

Symbolic Logic Study Guide

By Xinli Wang

Included in this preview:

- Copyright Page
- Table of Contents
- Excerpt of Chapter 1

For additional information on adopting this book for your class, please contact us at 800.200.3908 x71 or via e-mail at info@universityreaders.com

SYMBOLIC LOGIC STUDY GUIDE

Designed to accompany the textbook *Language, Proof and Logic,* by Jon Barwise and John Etchemendy, CSLI Publications 2003

By Xinli Wang, Ph.D. Juniata College

Copyright © 2009 by Xinli Wang. All rights reserved. No part of this publication may be reprinted, reproduced, transmitted, or utilized in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information retrieval system without the written permission of University Reader Company, Inc.

First published in the United States of America in 2009 by University Reader Company, Inc.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

13 12 11 10 09 1 2 3 4 5

Printed in the United States of America

ISBN: 978-1-934269-79-4

TABLE OF CONTENTS

Part I: Class Notes1		
Section 1: Introduction	1	
Section 2: Atomic Sentences	5	
2.1. The Basic Structure of Atomic Sentences	5	
2.2. Translating Simple English Sentences into Logical Notation	9	
2.3. Methods of Proof		
2.4. Formal Proofs	13	
Section 3: Conjunctions, Disjunctions, and Negations		
3.1. Introduction to Conjunctions, Disjunctions, and Negations	16	
3.2. Logical Equivalency	19	
3.3. Translation	22	
3.4. Formal Proofs	24	
Section 4: Conditionals and Biconditionals	30	
4.1. Material Conditional/Biconditional Symbols	30	
4.2. Formal Proofs Involving the Conditional		
Section 5: Introduction to Quantification		
5.1. Basic Components of FOL		
5.2. Semantics for the Quantifiers		
5.3. Translation of Sentences with Quantifiers	41	
5.4. Logical Equivalence Involving Quantifiers		
5.5. Multiple Quantifiers	54	
Section 6: Formal Proofs Involving Quantifiers	59	
Section 7: Some Specific Uses of Quantifiers	62	
7.1. Numerical Claims		
7.2. Definite Descriptions		

Part II. Practice Quizzes	67
Section 1: Quizzes	
Quiz One	
Quiz Two	
Quiz Three	
Quiz Four	
Quiz Five	
Quiz Six	
Quiz Seven	
Quiz Eight	

Quiz Nine	
Quiz ten	
Quiz Eleven	
Quiz Twelve	
Section 2: Solutions to Quizzes	
Quiz One Solutions	
Quiz Two Solutions	
Quiz Three Solutions	
Quiz Four Solutions	
Quiz Five Solutions	
Quiz Six Solutions	
Quiz Seven Solutions	
Quiz Eight Solutions	
Quiz Nine Solutions	
Quiz Ten Solutions	
Quiz Eleven Solutions	
Quiz Twelve Solutions	

PART I: CLASS NOTES

This part contains the instructor's class notes for the course.

Section 1: Introduction (refer to pp. 1-10, 2.1 of LPL)

1. What is logic?

Arguments

(1) Some examples of arguments

Mary will marry John *only if* John loves her. John loves Mary.

Therefore, Mary will marry John.

All human beings are mortal. Socrates is a human being.

Therefore, Socrates is mortal.

If you can win the game, I would be the uncle of a monkey.

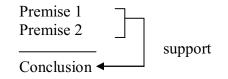
(Therefore, you will not win the game.)

I will die if I am killed. I am not killed.

Therefore, I will not die.

All the students in the room are logic students. Some logic students are really boring.

Some students in the room are boring.


Swan a is white. Swan b is white. Swan n is white.

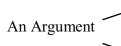
Therefore, all swans are white.

(2) Components of arguments

Definition: An argument is a group of statements, one or more of which (the premises) are claimed to provide support for, or reasons to believe, one of the others (the conclusion).

The structure of an argument:

Premises provide some grounds (not necessarily guarantee) for the truths of the conclusion. There is an inferential relationship between premises and conclusion.


(3) Deductive vs. Inductive Arguments: ...

A definition:

Logic is the study of the methods and principles used to distinguish good / cogent from bad /fallacious argument.

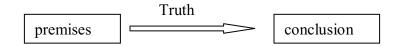
2. How to evaluate (deductive) arguments: validity and soundness

Two basic criteria of evaluation

Validity--the inferential relationship between Ps and C: Whether Ps support C and to what extent?

Soundness-the status of premises: whether Ps are true or acceptable?

A good argument: (a) All Ps are acceptable (true) and (b) Ps support C to the extent that if all Ps are true, then it is impossible for C to be false.

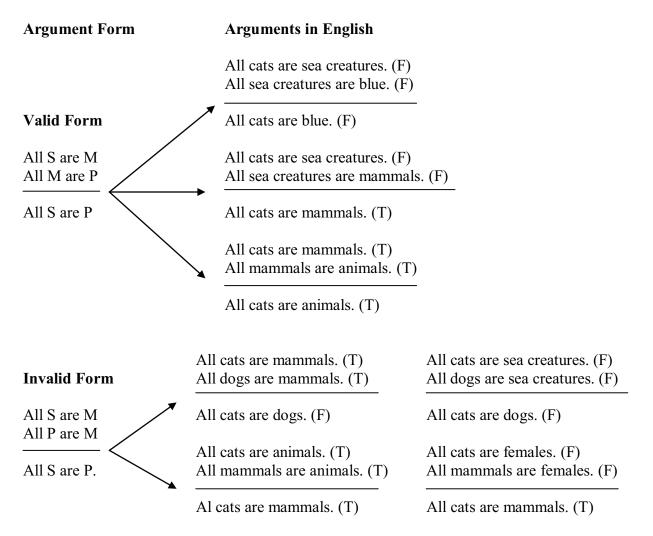

Validity

Definitions:

- An Argument is valid if and only if it is *logically impossible* for the conclusion to be false if all the premises to be true.
- An argument is valid iff the truths of the premises guarantee the truth of the conclusion.

A few feature of validity:

• Truth-preserving: from the truth of the premises to the truth of the conclusion.


• Hypothetical situation: Suppose / assume that all the premises are true, not that all the premises are actually true. For example, the following argument is valid although all the premises are actually false:

All cats are sea creatures. (False) All sea creatures are clod-blooded killers. (False)

All cats are cold-blooded killers. (False)

- All or nothing issue: validity has no degree.
- Validity of an argument is determined by the *form* of the argument only (the inferential relation between the conclusion and the premises). Validity of an argument has nothing to do with the *contents*, and therefore the actual truth-values, of the premises and the conclusion.

Examples:

Soundness

Definition: An argument is sound iff it is valid and all its premises are true.

Soundness = validity + truth of Ps.

3. How to determine whether an argument is valid?

Two steps of evaluation of validity:

Step I—Symbolization / translation: symbolize arguments in English into logical notation.

Example:

Argument in English	Argument in Logical notions
Mary will marry John <i>only if</i> John loves her. John loves Mary.	Marry (Mary, John) \rightarrow Love (John, Mary) Love (John Mary)
Therefore, Mary will marry John.	Marry (Mary, John)
	$M \rightarrow L$
	L
	M
All the students in the room are logic students.	$\forall x [(S(x) \land I(x)) \rightarrow L(x)]$
Some logic students are really boring.	$\exists x [L(x) \land B(x)]$
Some students in the room are boring.	$\exists x [(S(x) \land I(x)) \land B(x)]$

Step II—**Formal proof**: using some formal methods to determine the validity of the argument in logical notion.

	ſ	truth-tree method
Formal methods	ł	truth-table method
	L	natural derivation