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Abstract
Artificial intelligence (AI) has historically been conceptualized in anthropomorphic 
terms. Some algorithms deploy biomimetic designs in a deliberate attempt to effect 
a sort of digital isomorphism of the human brain. Others leverage more general 
learning strategies that happen to coincide with popular theories of cognitive sci-
ence and social epistemology. In this paper, I challenge the anthropomorphic cre-
dentials of the neural network algorithm, whose similarities to human cognition I 
argue are vastly overstated and narrowly construed. I submit that three alternative 
supervised learning methods—namely lasso penalties, bagging, and boosting—offer 
subtler, more interesting analogies to human reasoning as both an individual and a 
social phenomenon. Despite the temptation to fall back on anthropomorphic tropes 
when discussing AI, however, I conclude that such rhetoric is at best misleading and 
at worst downright dangerous. The impulse to humanize algorithms is an obstacle 
to properly conceptualizing the ethical challenges posed by emerging technologies.

Keywords  Artificial intelligence · Machine learning · Epistemology · Social 
epistemology · Cognitive science · Digital ethics

1  Introduction

Ever since the seminal work of Turing (1950) if not before, experts and laypeople 
alike have tended to frame computational achievements in explicitly epistemological 
terms. We speak of machines that think, learn, and infer. The name of the discipline 
itself—artificial intelligence—practically dares us to compare our human modes of 
reasoning with the behavior of algorithms. It is not always clear whether such lan-
guage is meant to be literal or metaphorical.
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In this article, I attempt to move beyond the platitudes and critically examine 
specific examples of algorithms that employ learning strategies found in cognitive 
science and social epistemology. I argue that too much emphasis has been placed 
on the purported structural similarities between biological and artificial neural net-
works. More illuminating analogies can be found in other areas of computational 
statistics, notably three cases I shall explore in considerable depth: lasso penalties, 
bagging, and boosting. While each enjoys some interesting connections to modern 
neural networks, together they constitute an extremely general collection of tech-
niques that can be fruitfully applied to almost any supervised learning algorithm. 
These methods, which are widely used in data science but mostly unfamiliar to audi-
ences beyond this domain, demonstrate how the narrow focus on mechanism as a 
locus of biological verisimilitude ignores the functional aspects of human intelli-
gence. Finally, I shall argue that while the connections between machine learning 
algorithms and human cognition may be intriguing and suggestive, the rhetoric of 
anthropomorphism can do more harm than good when it comes to conceptualizing 
the important ethical challenges posed by emerging technologies.

The rest of this paper is structured as follows. In Sect. 2, I briefly review some 
background terminology that will be essential to the proceeding analysis. In Sect. 3, 
I examine the neuroscientific inspiration behind the neural network algorithm and 
underscore three important differences between human cognition and so-called 
“deep learning”. In Sects. 4, 5, 6, I introduce lasso penalties, bagging, and boosting, 
respectively. I show how each resembles or builds upon popular theories of cogni-
tive science and social epistemology, providing informative and unexpected exam-
ples of interdisciplinary convergence. Though it is easy and tempting to speak of 
algorithms in anthropomorphic terms, I caution against such rhetoric in Sect. 7. I 
conclude in Sect. 8 with a summary.

2 � Terminology

All algorithms reviewed in this article are instances of supervised learning. The typ-
ical supervised learning setup involves a matrix of features X (a.k.a. predictors, inde-
pendent variables, etc.) and a vector of outcomes Y (a.k.a. the response, dependent 
variable, etc.) that together form some fixed but unknown joint distribution P(X, Y). 
The goal is to infer a function f that predicts Y based on X. If Y is continuous, then f 
is a regressor; if Y is categorical, then f is a classifier. For a good textbook introduc-
tion to statistical learning, see (Hastie et al. 2009).

The performance of a supervised learner f is measured by a loss function, which 
quantifies the model’s error. For instance, a classifier may record a loss of 0 for cor-
rect predictions and 1 for misclassifications. Loss can be decomposed into bias and 
variance, roughly akin to the concepts of accuracy and precision. A low-bias, high-
variance model is one that both overshoots and undershoots the mark, occasion-
ally by large margins but in roughly equal proportions. A high-bias, low-variance 
model is more consistent in its outputs—but consistently wrong. See Fig. 1 for an 
illustration. There is an inherent bias-variance trade-off in all supervised learning 
algorithms.
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Predictions from multiple models can be combined in a process known as ensem-
ble learning. A learning ensemble consists of many individual base learners or 
basis functions, whose outputs are typically pooled either by summation or averag-
ing. This strategy can be especially advantageous with low-bias, high-variance mod-
els such as decision or regression trees, which are often referred to as weak learners. 
Two popular forms of ensemble learning are reviewed in Sects. 5, 6.

A model f is judged by its ability to generalize, i.e., to successfully predict out-
comes on data that were not included in its training set. If f performs well on train-
ing samples but poorly on test samples, then we say that f is overfit—it has learned 
the properties of some particular observations, but not the underlying distribution 
from which they were drawn, P(X, Y). Overfitting may be mitigated by a number 
of clever strategies collectively referred to as regularization. Specific examples of 
regularization will be detailed in Sects. 4, 5, 6.

To guard against overfitting, models are typically evaluated not based on their in-
sample performance, but on their out-of-sample performance. Ideally, this would be 
done by training on one dataset and testing on another sampled from the same popu-
lation. However, data scarcity can make this strategy inefficient in practice. The typ-
ical solution is to implement a resampling procedure that divides the data in some 
systematic way. The most popular example of such a method is cross-validation. 
To cross-validate an algorithm, we split the data into k subsets (or folds) of roughly 
equal size. We then train k separate models, with each fold held out once for testing. 
The average generalization error across the k trials is reported.

Another common resampling procedure is based on bootstrapping. Bootstrapping 
was originally proposed as a nonparametric technique for estimating the variance of 

Fig. 1   Visual depiction of bias and variance, key concepts in evaluating supervised learning algorithms
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statistical parameters (Efron 1979). The idea is simple. Say we observe the height of 
n individuals. Our goal is to compute not just the mean of this sample, but also the 
corresponding standard error. (Of course, we could do so analytically under minimal 
parametric assumptions, but the following method applies more generally.) We cre-
ate a bootstrap sample by drawing n observations with replacement from the original 
data. The replacement step ensures a degree of variation across bootstraps, as some 
observations will appear multiple times in a single bootstrap, and others not at all. 
By recording the mean of each bootstrap sample and repeating the procedure some 
large number of times B, we get an unbiased estimate of the sampling distribution 
of the mean. The standard deviation of this distribution is a plug-in estimator for the 
standard error.

Note that a little over one third of observations will tend to be excluded from any 
given bootstrap sample. Specifically, each observation has an exclusion probability 
of e−1 ≈ 0.368 , which is extremely useful for model evaluation, since these unsam-
pled cases—the so-called out-of-bag (OOB) observations—form a natural test set. 
This will be especially important in Sects. 5, 6.

Having reviewed this background material, we may now apply the relevant con-
cepts with formal clarity to a number of machine learning algorithms.

3 � Neural Networks

Research in neural networks began in 1958 with Frank Rosenblatt’s perceptron 
model (Rosenblatt 1958). Rosenblatt was a US Navy psychologist, and the percep-
tron algorithm he developed was explicitly inspired by a mathematical idealization 
of the neuron, the brain’s most basic information processing unit. Biological neurons 
are connected by synapses that enable communication through electrical or chemi-
cal signals. Building on this idea, Rosenblatt proposed a model architecture in which 
input features are mapped to outputs through an intermediate layer of neurons (see 
Fig.  2). The weights connecting these components are analogous to the synaptic 
strength of incoming and outgoing channels. At the output layer, values are passed 
through a nonlinear activator function to mimic the thresholding effect of biological 
neurons, which respond to stimuli by either firing or not firing.

Neural networks have evolved considerably since Rosenblatt first published his 
perceptron model. Modern variants of the algorithm tend to include many more 
layers—thence the name deep neural networks (DNNs)—an approach inspired at 
least in part by anatomical research. In their influential study of the cat visual 
cortex, Hubel and Wiesel (1962) differentiated between so-called “simple” cells, 
which detect edges and curves, and “complex” cells, which combine simple cells 
to identify larger shapes with greater spatial invariance. The authors hypothesized 
that a hierarchy of neural layers could enable increasingly complex cognition, 
allowing the brain to operate at higher levels of abstraction. DNNs implement 
this theory at scale. Employing complex convolutional architectures (Krizhevsky 
et al. 2012) and clever activation functions (Glorot et al. 2011), DNNs have led 
the latest wave of excitement about and funding for AI research. Descendants of 
the perceptron algorithm now power translation services for Google (Wu et  al. 
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2016), facial recognition software for Facebook (Taigman et al. 2014), and virtual 
assistants like Apple’s Siri (Siri Team 2017).

The biomimetic approach to AI has always inspired the popular imagination. 
Writing about Rosenblatt’s perceptron, the New York Times declared in 1958 
that “The Navy has revealed the embryo of an electronic computer today that it 
expects will be able to walk, talk, see, write, reproduce itself and be conscious 
of its existence” (New York Times 1958, p. 25). The exuberance has only been 
somewhat tempered by the intervening decades. The same newspaper recently 
published a piece on DeepMind’s AlphaZero, a DNN that is the reigning world 
champion of chess, shogi, and Go (Silver et al. 2018). In the essay, Steven Stro-
gatz describes the algorithm in almost breathless language:

Most unnerving was that AlphaZero seemed to express insight. It played like 
no computer ever has, intuitively and beautifully, with a romantic, attacking 
style. It played gambits and took risks…. AlphaZero had the finesse of a 
virtuoso and the power of a machine. It was humankind’s first glimpse of an 
awesome new kind of intelligence. (Strogatz 2018)

Excitement about DNNs is hardly limited to the popular press. (Strogatz, it 
should be noted, is a professor of mathematics.) Some leading researchers in deep 
learning have suggested that the anthropomorphic connection in fact runs both 
ways, proposing that “neural networks from AI can be used as plausible simula-
cra of biological brains, potentially providing detailed explanations of the compu-
tations occurring therein” (Hassabis et al. 2017, p. 254).

Fig. 2   Schematic depiction of a single-layered neural network. Input features X are combined at each 
neuron Z, which in turn combine to produce predictions Y (From Hastie et al. (2009), p. 393)
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Indeed, this is more or less the central tenet of connectionism, a decades-old 
movement in cognitive science and philosophy that has seen a renaissance with the 
recent success of deep learning (Buckner and Garson 2019). DNNs have been used 
to model information processing at various stages of the visual cortex of human and 
nonhuman primates (Cichy et  al. 2016; Kriegeskorte 2015; Yamins and DiCarlo 
2016), achieving state of the art predictive performance while simultaneously sug-
gesting novel subcortical functions. Stinson (2016) reviews a number of epistemo-
logical advantages of connectionism, which she maintains is unique among compu-
tational models in its ability to reveal generic mechanisms in the brain. At least one 
philosopher has argued that DNNs instantiate a mode of “transformational abstrac-
tion” that resolves longstanding debates between rationalists and empiricists (Buck-
ner 2018).

There is no denying that the achievements of AlphaZero and other top performing 
DNNs are impressive. But a large and growing strain of literature in computational 
statistics has recently emphasized the limitations of these algorithms, which deviate 
from human modes of learning in several fundamental and alarming ways. A com-
plete list of the differences between DNNs and biological neural networks would 
be too long to enumerate here. See (Marcus 2018) for a good overview. Instead I 
will highlight three especially noteworthy dissimilarities that underscore the short-
comings of this paradigm, which I argue has been vastly overhyped since DNNs 
first attained state of the art performance in speech recognition (Dahl et  al. 2012; 
Mohamed et al. 2012; Raina et al. 2009) and image classification tasks (Krizhevsky 
et al. 2012; LeCun et al. 2015; Lecun et al. 1998). These results notwithstanding, 
there is good reason to believe that, compared to human brains, DNNs are brittle, 
inefficient, and myopic in specific senses to be explained below.

DNNs tend to break down in the face of minor attacks. In a landmark paper, 
Goodfellow et al. (2014) introduced generative adversarial networks (GANs), a new 
class of DNNs designed to fool other DNNs through slight perturbations of the input 
features. For instance, by adding just a small amount of noise to the pixels of a pho-
tograph, Goodfellow et al. (2015) were able to trick the high-performing ImageNet 
classifier into mislabeling a panda as a gibbon, even though differences between 
the two images are imperceptible to the human eye (see Fig. 3). Others have fooled 

Fig. 3   Example of an adversarial perturbation from Goodfellow et al. (2015), p. 3
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DNNs into misclassifying zebras as horses (Zhu et  al. 2017), bananas as toasters 
(Brown et al. 2017), and many other absurd combinations. While GANs were origi-
nally viewed as something of a curiosity in the deep learning community, they have 
since been widely recognized as a profound challenge that may undermine the appli-
cability of DNNs to safety–critical areas such as clinical medicine (Finlayson et al. 
2019) or autonomous vehicles (Eykholt et  al. 2018). Needless to say, humans are 
much more resilient to minor perturbations of our sensory stimuli. This disconnect 
between biological and artificial neural networks suggests that the latter lack some 
crucial component essential to navigating the real world.

Recent work on GANs has complicated this conclusion somewhat. Elsayed et al. 
(2018) have shown that adversarial attacks negatively influence the predictive per-
formance of time-limited humans. In a much larger study, Zhou and Firestone (2019) 
found that participants were able to decipher a wide array of adversarial examples. 
The reason may have to do with the generalizability of certain visual perturbations. 
Ilyas et al. (2019) demonstrate that attacks designed to fool one DNN often succeed 
in fooling others trained independently. The authors infer from this that adversarial 
examples are features, not bugs—i.e., that they encode true information about “non-
robust” properties of the input data that may be incomprehensible to humans. Their 
work has sparked intense interest among machine learning researchers—see (Eng-
strom et  al. 2019) for a discussion—but it is not immediately clear what lessons 
are to be drawn for the connectionist. For even if GANs do reveal some otherwise 
imperceptible reality about the underlying geometry of visual data, the fact remains 
that those representations are largely inaccessible to humans. Zhou and Firestone 
attempt to show the opposite, but they specifically rule out attacks of the sort con-
sidered above, in which an image is misclassified through thousands of minor per-
turbations. Some ability to distinguish between what Ilyas et  al. call “robust” and 
“non-robust” features—a distinction they acknowledge is inescapably anthropocen-
tric—still appears essential.

Another important flaw with DNNs is that they are woefully data inefficient. 
High-performing models typically need millions of examples to learn distinctions 
that would strike a human as immediately obvious. Geoffrey Hinton, one of the 
pioneers of DNNs and a recent recipient of the ACM’s prestigious Turing Award 
for excellence in computing, has raised the issue himself in interviews. “For a child 
to learn to recognize a cow,” he remarked, “it’s not like their mother needs to say 
‘cow’ 10,000 times” (Waldrop 2019). Indeed, even very young humans are typically 
capable of one-shot learning, generalizing from just a single instance. This is simply 
impossible for most DNNs, a limitation that is especially frustrating in cases where 
abundant, high-quality data are prohibitively expensive or difficult to collect. Gath-
ering large volumes of labelled photographs is not especially challenging, but com-
parable datasets for genetics or particle physics are another matter altogether.

Reinforcement learning arguably poses a clever workaround to this problem, in 
which synthetic data are generated as part of the training process (Sutton and Barto 
2018). However, this approach is constrained by our ability to simulate realistic data 
for the target system. Preprocessing strategies have been developed for data augmen-
tation in image recognition tasks (Perez and Wang 2017), but again these are not 
universally applicable. More importantly, neither solution addresses the underlying 
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issue—we want models to learn more with less data, not generate their own data so 
they can continue in their profligate ways. A more explicitly biomimetic approach 
would be to develop memory augmented systems, and several labs have made good 
progress in this area (Collier and Beel 2018; Graves et al. 2016; Vinyals et al. 2016). 
Unfortunately, these models often fail during training or are very slow to converge, 
which explains why they have only been implemented for relatively simple tasks to 
date. Promising though these strands of research may be, one-shot learning remains 
a significant challenge for DNNs.

A final important difference between human cognition and deep learning is that 
the latter has proven itself to be strangely myopic. The problem is most evident in 
the case of image classification. Careful analysis of the intermediate layers of con-
volutional DNNs reveals that whereas the lowest level neurons deal in pixels, higher 
level neurons operate on more meaningful features like eyes and ears, just as Hubel 
and Wiesel hypothesized (Olah et  al. 2018). Yet even top performing models can 
learn to discriminate between objects while completely failing to grasp their inter-
relationships. For instance, rearranging Kim Kardashian’s mouth and eye in Fig. 4 
actually improved the DNN’s prediction, indicating something deeply wrong with 
the underlying model, which performs well on out-of-sample data (Bourdakos 
2017).

Zhou and Firestone (2019) hypothesize that the alleged myopia problem is just a 
byproduct of the requirement that DNNs select a label from a constrained choice set. 
They write:

Whereas humans have separate concepts for appearing like something vs. 
appearing to be that thing—as when a cloud looks like a dog without looking 
like it is a dog…[DNNs] are not permitted to make this distinction, instead 
being forced to play the game of picking whichever label in their repertoire 
best matches an image… (p. 8)

Fig. 4   Predictions from a convolutional DNN on two images of Kim Kardashian. Alarmingly, rearrang-
ing her facial features does not adversely affect the model’s prediction (From Bourdakos (2017))
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This explanation goes some way toward explaining the perplexing results of 
the perturbed Kim Kardashian image in Fig. 4. However, the true problem runs 
deeper than Zhou and Firestone suggest. Hinton argues that myopia is hardwired 
into convolutional DNNs via the max pooling function, which compresses the 
information between layers (Hinton et al. 2011). Max pooling discards valuable 
spatial information that humans use to identify and interact with objects, los-
ing all semblance of structural hierarchies in the process. Thus any combination 
of eyes, nose, and mouth will suffice for a convolutional DNN—not because of 
external constraints on the choice set, but because of intrinsic limitations of the 
model architecture. Hinton et al. recently proposed a new algorithm called cap-
sule networks in an effort to overcome these deficiencies (Hinton et al. 2018; Sab-
our et al. 2017), but the technology is still in its infancy (Fig. 5).

The problems of algorithmic brittleness, inefficiency, and myopia are not 
unique to DNNs—although these models are perhaps the worst offenders on all 
fronts—nor do they undermine the central premise of connectionism, a bold and 
fruitful theory that has generated much valuable research in AI, cognitive sci-
ence, philosophy of mind. What these objections do establish, however, is that 
the ostensible affinities between biological brains and modern DNNs should 
be treated with skepticism. The anthropomorphic hype around deep learning is 
uncritical and overblown. It would be a mistake to say that these algorithms rec-
reate human intelligence; instead, they introduce some new mode of inference 
that outperforms us in some ways and falls short in others.

Often lost in the excitement surrounding DNNs is the fact that other 
approaches to machine learning exist, many with considerable advantages over 
neural networks on a wide range of tasks. The next three sections are devoted to 
several such methods, with an emphasis on their epistemological underpinnings 
and anthropomorphic connections.

Fig. 5   Example of the “lasso path” of model coefficients in a linear regression. All weights converge 
toward zero as the penalty parameter increases. Adapted from the glmnet package vignette (Hastie and  
Qian 2014)
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4 � Lasso Penalties

Lasso penalties are a popular form of regularization in machine learning. They are 
designed for modelling sparse datasets, i.e., those in which at least some of our 
recorded variables are uninformative with respect to the response. For instance, 
biological knowledge tells us that only a small percentage of genes are likely to 
be involved in any given clinical outcome. However, high-throughput technologies 
allow scientists to test thousands or even millions of genetic associations in a single 
experiment. The lasso provides a fast, principled method for selecting top features in 
such settings.

Originally introduced by Robert Tibshirani (1996), lasso penalties impose a cost 
not just on predictive errors—that is the role of the loss function—but on the model 
parameters themselves, preventing them from growing too large in absolute value. 
For instance, a linear regression with a lasso penalty solves the following optimiza-
tion problem:

The first summand corresponds to the mean square error, the typical loss func-
tion in regression tasks. The second summand puts a data-adaptive weight � on 
the L1-norm (i.e., the sum of absolute values) of the coefficient vector � . This term 
effectively shrinks all model parameters toward 0. At the optimal value of the lasso 
penalty � , usually selected via cross-validation, this algorithm will tend to remove 
uninformative predictors altogether.

The basic intuition behind the lasso is that datasets are often intolerably noisy. 
We need some sensible method for eliminating variables that hinder our ability to 
detect and exploit signals of interest. The lasso is not the only way to achieve this 
goal. Several sparsity-inducing Bayesian priors have been proposed to similar effect 
(Carvalho et al. 2010; Ishwaran and Rao 2005). So-called “greedy” algorithms like 
stepwise regression and recursive feature elimination iteratively remove predictors 
by comparing nested models (Guyon et  al. 2002). Projection techniques such as 
principal component analysis (Jolliffe 2002) and t-stochastic neighborhood embed-
ding (van der Maaten and Hinton 2008) are designed to recover latent variables, 
low-dimensional data projections that preserve as much information as possible 
from the original high-dimensional feature space.

The lasso is unique, however, in its combination of speed and interpretabil-
ity. Recursive refitting can be prohibitively slow with large datasets, and stepwise 
regression is inapplicable when features outnumber samples. Bayesian methods are 
notorious for their computational overhead. By contrast, fast optimization algorithms 
exist for computing complete lasso paths in generalized linear models (Friedman 
et al. 2010) and estimating sparse inverse covariance matrices (Friedman et al. 2007) 
without any dimensionality constraints. Whereas projection techniques require com-
plex, potentially nonlinear combinations of the original inputs, a fitted lasso regres-
sion is no more difficult to understand than an ordinary linear model, with nonzero 
coefficients on just a subset of the original features. These practical advantages help 

min
�∈ℝp

1

n
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2
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explain why lasso penalties have become so widespread in contemporary statistics 
and machine learning, as they enable the analysis of high-dimensional datasets that 
are challenging or impossible to model using traditional regression and classifica-
tion techniques (Bühlmann and van de Geer 2011).

It is worth noting that lasso penalties can be used in conjunction with neural 
networks. For instance, penalizing the L1-norm of the weight vector for a given 
layer will tend to encourage sparse representations that zero out uninformative 
nodes (Olshausen and Field 1997). Other sparsity-inducing methods are commonly 
deployed in DNNs to prevent against overfitting and stabilize the hidden layers of 
unsupervised autoencoders (Lee et al. 2008; Makhzani and Frey 2013). Indeed, the 
concept behind lasso penalties is extremely general, and can be used to regularize 
parameters in a wide array of algorithms.

The computational advantages of the lasso are not limited to machine learning 
problems, however. This regularization technique bears a striking resemblance to a 
process psychologists call sensory gating, i.e., the suppression of irrelevant stimuli 
in one’s immediate phenomenal experience. Sensory gating prevents flooding of the 
higher cortical centers, which can make it difficult for agents to efficiently process 
information. Studies have shown that sensory gating is a fundamental aspect of early 
childhood development (Kisley et al. 2003). Gating deficiencies are associated with 
a wide range of psychiatric conditions, including epilepsy (Boutros et  al. 2006), 
Alzheimer’s Disease (Jessen et al. 2001), and schizophrenia (Bramon et al. 2004). 
Experiments conducted on animal and human subjects have revealed complex physi-
ological underpinnings of gating behavior, which has been observed in single neu-
rons as well as sensory, motor, and limbic subregions of the brain (Cromwell et al. 
2008).

Lasso penalties have the same inhibitory effect on noisy variables that gating has 
on uninformative sensory inputs. Both methods thrive in complex systems where 
attention must be selectively apportioned. Just as a model that puts too much weight 
on irrelevant features will perform poorly on new datasets, so an individual who 
does not screen sensory data will struggle to function in new environments. Of 
course, there are major differences between the two. For instance, the lasso imposes 
a global penalty that simultaneously drives all parameters toward zero, while sen-
sory gating is more selective in its screening mechanism. In this respect, sparsity-
inducing Bayesian methods are perhaps more directly analogous to sensory gating. 
However, the overall effect is similar.

To the best of my knowledge, no research in lasso penalties has been explicitly 
motivated by connections to the cognitive process of sensory gating. Yet the success 
of this statistical technique can be at least partly explained by the fact that it imple-
ments a strategy that is essential to human intelligence.

5 � Bagging

“Bagging” is a portmanteau of “bootstrap aggregating”. The term was coined by 
Breiman (1996), whose seminal contributions to statistical learning include the orig-
inal classification and regression tree (CART) algorithm (Breiman et  al. 1984) as 
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well as random forests (Breiman 2001). Bagging is a prime example of ensemble 
learning, defined in Sect. 2. The method is completely general and can be used in 
conjunction with any base learner.

To bag the estimates of some model f, we simply average results across a large 
number of bootstrap samples. The generalization error of a bagged prediction can 
be easily estimated using the OOB samples randomly excluded from the individual 
draws. Recall from Sect. 2 that when bootstrapping, each observation has an approx-
imately 36.8% exclusion probability. Thus, to calculate the error at a single data 
point, we restrict our attention to the B∗ ≈ B∕e basis functions in which it was not 
selected for training. By repeating this procedure across all n samples and averaging, 
we can efficiently compute an unbiased estimate of the ensemble’s test error.

Bagging is most widely used with CART or some other tree-based algorithm 
as the base learner. One reason for this is that decision trees are unstable predic-
tors—they are low-bias, high-variance models that benefit from bagging since over-
estimates and underestimates tend to cancel out over a sufficiently large number of 
bootstrap replicates. Bagging also smooths out the jagged decision boundaries and 
regression surfaces induced by recursive partitioning—the basis of all tree-based 
algorithms—which naturally produces step functions (see Fig.  6). As a practi-
cal note, bagging can take advantage of parallel processing power by distributing 
base learners across multiple cores, dramatically decreasing run time on modern 
machines.

Bagging is the key statistical innovation behind the random forest algorithm, 
one of the most popular techniques in all of supervised learning. Random forests 
have generated state of the art results in a number of quantitative disciplines, includ-
ing genomics (Chen and Ishwaran 2012), econometrics (Mullainathan and Spiess 
2017), and computational linguistics (Kontonatsios et al. 2014). The statistical the-
ory underlying random forests and other bagged estimators has proven surprisingly 
difficult to develop, mostly due to tricky problems arising from the bootstrapping 
procedure. In fact, it is common for statisticians to prove theorems about a slightly 
modified version of the algorithm in which base learners are trained not on bootstrap 
samples, but rather on data subsamples—i.e., observations drawn randomly with-
out replacement—which are more theoretically tractable (Mentch and Hooker 2016; 
Scornet et al. 2015; Wager and Athey 2018). However, bootstrapping tends to pro-
duce better results in practice, which is why the method remains popular among data 
scientists.

Although bagging is not typically used with neural networks, the method is often 
compared to a popular regularization technique for DNNs known as dropout (Hin-
ton et al. 2012; Srivastava et al. 2014; Warde-Farley et al. 2013). The basic idea of 
dropout is simple: randomly exclude some proportion of units during each round 
of model training. This effectively creates an ensemble of subnetworks that share 
parameters, and predictions can be interpreted as outputs averaged across the ensem-
ble. There are important differences between bagging and dropout—the former 
introduces randomness by bootstrapping observations, while the latter does so by 
sampling from the set of possible subnetworks—but the overall effect is similar. 
By combining the perspectives of numerous different models, the ensemble outper-
forms any of its constituent members.
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The success and broad applicability of bagging should come as no surprise to 
anyone familiar with the so-called “wisdom of crowds”. Despite the resurgence of 
interest in aggregated decision-making due to web-enabled mass communication 
(Kittur and Kraut 2008), the basic concept at work here is in fact quite old. Con-
dorcet’s jury theorem (1785) states that any verdict reached by a set of independ-
ent and better than random jurors is more likely to be correct than the judgment 
of any individual juror. Moreover, the probability of a correct majority judgment 
approaches 1 as the jury size increases. Galton famously reported in 1907 that 
observers at a county fair accurately guessed the weight of an ox—not individu-
ally, but in aggregate, when their estimates were averaged (Galton 1907). Faith 
in humanity’s collective wisdom arguably undergirds all free markets, where 
information from a variety of sources is efficiently combined to determine the fair 
price of assets (Fama 1965). Crowd sourcing has recently become popular in the 
natural sciences, where online enthusiasts have helped map the neural circuitry of 
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Fig. 6   Bagged estimates converging on a sine function as the number of trees in the ensemble increases
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the mammalian retina (Kim et  al. 2014) and discover new astronomical objects 
(Cardamone et al. 2009; Watson and Floridi 2018).

Just as lasso penalties mirror the process of sensory gating, bagging implements 
a computational version of this fundamental principle of social epistemology. By 
pooling the estimates of many better than random models (i.e., weak learners) we 
can create a single high-performing ensemble capable of modelling extremely com-
plex systems with irregular decision boundaries and regression surfaces. In his book 
The Wisdom of Crowds (2004), Surowiecki identifies five criteria that he argues dis-
tinguish wise from irrational groups: (1) diversity of opinion; (2) independence; (3) 
decentralization; (4) aggregation; and (5) trust. Bagging meets all four criteria that 
are relevant in statistical applications. (It is hard to imagine how a base learner could 
“trust” the ensemble to be fair?) The random perturbations induced by bootstrap-
ping ensure diversity across the submodels. Each sample is treated independently 
of all the rest, to the extent that base learners are often trained in parallel. The sys-
tem is completely decentralized, with no global parameters governing the ensemble. 
Finally, aggregation is simple—voting in the case of classification and averaging in 
the case of regression.

6 � Boosting

Boosting is another ensemble method, similar in some respects to bagging. How-
ever, whereas base learners in bagged models are fit independently of one another, 
boosting is a sequential procedure in which each model builds upon the last. Thus f2 
attempts to correct what f1 got wrong, f3 focuses on the errors of f2, and so on. Much 
like bagging, boosting is a completely general approach that can work in principle 
with any combination of base learners. In practice, it is most often used with deci-
sion or regression trees.

Boosted predictions are made by summing across the individual basis functions. 
Stochastic gradient boosting, the most popular modern form of the algorithm, oper-
ates on bootstraps or subsamples of the original data to train each base learner, 
thereby enabling fast OOB estimation of the overall generalization error.

The first successful boosting algorithm was implemented by Freund and Shapire 
(1997). Their pioneering AdaBoost algorithm earned them the 2003 Gödel Prize, 
one of theoretical computer science’s highest honors. Subsequent improvements by 
Friedman (2001, 2002) and more recently Chen and Guestrin (2016) have rendered 
boosting one of the most powerful methods in all of machine learning. The latter 
authors introduced XGBoost, an especially fast and scalable version that has gone on 
to dominate in a number of public data science competitions (Gorman 2017). Bayes-
ian versions of boosting have also been developed (Chipman et al. 2010) with exten-
sions to causal inference (Hahn et al. 2017; Hill 2011), survival analysis (Sparapani 
et al. 2016), and high-dimensional modeling (Linero 2018; Linero and Yang 2018).

The statistical properties of boosting have been difficult to establish, although 
solid progress has been made in the last decade, especially with regards to the origi-
nal AdaBoost algorithm (Schapire and Freund 2012). Suggestive connections have 
been drawn between boosting and game theory (Freund and Schapire 1996), while 
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information geometric interpretations have opened up new lines of inquiry (Murata 
et al. 2004). Researchers in this area tend to follow a similar strategy to those who 
study bagging, relying on slight idealizations to derive convergence rates and other 
relevant theorems (Bühlmann and Hothorn 2007; Bühlmann and Yu 2003; Ehrlinger 
and Ishwaran 2012).

Boosting requires the careful calibration of several hyperparameters, which 
makes it somewhat less user-friendly than bagging. For instance, whereas bagged 
estimates do not degrade as the number of bootstraps B grows large, boosting is 
much more susceptible to overfitting. To offset against this, a shrinkage coefficient � 
is often used to moderate the learning rate. The XGBoost algorithm includes a num-
ber of additional parameters that control everything from the overarching architec-
ture of the model to the recursive partitioning subroutine. Bayesian methods intro-
duce a number of extra parameters to define prior distributions, although sensible 
defaults have been shown to work well in a wide variety of settings. Cross-validating 
the optimal values for all these parameters can be time-consuming, but the extra 
effort is often worth it. Hastie et al. (2009) observe that boosting tends to dominate 
bagging in most applications.

The sequential nature of boosting bears some striking similarities to a process 
cognitive scientists call predictive coding (Rao and Ballard 1999). According to 
this theory, human perception is a dynamic inference problem in which the brain is 
constantly attempting to classify the objects of phenomenal experience and updat-
ing predictions based on new sensory information. In addition to its popularity as a 
model of information processing in the visual cortex (Huang and Rao 2011), predic-
tive coding has also been extended to sensorimotor functions (Körding and Wolp-
ert 2007) and mirror neuronal systems (Kilner et al. 2007). Some have argued that 
predictive coding provides a unified theory of cognition that applies to everything 
from perception and attention to reasoning and planning (Clark 2013). The pro-
cess is often formalized along Bayesian lines, with current predictions serving as a 
prior distribution and new data providing a likelihood for dynamic updating (Friston 
2009; Friston and Kiebel 2009). Predictive coding has also been conceptualized as 
a sort of backpropagation algorithm (Whittington and Bogacz 2019), in reference to 
the method by which neural network parameters are trained. In both routines, for-
ward passes carry predictions and backward passes carry errors. Through iterative 
refinement, the system—biological or synthetic—attempts to converge on a set of 
maximally accurate predictions.

Bayesian and connectionist interpretations notwithstanding, I propose that boost-
ing provides another helpful framework through which to understand predictive cod-
ing. The process begins with a single basis function fit to environmental stimuli. 
The resulting residual feedback becomes the target of a subsequent model, and the 
process repeats until convergence. Boosting has some practical advantages over 
Bayesian inference as a formal model for predictive coding. First, the former makes 
no parametric assumptions, which are often necessary to ensure the mathematical 
tractability of complex Bayesian updating procedures. Second, boosting with weak 
learners is more computationally efficient than integrating over high-dimensional 
distributions, an essential and time-consuming step for Bayesian inference with 
multiple input channels. Finally, boosting naturally strikes a data-adaptive balance 
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between individual basis functions, whereas Bayesian posteriors require a prior dis-
tribution to be defined upfront.

It is harder to distinguish between the statistical merits of boosting and backprop-
agation, since the two are basically just different implementations of the same opti-
mization procedure, namely gradient descent. The gradient of a function is a vector 
of partial derivatives, with one entry for each parameter of interest. By taking steps 
proportional to the negative gradient at each point, we are guaranteed to find a local 
minimum of the function. Combined with the chain rule, this small bit of calculus 
forms the mathematical basis of backpropagation (Rumelhart et al. 1986), in which 
neural networks are trained by iteratively alternating between forward and backward 
passes to find the parameter values that jointly minimize a preselected (differenti-
able) loss function. In boosting, by contrast, we proceed in an additive fashion by 
fitting f2 to the gradient of f1, f3 to the gradient of f1 + f2, and so on. In both cases, we 
gradually improve predictions by descending along the gradient of the loss function.

None of this is to say that the human brain literally implements a boosting pro-
cedure when engaged in predictive coding. However, I argue the prospect is at least 
as plausible as the Bayesian and connectionist alternatives that are currently popular 
in computational neuroscience. I suspect that all three models would tend to ren-
der similar results in most cases, especially as data accumulates. Moreover, there 
is no inconsistency between them. Neural networks can serve as basis functions for 
a boosted ensemble, and Bayesian variants of both algorithms are common. More 
interesting than the question of which model best explains predictive coding is the 
observation that all three are strong candidates, both individually and in combina-
tion. It is a strange and remarkable fact that these statistical methods developed on 
independent grounds have converged on formal procedures for modeling how the 
human brain processes sensory information.

7 � Ethical Considerations

We have now reviewed a number of supervised learning algorithms that either 
deliberately or coincidentally mirror certain aspects of human cognition to varying 
degrees. In a sense, this is only to be expected. For better or worse, we are our own 
best source of inspiration when it comes to modelling intelligence. There is nothing 
especially remarkable or problematic about this.

However, issues arise when we begin to take these metaphors and analogies too 
literally. Recent years have seen AI deployed in a number of socially sensitive con-
texts, such as credit scoring, criminal justice, and military operations (Mittelstadt 
et al. 2016). These domains frequently involve high-stakes decisions with significant 
impact on the lives of those involved. Public and private institutions have tradition-
ally relied upon human experts to adjudicate on matters of such extreme risk. This 
makes sense for at least three reasons. First, and most obviously, it is exceedingly 
important that we get these risky decisions right. Experts typically earn their title by 
demonstrating a tendency to minimize error. A second, closely related point is that 
we want to trust the reasoning that goes into important decisions. This amounts to 
an emphasis on process over product, a desire to ensure that there are no weak links 
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in the inferential chain connecting inputs and outputs. Finally, experts are an appro-
priate locus of moral responsibility. They are accountable agents deserving of praise 
or blame depending on the outcome of their actions.

To summarize, high risk decisions should ideally be made by (i) accurate, (ii) 
trustworthy, and (iii) responsible agents. Note that this is a normative claim about 
how expertise ought to work, not a descriptive claim about any particular class of 
purported experts. Of these three desiderata, AI can most plausibly be said to meet 
the first. Of course, the extent to which AI does in fact match or surpass human 
performance is an empirical question that must be handled on a case by case basis. 
Desideratum (iii), on the other hand, is a nonstarter. Algorithms may be causally 
responsible for any number of significant outcomes, but moral responsibility remains 
well beyond the ambit of even the most advanced machine learning program.

The prospects for desideratum (ii) are decidedly mixed. As we found in Sect. 3, 
trust cannot be guaranteed by mere accuracy alone, as high-performance models 
often fail in surprising ways. Proponents of algorithmic explainability are quick 
to point out that human experts are often unwilling or unable to articulate the rea-
soning behind their decisions. Human cognition is notoriously opaque (Carruthers 
2011), not to mention irrational (Kahneman 2011). Yet despite some prominent 
arguments to the contrary (Kleinberg et al. 2019), it is not clear that automated deci-
sions are much more accessible to external scrutiny. Putting aside the substantial 
issues surrounding intellectual property protections for copyrighted software (Pas-
quale 2015), we still face fundamental limits on our ability to trace the inductive 
reasoning of complex learning machines. Modern algorithms routinely contain 
millions of parameters describing subtle, nonlinear interactions. A frantic torrent 
of research in the last few years has sought to establish general-purpose tools for 
explainable AI [for recent surveys, see, e.g., Adadi and Berrada (2018) and Gui-
dotti et al. (2018)], but several commentators have observed that the target of such 
investigations remains fundamentally underdetermined (Doshi-Velez and Kim 2017; 
Lipton 2016). Prominent post hoc approaches such as LIME (Ribeiro et al. 2016) 
and SHAP (Lundberg and Lee 2017), which find local linear approximations to a 
decision boundary or regression surface, rely on strong assumptions and come with 
no statistical guarantees. Globally transparent alternatives like SLIM (Ustun and 
Rudin 2017) and CORELS (Angelino et al. 2018) enjoy some desirable mathemati-
cal properties, but do not scale well with the number of features. There is reason to 
hope that advances in explainable AI will promote greater trust for algorithms in 
future. However, as long as high-performing models remain brittle, inefficient, and 
myopic, it seems rational to withhold judgment on just how trustworthy this technol-
ogy really is, especially in high risk settings.

Perhaps we may relax these desiderata somewhat to accommodate new modes of 
trust and agency. For instance, Floridi and Sanders argue that ethical discourse has 
been “unduly constrained by its anthropocentric conception of agenthood” (2004, 
p. 350). They note that artificial agents (AAs) can be interactive, autonomous, and 
adaptable. Yet they readily concede that “it would be ridiculous to praise or blame 
an AA for its behaviour or charge it with a moral accusation” (p. 366), going on to 
clarify that AAs instantiate a form of “a responsible morality” (p. 364). In a similar 
vein, Taddeo (2010) argues that AAs can earn one another’s e-trust, an emergent 
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second-order property arising in distributed digital systems with certain first-order 
relational properties. This phenomenon is not to be confused with old-fashioned 
human trust, a considerably messier affair that cannot be adequately modelled by 
neat mathematical functions or the formal apparatus of rational choice theory. These 
views are consonant with my remarks above that DNNs exhibit a novel kind of intel-
ligence, similar in some respects but far from identical to the human original.

However, I am skeptical that these modified notions of agency and trust are suf-
ficient to upgrade AI to the level required for high-stakes decision making, or indeed 
that many of the algorithms currently in use even meet these watered-down desid-
erata. I submit that our willingness to cede ever more authority to AAs derives pri-
marily from their accuracy, and collaterally from our anthropomorphic impulse to 
conflate desiderata (i)–(iii). For better or worse, humans with an impressive track 
record of accurate judgments in some particular domain are typically regarded as 
trustworthy and responsible as well, at least with respect to their given area of exper-
tise. Thus we falsely impute these latter values to the machine when its performance 
begins to match or exceed that of human experts. This is just another example of 
the well-documented cleaving power of the digital (Floridi 2017), which regularly 
decouples features of the world that have always been indivisible, such as location 
and presence, or law and territoriality. Just because we believe that accurate deci-
sions are often made by trustworthy, responsible humans does not necessarily entail 
any inherent link between these traits.

In a 2011 article entitled “Anthropomorphism and AI”, Proudfoot concludes that 
her eponymous conjuncts are inseparable. Acutely aware of the epistemological and 
metaphysical confusions that arise from conflating human and machine intelligence, 
she recommends that “anthropomorphism be managed rather than purged” (2011, p. 
952) from AI research. The proliferation of automated decision-making systems in 
socially sensitive contexts adds moral urgency to her plea, and vividly demonstrates 
how the rhetoric of anthropomorphism has vastly outpaced the reality of contempo-
rary AI. Algorithms are not “just like us” and the temptation to pretend they are can 
have profound ethical consequences when they are deployed in high-risk domains 
like finance (Eubanks 2018) and clinical medicine (Watson et al. 2019). By anthro-
pomorphizing a statistical model, we implicitly grant it a degree of agency that not 
only overstates its true abilities, but robs us of our own autonomy.

Algorithms can only exercise their (artificial) agency as a result of a socially con-
structed context in which we have deliberately outsourced some task to the machine. 
This may be more or less reasonable in different situations. Software for filtering 
spam emails is probably unobjectionable; automated systems for criminal sentenc-
ing, on the other hand, raise legitimate concerns about the nature and meaning of 
justice in an information society. In any event, the central point—one as obvious 
as it is frequently overlooked—is that it is always humans who choose whether or 
not to abdicate this authority, to empower some piece of technology to intervene on 
our behalf. It would be a mistake to presume that this transfer of authority involves 
a simultaneous absolution of responsibility. It does not. The rhetoric of anthropo-
morphism in AI may be helpful when explaining complex models to audiences with 
minimal background in statistics and computer science. It is misleading and poten-
tially dangerous, however, when used to guide (or cloud) our ethical judgment.
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A more thoughtful and comprehensive approach to conceptualizing the ethical 
challenges posed by AI requires a proper understanding not just of how these algo-
rithms work—their strengths and weaknesses, their capabilities and limits—but of 
how they fit into a larger sociotechnical framework. The anthropomorphic impulse, 
so pervasive in the discourse on AI, is decidedly unhelpful in this regard.

8 � Conclusion

There is no denying that some of the most innovative achievements in contemporary 
machine learning are directly or indirectly inspired by prominent theories of neuro-
science, cognitive psychology, and social epistemology. Experts and laypeople alike 
actively promote the notion that these technologies are humanlike in their ability to 
find and exploit patterns in data. Yet the tendency to focus on structural affinities 
between biological and artificial neural networks suggests a mechanistic interpreta-
tion of intelligence that fails to account for functional complexities. I have argued 
that the extent to which modern algorithms mimic human intelligence is overstated 
in at least one prominent instance, but also underappreciated in other less familiar 
cases. Borders between these methods are somewhat fluid, as they can often be used 
in combination with one another. In each case, anthropomorphic analogies can help 
to frame learning strategies and even inspire novel approaches to AI research.

However, we must be cautious in our rhetoric. The anthropomorphic tendency 
in AI is not ethically neutral. The temptation to grant algorithms decision-making 
authority in socially sensitive applications threatens to undermine our ability to 
hold powerful individuals and groups accountable for their technologically-medi-
ated actions. Supervised learning provides society with some of its most powerful 
tools—and like all tools, they can be used either to help or to harm. The choice, as 
ever, is ours.
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