . There are two cases to consider: (i),
there is a z ∈ ⋃

i<y Ti that overlaps y, (ii), there is no such z. In case (i), we have that
z ∈ ⋃

i∈P Ti . Since y is part of x and y overlaps an object in
⋃

i∈P Ti , by Lemma3, x
overlaps an object in

⋃
i∈P Ti . In case (ii), since y does not overlap any z ∈ ⋃

i<y Ti ,
by (Def), Ty = ⋃

i<y Ti ∪ {y}. Hence, y ∈ Ty , and consequently, y ∈ ⋃
i∈P Ti . Thus,

by overlapping y, x overlaps an object in
⋃

i∈P Ti . ��
Definitions and notation:

– The cofinality c f (κ) of a cardinal κ is the smallest cardinal λ such that some union
of λ many sets of cardinality less than κ has the cardinality κ .

– A cardinal κ is regular iff it is has a cofinality that equals κ . A cardinal κ is singular
iff it is not regular.

Theorem 2 Let κ be some regular cardinal. Let S be a set of less than κ many objects
such that, for every s ∈ S and every overlap-free As ⊆ Par({s}), |As | < κ . Then: If
S has a fusion o, for every overlap-free B ⊆ Par({o}), |B| < κ .

Proof Let S and κ be as specified in Theorem2, and let o be a fusion of S. Let
B ⊆ Par({o}) be overlap-free but otherwise arbitrary. For every s ∈ S, let Ps :=
Par({s}) ∩ Par(B). By Theorem1, every Ps has a tessellation Ts . Now, consider
T := ⋃

s∈S Ts . We show that (1), |B| ≤ |T | and, (2), |T | < κ . Then, it directly
follows that |B| < κ .

(1) By the definition of T and the transitivity of parthood, every object in T is part
of an object in B. Moreover, given that B is overlap-free, no object in T is part
of more than one object in B. Hence, there is a unique function f : T → B that
maps every element of T to the element of B that it is part of. What remains to be
shown in order to prove that |B| ≤ |T | is that f is surjective – which is equivalent
to the fact that, for every object in B, there is an object in T that is part of it. Now,
let b ∈ B be arbitrary. Then, since B ⊆ Par({o}), b overlaps o, and since o ≡ S,
b overlaps some object s ∈ S. Let c be a common part of b and s. Then, by the
definition of Ps , c ∈ Ps . Given that Ps ≡ Ts , there is a d ∈ Ts that overlaps c,
and thus, by Lemma3, also b. Since every object in Ts is part of an object in B,
d is part of some e ∈ B. Now, given that d and b overlap, and d is part of e, by
Lemma3, b and e overlap. Since B is overlap-free, and b and e are both elements
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of B, it follows that b and e must be identical. And thus, since d is part of e, it is
part of b. Hence, there is an object in Ts , and thus in T , that is part of b, as we
wanted to show.

(2) Given that, for every s, all the elements of Ts are parts of s and Ts is overlap-free,
by our assumption, |Ts | < κ . Assume for reductio that |T | ≥ κ . Then, there is
a R ⊆ T with |R| = κ . Now, R = R ∩ T = R ∩ ⋃

s∈S Ts = ⋃
s∈S(R ∩ Ts).

And for every s ∈ S, |R ∩ Ts | ≤ |Ts | < κ . R is thus a set of cardinality κ that
is the union of |S| many sets of cardinality less than κ . Hence, cof (κ) ≤ |S|.
Since, by assumption, |S| < κ , it follows that cof (κ) < κ . Contradiction with the
assumption that κ is regular. ��
Definitions and notation:
Where κ is some cardinal number:

CCκ : S composes an object iff S is overlap-free, non-empty and of cardinality smaller
than κ .

Theorem 3 Let κ be a singular cardinal. Then: There is no model of CCκ whose
domain contains at least κ many non-overlapping objects.

Proof Let κ be a singular cardinal. Assume for reductio that there is a model M of
CCκ whose domain contains at least κ many non-overlapping objects.

Now, note first that, (i), the only non-zero cardinal that has no cofinality is 1, and
that (ii), the cofinality of a cardinal κ is never larger than κ itself. This can be seen by
noting that every set is the union of the singletons of its members. Hence, if κ > 1,
every set of cardinality κ is the union of κ many sets of cardinality smaller than κ .
This guarantees that, if some cardinal κ > 1 has a cofinality, this cofinality is at most
κ .

Moreover, since the common ordering of the cardinals is a well-ordering, if there
is a cardinal λ such that κ is the union of λ many sets of cardinality less than κ ,
there must be a smallest one. That is, κ must have a cofinality. 1, by contrast, has no
cofinality, since the only set of cardinality less than 1 is the empty set, and no set with
one element can be build by unions of the empty set. Now, since we have assumed
that κ is singular, either (a*) has no cofinality or (b*) has a cofinality λ = κ . By (i)
and (ii), these two options amount to the following: (a) κ = 1, or, (b) κ > 1 has a
cofinality λ with λ < κ .

(a) Suppose for contradiction that there is a model of CC1 whose domain contains at
least one object, say o. By the definition of composition, o composes itself. And
by the left-to-right direction ofCC1, it follows that o’s singleton contains less than
1 element. Contradiction.

(b) Since λ is the cofinality of κ , there is a set S with |S| = κ and a family of sets
(Si )i∈I such that (i) S = ⋃

i∈I Si , (ii) |I | = λ, and, (iii) for any i ∈ I , |Si | < κ .
Since, by assumption, κ > 1, S = ∅. Let (as)s∈S be a family of overlap-free
distinct objects in the domain of M . That there is such a family is guaranteed by
the fact that |S| = κ and that, by our assumption, the domain ofM contains κ many
non-overlapping objects. Now, let ≤ be a well-order on I , and < the associated
strict order. For any i ∈ I , let Ti = Si \ ⋃

j<i S j . Then, S is the disjoint union
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of the Ti , and thus, {as | s ∈ S} the disjoint union of the sets {as | s ∈ Ti }. Now,
for every i ∈ I , |{as | s ∈ Ti }| = |Ti | ≤ |Si | < κ . Since the ai do not pairwise
overlap, by the right-to-left direction of CCκ , it follows that, for every i ∈ I for
which Ti = ∅, the objects in {as | s ∈ Ti } compose an object, say bi . There are as
many bi as non-empty Ti . So there are no more bi than |I | = λ < κ . Moreover,
since the sets {as | s ∈ Ti } are disjoint and their union {as | s ∈ S} is overlap-free,
none of the bi pairwise overlap. Finally, since S = ∅ and S = ⋃

i∈I Ti , at least one
of the Ti is non-empty. Hence, there is at least one bi . By the right-to-left direction
of CCκ , it follows that the bi compose an object, say b. b has all the objects in
{as | s ∈ S}, and thus κ many non-overlapping objects as a part. Contradiction
with the left-to-right direction of CCκ . ��
Definitions and notation:
For any cardinal number κ:

CCκ*: S has a fusion iff there is a non-empty tessellation of S of cardinality smaller
than κ .

Lemma 4 If S has a fusion x, S = ∅.
Proof Clear, given that x overlaps itself. ��
Theorem 4 (Equivalence) For every cardinal κ , CCκ and CCκ* are equivalent, i.e.,
have the same models.

Proof CCκ ⇒ CCκ*: Suppose that CCκ holds for some cardinal κ .
Suppose that S has a fusion, say x . By Theorem1, there is a tessellation T of S.

Since T ≡ S and S ≡ {x}, by the transitivity of ≡, T ≡ {x}. Since, moreover, T is
overlap-free, T composes x . By CCκ , it follows that T has less than κ many members,
and by Lemma4 that T is non-empty. Suppose that T is a non-empty tessellation of
S with less than κ many members. Then, by CCκ , T composes, and thus fuses, an
object. Since T ≡ S, by the transitivity of ≡, this object is also the fusion of S.

CCκ∗ ⇒ CCκ : Suppose that CCκ* holds for some cardinal κ .
Suppose that S composes an object. Hence, S is overlap-free, and, by Lemma4,

non-empty. What remains to be shown is that S has less than κ many members. Since
S composes an object, by CCκ*, there is a tessellation T of S that has less than κ many
members. Now, let s ∈ S be arbitrary. Given that T ≡ S and Oss, there must be some
t ∈ T such that Ots. Since T ⊆ Par(S), there is an s′ ∈ S such that t � s′. Hence,
by Lemma3, Os′s. Now, since S composes an object, S is overlap-free, and thus,
given that Os′s, it follows that s = s′. Thus, t � s. Since s was arbitrarily chosen,
it follows that, for very s ∈ S, there is a t ∈ T such that t � s. Moreover, since S
is overlap-free, no t ∈ T is part of two distinct objects in S. So there is a surjective
function f : T → S that maps every t ∈ T to the unique s ∈ S such that t � s. It
follows that there are no more objects in S than in T , and thus, that S has less than κ

many members.
Suppose that S is non-empty, overlap-free and has less than κ many members.

Given that S ≡ S and S ⊆ Par(S), S is a non-empty, tessellation of itself that has
less than κ many members. Hence, by CCκ*, S has a fusion. Since, moreover, S is
overlap-free, S composes this object. ��
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Definitions and notation:

– A model is extensional iff it obeys the following principle of Strong Supplemen-
tation: ¬y � x → ∃z(z � y & ¬Ozx).

Theorem 5 (Remainder) Let M be an extensional model that is admissible with regard
to CCκ for some cardinal κ . Let x, y ∈ D with ¬y � x. Then: There is a z ∈ D that
is a remainder of x from y, i.e., such that: ∀w (w � z ↔ (w � y & ¬Owx)).

Lemma 5 For any model M of extensional mereology, and objects x, y ∈ D: If P− :=
{w | w ∈ Par({y}) & ¬Owx} has a fusion, this fusion is a remainder of x from y.

Proof Assume that P− has a fusion, say z.
Let w � z. We show that then, (a) w � y, and (b) ¬Owx .

(a) Suppose for contradiction that w � y. Then, by Strong Supplementation, there
is a v such that v � w and ¬Ovy. Since w � z, by the transitivity of parthood,
v � z. Thus, Ovz. Then, given that z is a fusion of P−, there is a u ∈ P− such
that Ovu. By the definition of P−, it follows that u � y. Since Ovu and u � y,
by Lemma3, Ovy. Contradiction.

(b) Suppose for contradiction that Owx . Then, sincew � z, by Lemma3, Ozx . Given
that z is the fusion of P−, it follows that there is a v ∈ P− such that Ovx . However,
by the definition of P−, no object in P− overlaps x . Contradiction.

Let w � y be such that ¬Owx , i.e., such that w ∈ P−. We show that then, w � z.
Suppose for contradiction that w � z. Then, by Strong Supplementation, there is

a v � w such that ¬Ovz. Thus, Ovw, but ¬Ovz. Contradiction with the fact that
w ∈ P− and z is a fusion of P−. ��
Proof of Theorem 5 Let M be an extensional model of CCκ and x, y ∈ D with y � x .
Let P := Par(y). Let P− := {w | w ∈ Par({y}) & ¬Owx} and P+ := {w | w ∈
Par({y}) & Owx}. Clearly, P− and P+ are disjoint and have P as their union.
Moreover, given that ¬y � x , by Strong Supplementation, P− = ∅. We well-order
both P− and P+. Let ≤− and ≤+ be the chosen well-orderings on P− and P+,
respectively. We next build the sum of these two well-orderings, i.e., the ordering
≤− ∪ ≤+ ∪ {< x, y > | x ∈ P−, y ∈ P+} =: ≤. (That is, ≤ is an ordering in
which every element of P− precedes every element of P+, and pairs of elements from
P− or P+ retain their original order.) Given that the sum of two well-orderings on
disjoint sets is a well-ordering on the union of the sets, ≤ is a well-ordering on P .

We then define two families of sets (Ta)a∈P and (T−
a )a∈P− by transfinite recursion

in the same way as in the proof for Theorem1. (That is: If there is no x ∈ ⋃
i<a Ti

such that a and x overlap, Ta = ⋃
i<a Ti ∪ {a}. Otherwise, Ta = ⋃

i<a Ti . And in
parallel for (T−

a )a∈P− .)
We now show that

⋃
i∈P− T−

i (a) is a tessellation of P−, (b) is non-empty, and (c)
has less than κ many members. Then, by CCκ*, it follows that P− has a fusion, and,
by Lemma5, that this fusion is a remainder of y from x .

(a) First, note that P− = Par(P−): Clearly, P− ⊆ Par(P−). To see that also
Par(P−) ⊆ P−, let w ∈ Par(P−) be arbitrary. Then, by the transitivity of
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parthood, it follows that w ∈ Par({y}), and by Lemma3, that ¬Owx . Thus,
w ∈ P−. Now, given that P− = Par(P−), we can apply the same reasoning as
in the proof of Theorem1 to (T−

a )a∈P− , thus getting the result that
⋃

i∈P− T−
i is

a tessellation of P−.
(b) Clear, given that P− = ∅.
(c) Given that ≤− is an initial sequence of ≤, our constructions for (Ta)a∈P and

(T−
a )a∈P− will be clearly such that, for every a ∈ P−, Ta = T−

a . Hence,⋃
i∈P− T−

i = ⋃
i∈P− Ti ⊆ ⋃

i∈P Ti . Now, applying the same reasoning as in
the proof for Theorem1 to

⋃
i∈P Ti yields that

⋃
i∈P Ti is a tessellation of {y}.

Hence, the objects in
⋃

i∈P Ti compose y, and by CCκ ,
⋃

i∈P Ti has less than κ

many members. And thus, also its subset
⋃

i∈P− T−
i has less than κ many mem-

bers. ��
Theorem 6 (NCC ImpliesWeakUnrestricted Splitting)Let M be an extensionalmodel
that is admissible with regard to CCκ for some cardinal κ . Let x be an object that has
a proper part. Then: x is the fusion of two objects distinct from x.

Proof Let M be an extensional model that is admissible with regard to CCκ for some
cardinal κ . Let x be an object that has a proper part, say y. Then, by Theorem5, there
is a remainder of y from x , say y*. Now, since y overlaps itself and y* is a reminder
of y from x , y is not a part of y*. Given that y is a part of x , it follows that y* and x
are distinct. And since y is a proper part of x , y and x are also distinct. Thus, in order
to prove Theorem6, it suffices to show that x is the fusion of y and y*, that is, that an
object z overlaps x iff it overlaps y or y*.

Let z overlap x . We need to show that z overlaps y or y*. Suppose that z does not
overlap y. Now, since z overlaps x , there is a z* that is part of both z and x . Then,
since z does not overlap y, z* does not either. From this and the fact that z* is part of
x and y* a remainder of y from x , it follows that z* is part of y*. Hence, z overlaps
y*.

Let z overlap y or y*. Given that y is a proper part of x , if z overlaps y, by Lemma3,
it overlaps x . Now, suppose that z overlaps y*. Then, there is a z* that is part of both
z and y*. Since y* is a remainder of y from x , it follows that z* is part of x . Hence, z
overlaps x . ��

Definitions and notation:

– A model M1 is a submodel of another (possibly identical) model M2 iff D1 ⊆ D2
and �1=�2 ∩ (D1 × D1), i.e., M1’s relation of parthood is M2’s restricted to D1.

– A model M1 is a base for another model M2 iff M1 is a submodel of M2 such that,
for every x ∈ D2, there is a S ⊆ D1 such that x is the fusion (with regard to M2)
of S.

– A rule of composition determines fusion iff, for all models M1, M2 that are admis-
sible with regard to this rule: If M1 is a base for M2, then M1 = M2.

The aim of the following is to prove that, for any cardinal κ , in extensional mereol-
ogy, CCκ determines fusion. For this, we will first have to prove a number of auxiliary
results, before we can proceed to the proof of the theorem.
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Lemma 6 In every extensional model, if x and y are both fusions of the same set, then
x = y.

Proof Let x and y be fusions of S. That is, we have that {x} ≡ S ≡ {y}, and thus, by
the transitivity of≡, that {x} ≡ {y}. Now, suppose for contradiction that x = y. Then,
by the antisymmetry of parthood, either (a) x � y, or (b), y � x (or both). Suppose,
without loss of generality, that (a). Then, by Strong Supplementation, there is a z � x
such that ¬Ozy. Thus, Ozx but ¬Ozy. Contradiction with the fact that {x} ≡ {y}. ��
Remark Due to Lemma6, we can in the following speak of ‘the fusion’ rather than ‘a
fusion’ of a set of objects.

Lemma 7 In every extensional model, if x is the fusion of S, all the objects in S are
parts of x.

Proof Assume that x is the fusion of S. Suppose for contradiction that there is a y ∈ S
such that y � x . Then, by Strong Supplementation, there is a z � y such that ¬Ozx .
Since z � y, Ozy. Hence, Ozy but ¬Ozx . Contradiction with the assumption that x
is the fusion of S. ��
Remark In difference to the proofs thus far, in what follows, more than one model
will be at stake at once. To specify whether the relevant mereological notions concern
model M1 or M2, we will thus make use of the indexes ‘1’ and ‘2’.

Lemma 8 Let M1 be a base for M2. Then: x, y ∈ D2 have a common part in D1 iff
they have a common part in D2.

Proof Let x, y ∈ D2 be arbitrary.
Let x, y have a common part in D1, say z. Then, given that D1 ⊆ D2 and that

D1-parthood is D2-parthood restricted to D1, x is a common part in D2 of x and y.
Let x, y ∈ D2 have a common part in D2, say z. Then, since M1 is a base for M2,

there is a S ⊆ D1 such that z is the fusion2of S. By Lemma7, all the objects in S are
parts of z, and thus, by the transitivity of parthood, parts of both y and x . Moreover,
by Lemma4, S = ∅. Hence, y and x have a common part in S, and thus in D1. ��
Lemma 9 Let M1, M2 be extensional models with M1 as a base for M2. Then: S ⊆ D1
is overlap2-free iff S is overlap1-free.

Proof Follows directly from Lemma8. ��
Lemma 10 Let M1, M2 be extensional models with M1 as a base for M2. Then: For
all S,U ⊆ D1, S ≡2 U iff S ≡1 U.

Proof Let S,U ⊆ D1 with S ≡2 U . Let x ∈ D1 overlap1some s ∈ S.
By Lemma8, x and s overlap2. Since S ≡2 U , it follows that there is an u ∈ U

such that x overlaps2u. Thus, by Lemma8, x and u have a common part in D1, that
is, x overlaps1a member of U .

The case that x ∈ D1 overlaps1an u ∈ U is analogous.
Let S,U ⊆ D1 with S ≡1 U . Let x ∈ D2 overlap2some s ∈ S. By Lemma8, x

and s have a common part in D1, say y. Since S ≡1 U , there is an u ∈ U such that y
overlaps1u. By Lemma8, y overlaps2u. By Lemma3, it follows that x overlaps2u.

The case that x ∈ D2 overlaps2an u ∈ U is analogous. ��
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Theorem 7 (DeterminationofFusion)Foranyκ , CCκ determines fusion in extensional
mereology.

Proof Let M1 and M2 be models of extensional mereology that are admissible with
respect to CCκ for some cardinal κ , such thatM1 is a base forM2. To prove Theorem6,
we have to show that D1 = D2. For this, we consider some arbitrary x ∈ D2 and show
that x ∈ D1. Then, given that D1 ⊆ D2, it follows that D1 = D2.

Since x ∈ D2 and M1 is a base for M2, there is a S ⊆ D1 such that x is the fusion2
of S, i.e., such that S ≡2 {x}. We now apply Theorem1 to S within the context of M1.
This gives us that there is an overlap1-free set S′ ⊆ Par1(S) ⊆ D1 with S′ ≡1 S. Now,
since S ≡1 S′, by Lemma10, S′ ≡2 S. And given that S ≡2 {x}, by the transitivity of
≡2, S′ ≡2 {x}. Moreover, since S′ is overlap1-free, by Lemma9, S′ is overlap2-free.
Hence, the objects in S′ compose2x .

By CCκ , it follows that S′ has less than κ many members, and by Lemma4 that
S = ∅. Moreover, S′ is overlap1-free. Hence, by CCκ , the objects in S′ compose1an
object, say y. Thus, S′ ≡1 {y}. By Lemma10, it follows that S′ ≡2 {y}, i.e., that S′ has
y as its fusion2. Since x and y are fusions2of S′ and M2 is extensional, by Lemma6,
x = y. Thus, given that y ∈ D1, x ∈ D1. ��
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