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Abstract: In (Weaver 2021), I showed that Boltzmann’s H-theorem does not face a 

significant threat from the reversibility paradox. I argue that my defense of the H-

theorem against that paradox can be used yet again for the purposes of resolving the 

recurrence paradox without having to endorse heavy-duty statistical assumptions 

outside of the hypothesis of molecular chaos. As in (Weaver 2021), lessons from the 

history and foundations of physics reveal precisely how such resolution is achieved. 
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1 Introduction 

 

 Ludwig Boltzmann’s (1844-1906) H-theorem entails that closed monatomic gas systems 

remain in thermodynamic equilibrium or else always increase in entropy until they reach 

thermodynamic equilibrium. The H-theorem is therefore “a demonstration of the second law of 

thermodynamics”1 in a limited domain. In the early history of statistical mechanics, two important 

objections to Boltzmann’s attempt to explain the truth of the second law of thermodynamics by 

appeal to the H-theorem were proffered. The first was called the reversibility objection. It says 

that the dynamical laws that govern the punctiform constituents of gases are time-reversal 

invariant. The performance of a time-reversal operation on dynamical laws of motion can yield a 

solution that describes an evolution that entails decreasing entropy over minus-time. Such a 

rewound evolution contradicts the H-theorem and thereby creates the reversibility paradox. The 

second objection used Henri Poincaré’s (1854-1912) recurrence theorem resulting in the creation 

of the so-called recurrence paradox.2 Poincaré’s reasoning (it is thought) entails that for 

conservative classical systems confined to some finite spatial region and that start in some initial 

states, over time those systems will evolve and end up returning to their initial states (or arbitrarily 

close to their initial states) infinitely many times.3 Eventually, the recurrence theorem was 

appropriated by both Poincaré and Ernst Zermelo (1871-1953) in attempts to show that appropriate 

non-equilibrium gas systems do not inevitably evolve toward equilibrium and stay there 

permanently. Rather, they will inevitably head back to their initial (lower entropy) states. As a 

result, some became convinced that the recurrence theorem posed a problem for both the H-

theorem and non-statistical expressions of the second law of thermodynamics. 

 Hendrik A. Lorentz (1853-1928) and others pointed out that proof of the H-theorem rests 

upon an assumption, viz., what became known as the hypothesis of molecular chaos (HMC).4  

Roughly put, the HMC states that with respect to constituents of gas systems such as those to 

which the H-theorem was thought to be applicable, pre-collision velocities of those constituents 

are uncorrelated while post-collision velocities become correlated because of collisions.5 I have 

recently argued (in Weaver 2021) that this hypothesis should be understood as an interpretive time-

asymmetric one about causation in the dynamics of collisions. He, I believe, convincingly shows 

that such an interpretive maneuver resolves the reversibility paradox (qq.v., sect. 2 and sect. 3). 

Discussions of the recurrence theorem and recurrence paradox authored by those working on 

foundations of statistical mechanics rarely mention that Poincaré’s original intention behind the 

articulation and proof of the recurrence theorem was to demonstrate the stability of the orbits of 

planets. I believe that if one takes on board the causal interpretation of the HMC (in Weaver 2021) 

after appreciating the role Poincaré’s recurrence theorem plays in Poincaré’s work on celestial 

mechanics, the solution of the recurrence paradox all but reveals itself. Surprisingly, the resulting 

resolution does not require the endorsement of any statistical or probabilistic considerations other 

than the HMC. 

 
1 (Gressman and Strain 2011, 2351). 
2 For the best scientific biographies of Poincaré, see (Gray 2013) and (Verhulst 2012). 
3 See sect. 4.3.3 for a precise statement of the recurrence theorem as it was supplied in its original context. 
4 See (Darrigol 2018, 323). On Lorentz and the development of kinetic theory, see (Kox 1982, 1990). 
5 If you ardently insist on rejecting this characterization of the HMC, I’d like to point out that the remark in 

the main text is historical in nature and that a defense of something close to this statement is beyond the scope of the 

current paper. Importantly, Boltzmann did ascribe to the HMC as it is (roughly) characterized here. See (Boltzmann 

1964, 42). See also (ibid., 58-59); (Boltzmann 1895); (Cercignani 1998, 259); and (Kuhn 1978, 64). 
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Let’s begin with a precise statement of the H-theorem and some motivation for ushering it 

back into a place of prominence within Boltzmannian statistical mechanics. 

 

2 The H-Theorem 

  

2.1 A Historically Sensitive Statement 

 

 In 1872, and then again in 1875, Boltzmann attempted to prove what has become known 

as the H-theorem (then called the minimum theorem).6 At the time, Boltzmann was concerned 

with showing that the equilibrium velocity distribution function 𝑓(𝐯) for a classical monatomic 

gas system (e.g., the noble gases helium (He), neon (Ne), argon (Ar), or krypton (Kr)) is the 

Maxwell distribution introduced by James Clerk Maxwell (1831-1879) in (1860a, 1860b, 1867): 

 

(Eq) 1:  

𝑓(𝐯) = 𝑛(
𝑚

2𝜋𝑘𝑇
)3/2 𝑒(−

𝑚(𝐯−�̅�)2

2𝑘𝑇 ) 

 

where e is Euler’s number, 𝑓(𝐯) = 𝑓(𝑣𝑥, 𝑣𝑦 , 𝑣𝑧), 𝑛 is the number density of the gas system, m is 

inertial mass, 𝑇 gives the absolute temperature of the gas, and 𝑘 is an experimentally determined 

(later called the Boltzmann) constant.7 For monatomic gases, functions such as 𝑓(𝐫, 𝐯, 𝑡)𝑑3𝐫𝑑𝟑𝐯 

provide one with the probability (at time t) that a constituent of the gas system is in the space 

volume element around (centered on) 𝐫 and velocity volume element around (centered on) 𝐯 in a 

higher-dimensional geometric space. 

The Maxwell distribution is asymptotically Gaussian. It can be shown to satisfy the 

following relation (where velocities 𝐮1 and 𝐮2 are final (post-collision) velocities, and 𝐯1 and 𝐯2 

are initial (pre-collision) velocities): 

 

(Eq) 2: 

𝑓(𝐯1)𝑓(𝐯2) = 𝑓(𝐮1)𝑓(𝐮2) 

 

By way of the experimentation of Nobel laureate Otto Stern (1888-1969), (Eq. 1) was 

shown to be the approximately correct distribution function for constituents of appropriate rarefied 

 
6 (Boltzmann 1872); (Boltzmann 1875); cf. (Boltzmann 1964, 49-55). See also (Darrigol 2018); (Segrè 1984, 

278-279); (Spohn 2001); (Uffink 2007, 2017); and (Weaver 2021) for more on these papers. On the important 

contributions of Maxwell, see (Garber et. al. 1995); (Robson et. al. 2017) and the primary and secondary literature 

cited in (Weaver 2021, sect. 2). 
7 When the classical system is more complicated featuring polyatomic gas molecules as with ammonium ion 

(𝐍𝐇𝟒
+), nitrite (𝐍𝐎𝟐

−), or chlorite (𝐂𝐈𝐎𝟐
−), the distribution function should be the Maxwell-Boltzmann distribution 

stated here as a function of energy: 

 

𝑓(𝐸) =
1

𝐴𝑒𝐸/𝑘𝑇
 

 

where A is the normalization constant. 
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gas systems in thermodynamic equilibrium.8 To establish the uniqueness of the Maxwell 

equilibrium distribution, Boltzmann specified the H-functional (initially the E-functional) as 

follows (in modern notation): 

 

(Eq) 3: 

𝐻 ≡ ∫ 𝑓 𝑙𝑜𝑔 𝑓 𝑑𝐯 

 

The distribution function was said to satisfy what has become known as the Boltzmann 

equation (first introduced in 1872 although expressed here in modern notation using a bilinear (in 

form) quadratic Boltzmann collision operator 𝑄): 

 

(Eq) 4a: 

𝑑𝑓(𝑡)

𝑑𝑡
+ 𝑣 ∙  ∇𝑟𝑓(𝑡) = 𝑄(𝑓(𝑡), 𝑓(𝑡)) 

 

where 𝑣 ∈ ℝ𝑑, Ω ⊂ ℝ𝑑 giving the spatial domain such that 𝑑 is greater than or equal to 2, and 

𝑟 ∈ Ω. Or if you prefer to forsake the collision operator and allow for an external influence (in 

3D): 

 

(Eq) 4b: 

𝜕𝑓

𝜕𝑡
+ 𝐚 ∙ 𝛁𝐯𝑓 + 𝐯 ∙ 𝛁𝐫𝑓 = ∫ 𝑑𝐯2 ∫{𝑓(𝐮1)𝑓(𝐮2) − 𝑓(𝐯1)𝑓(𝐯2)} 𝑑Ω𝑣𝜎(𝑣, 𝜃) 

 

taking the partial derivatives on the subscripts of the gradients, (again) allowing for the influence 

of an external conservative force acting on our system resulting in the existence of a potential 

connected with 𝐚 by 𝐚 = −∇𝐫
𝑈

𝑚
  (for the individual classical particle with inertial mass 𝑚). 𝑣 here 

gives the pre-collision magnitude of the relative velocity of the particles involved in the binary 

collision. 𝑑𝛺 gives the differential solid angle element that includes the post-collision relative 

velocity of the colliding particles, and 𝜎(𝑣, 𝜃) is the differential collision cross section relevant to 

those binary collisions that yield a scattering angle 𝜃 relative to an impact parameter.  

One additional expression closer to the work of Boltzmann can be useful: 

 

(Eq) 4c: 

𝜕𝑓

𝜕𝑡
= ∫ 𝑑𝐯2 ∫{𝑓(𝐮1)𝑓(𝐮2) − 𝑓(𝐯1)𝑓(𝐯2)}|𝐯1 − 𝐯2|  𝑑𝛺𝜎(𝛺) 

 

 
8 See (Stern 1946, 9-10 although the method presented on page 9 is described as “not very accurate”, the 

second method on page 10 includes no such qualification). The history is told by (Holton and Brush 2006, 322-326; 

“In addition to confirming the shape of the velocity-distribution curve predicted by Maxwell, Stern’s experiment also 

showed…” ibid., 326. At ibid., 324. n. 5, these authors describe the Maxwell distribution as “now well-proved”). 
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if 𝑑Ω𝜎(Ω) is the differential collision cross section “for a collision in which the relative velocity” 

after the collision is “in the solid angle 𝑑Ω at Ω compared to the relative velocity before.”9  

None of these versions of the Boltzmann equation are time-reversal invariant. This fact is 

often associated with the further fact that for collisions amongst the particle constituents of the 

gas, the HMC holds (Villani 2006, 784-785). You see this in Boltzmann’s efforts to show that 

(Eq. 5) below holds (Boltzmann 1964, 42). He tried as best he could to prove that if (a) the 

distribution function satisfies the Boltzmann equation and (b) the Boltzmann equation is 

omnitemporally true or applicable to the system under evaluation, then: 

 

(Inequality) 5: 

𝑑𝐻

𝑑𝑡
 ≤ 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑡𝑖𝑚𝑒 𝑡 

 

Of course, the result he was after just is the H-theorem (Huang 1987, 74). As a desired bonus, all 

of this entails that the full time-derivative of the H-functional vanishes if, and only if, the 

distribution function is Maxwellian. 

 

 2.2 The Disappearance of the H-Theorem 

 

 Modern philosophers, physicists, and mathematicians have taken up an approach to modern 

statistical mechanics that makes much of Boltzmann’s combinatorial outlook first promulgated in 

(Boltzmann 1877). This modern Boltzmannian statistical mechanics (MBSM) forsakes the H-

theorem and seeks to save the phenomena and solve many of the most important puzzles of 

statistical mechanics with some complex combination of the following theses (where (a), (b), (d-

ii), and (e) are essential components of MBSM): (a) the combinatorial statement of the Boltzmann 

entropy: 

 

(Eq) 6: 

𝑆𝐵(𝑋) = 𝑘 log 𝑣𝑜𝑙 Γ(𝑋) 

 

which asserts that the Boltzmann entropy of macrostate 𝑋 (or 𝑆𝐵(𝑋)) is equal to Boltzmann’s 

constant multiplied by the natural logarithm of the volume of the phase space region for macrostate 

𝑋10; (b) the dynamical laws (plus various auxiliary principles such as Liouville’s theorem, inter 

alia); (c) the past hypothesis, (d-i) the statistical postulate, (d-ii) the standard Lebesgue—Liouville 

 
9 (Klein 1970, 101). For more on the Boltzmann equation, see (Kremer 2010); (Villani 2002, 2008, 2006); 

and I add (Segrè 1984, 278-279) for beginners. 

 10 Or more technically, the 𝑣𝑜𝑙 Γ(𝑋) term gives the volume of the phase space region representing macrostate 

X, but it is determined by the Lebesgue—Liouville measure projection onto the energy hypersurface of the phase space 

(assuming that total energy remains constant over time so that you can work with the 6𝑁 − 1 energy surface of the 

phase space (or a thin shell around that surface) and not the full 6𝑁-dimensional phase space). 

 I resist calling (Eq. 6) or its close cousin 𝑆 = 𝑘 log 𝑊, “Boltzmann’s principle” or “Boltzmann’s law” 

because Boltzmann did not state this principle. Max Planck (1858-1947) did (Duncan and Janssen 2019, 49; 94); 

(Kragh 1999, 61). So far as I’m aware, Albert Einstein (1879-1955) was one of the earliest scholars to call the stated 

entropy formula the “Boltzmann principle” in 1905 (Einstein 1989, 86-103). 
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measure of statistical mechanics11, and (e) the probabilistic version of the second law of 

thermodynamics.12  

 Part (b) includes things like Hamilton’s equations of motion along with whatever else may 

be needed to facilitate the use of those equations (e.g., symplectic geometry and the necessary 

higher-dimensional space(s)). Part (c) says that the universe began in an exceedingly low entropy 

macrostate. Part (d-i) says that there exists a law of nature that gives a uniform probability 

distribution over the microstates that realize the initial low entropy macrostate referenced in part 

(c). For part (d-ii), see note 11, but the gist is that the standard measure enables one to make sense 

of larger and smaller volumes in coarse-grained regions of the 6N-dimensional phase space used 

to model the choice system(s) despite the fact that each region features infinitely many points 

indicative of possible states of the physical system being modeled. Part (e) just says that the most 

likely evolution of macroscopic systems is one that heads toward thermodynamic equilibrium or 

else they will remain in thermodynamic equilibrium.  

 I have detected within this movement a major influence by a prominent, although 

ultimately inaccurate story told by the eminent historian of physics Martin Klein (Mechanical 

1973, 63; Development 1973) (inter alios), a story about the place of the H-theorem in the 

development of Boltzmann’s thought.13 This standard story says, roughly, that Boltzmann 

abandoned the H-theorem and so also a statistical mechanics weighed down by it in light of the 

reversibility objection discussed in sect. 3 and/or the recurrence objection discussed in sect. 5 

below. 

 Perhaps it is unsurprising then to find that the H-theorem plays no essential role in the work 

of much contemporary statistical mechanics in general and MBSM in particular. Three recent 

(otherwise very good) textbooks on statistical mechanics say nothing about the H-theorem, viz., 

(Laurendeau 2005), (Peliti 2003), and (Sethna 2021). Frigg and Werndl (2019) present 

Boltzmannian statistical mechanics and never once mention the H-theorem. In addition, Frigg and 

Werndl’s “Entropy: A Guide to the Perplexed” states that the “H-Theorem…is generally regarded 

as problematic” (2011, 123 emphasis in the original) citing (Uffink 2007, 962-974) which at (ibid., 

967-968) emphasizes Boltzmann’s abandonment of the H-theorem in light of Loschmidt’s 

reversibility objection.14 This is an element of the erroneous standard story.  

 The Boltzmannians themselves show almost no interest in the theorem. In (Albert 2000), 

the H-theorem is mentioned only once (and there it is erroneously said that Boltzmann proved the 

theorem “rigorously” (ibid., 55)). The eminent physicist Joel L. Lebowitz (1999) authored an 

important review of statistical mechanics and never mentions the H-theorem. The same can be said 

about the (also eminent) mathematician Sheldon Goldstein (2001) in his discussion of 

 
11 On this feature, see (Callender 2011, 88). 

 12 Among some of the most notable practitioners or defenders of MBSM we may include: (Albert 2000, 

2015); (Callender 2011); (Carroll 2010); (Chakraborti et. al. 2021); (Fermi 1956); (Goldstein and Lebowitz 2004); 

(Goldstein et. al. 2017a); (Goldstein et. al. 2017b); (Goldstein et. al. 2019); (Goldstein et. al. 2020); (Lebowitz 1993a, 

1993b, 1999, 2021); (Loewer 2012, 2020); (Penrose 2004, 686-712), and a host of others. 
13 The story’s inaccuracy is proven so by (Badino 2011), (Darrigol 2018, 2021), (Kuhn 1978), (von Plato 

1994), and (Weaver 2021), with (Darrigol 2021) even correcting some of the standard translations of the relevant 

primary literature. These five authors do not always see eye-to-eye on where precisely the standard story goes wrong. 

That the story is standard is supported at (Weaver 2021, sect. 1). 
14 The other source referenced is (Emch and Liu 2002 92-105), which, in my humble opinion, hardly counts 

as a serious historical investigation despite its insightful and brilliant non-historical remarks about the Boltzmann 

equation (the title of the section). 
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“Boltzmann’s Approach to Statistical Mechanics”.15 Callender (2011, 86-87) discusses the H-

theorem but cites as his choice authority on the background history (Brown, Myrvold and Uffink 

2009) whom at (ibid., 185, 187) buy into that part of the standard story that emphasizes the 

abandonment of the H-theorem due to Loschmidt’s reversibility objection. You can also see in 

Callender (2011, 86-87) itself an indication that Boltzmann’s H-theorem was rightly seen by his 

contemporaries to be problematic because the mechanics on which it leans is “quasi-periodic and 

time-reversal invariant” (ibid., 87). It is reasonable to believe that the two features Callender 

references are implicitly connected to the recurrence and reversibility objections respectively.  

 Again and again, work on MBSM highlights the insights of (Boltzmann 1877) over against 

the actual target of the reversibility and recurrence objections, viz., the H-theorem.16 I believe it is 

therefore a reasonable conclusion that a large contingent of physicists, mathematicians, and 

philosophers adopt a view of the H-theorem that has been summarized by Carroll (2010, 172):  

The H-theorem is but “an amusing relic of intellectual history” (ibid.).17 

 

 2.3 The Lasting Importance of the H-Theorem 

  2.3.1 The Illustrious History 

 

 The decision to overlook or ignore the H-theorem, the decision to regard it as merely “an 

amusing relic of intellectual history” is a mistake. My (continued) reassessment of MBSM puts 

the H-theorem front and center, using it as the chief means whereby a mechanical explanation of 

the second law is obtained. Pushing for such prime placement of the H-theorem puts my project in 

clear continuity with Boltzmann’s most mature thought in the Lectures on Gas Theory while also 

aligning itself with some of the most important contributors to contemporary statistical mechanics 

(both its mathematics and physics), for there are those like me who agree with Richard C. Tolman’s 

(1881-1948) remark that “[t]he derivation of this [H-]theorem and the appreciation of its 

significance may be regarded as among the greatest achievements of physical science” (Tolman 

1979, 134). The reason why it is such an achievement is easy to see. For recall that “[t]he H-

theorem shows that because [of]…collisions the quantity H decreases monotonically with 

increasing time” (Ehrenfest and Ehrenfest 1990, 14). However, “[t]he monotonic decrease of 𝐻(𝑡) 

 
15 One might think that (Goldstein 2001, 44) implicitly references the H-theorem, but it doesn’t. There, 

Goldstein seems to be under the false impression that Boltzmann’s final or most mature view of statistical mechanics 

(notice the wording: “Boltzmann did not (finally) claim”) is the one given in his 1877 paper, the memoir in which 

Boltzmann communicates his probabilistic approach. And so, Goldstein relates both the reversibility and recurrence 

objections to Boltzmann’s combinatorial arguments or viewpoint first stated in 1877. Boltzmann’s most mature 

thought was actually communicated in his Lectures on Gas Theory (1964) (with vol. 1 appearing in 1896, and vol. 2 

appearing in 1898). These lectures hold a very high view of the H-theorem and hardly interact with (Boltzmann 1877). 

Let me add here that Goldstein’s work on MBSM is of the very highest quality and deserves serious study 

and praise.. 
16 As North’s discussion of Boltzmannian statistical mechanics asserts (2011, 319 emphasis mine) 

“Boltzmann’s key insights were developed in response to the so-called reversibility objections (of Loschmidt and 

Zermelo).” North then cites (Brush 1975), which I believe really should be either (Brush 1976a) or (Brush 1976b). I 

am unsure which source was intended. Be that as it may, Brush is a proponent of key aspects of the standard story as 

articulated by Klein before him. See, for example, (Brush 1974, 52-53, 56). 

 17 I am not claiming these thinkers have no arguments for their understanding. For example, Maudlin (1995, 

146-147) rejects the incorporation of the H-theorem into a modern statistical mechanics on the grounds that it requires 

a modification of “the underlying dynamics by adding some ‘rerandomization’ posit”, but (Maudlin continues) such 

a “surreptitious” modification is without justification. Maudlin is wrong here. See the discussion of the empirical 

evidence for the HMC at (Weaver 2021 sect. 8.2.2). 
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demonstrated by Boltzmann…implies that the entropy…state increase[s] with time” (O. Penrose 

1970, 200). The H-theorem therefore proves the second law even if in a limited domain. But more 

can be said. The H-theorem’s consequences aren’t just profound, and its history isn’t merely 

illustrious. The theorem enjoys indirect empirical support, it has been set atop mathematically 

rigorous foundations in several respects, and it has been rigorously shown to have analogs in both 

non-relativistic and relativistic quantum mechanics. 

 

  2.3.2 The Empirical and Mathematically Rigorous Success 

 

 The Boltzmann equation is commonly used with profound success in a great many domains 

of physics (e.g., to study neutron transport, plasma systems, and transport coefficients for various 

thermodynamic processes etc.). It was derived (given an asymmetry of incoming and outgoing 

configurations) from Hamilton’s equations of motion in the Boltzmann-Grad limit by Oscar 

Lanford III (1940-2013) in (Lanford 1975, although only an outline of the proof appears there).  

According to Carlo Cercignani (1939-2010) (1998, 96), the first truly rigorous proof of the 

H-theorem for the classical monatomic case was provided by Torsten Carleman (1892-1949) in 

(Carleman 1933; 1957). However, (according to Weinberg 2021) Josiah Willard Gibbs (1839-

1903) proved a generalized H-theorem in his Elementary Principles in Statistical Mechanics 

(Gibbs 1960). Gibbs’ proof shows that the H-functional will decrease to a minimum and remain 

there. Gibbs’ argumentation receives an updated rigorous formulation in (Weinberg 2021, 35-37). 

Additional modern proofs of the H-theorem for the monatomic gas cases can be found in 

(Cercignani 1998, 273-276) and (Tolman 1979, 136-142).18 Both (Cercignani 1998) and (Darrigol 

2018) proved H-theorems for classical polyatomic gas types.  

 

  2.3.3 The Quantum Analogs 

 

The quantum Boltzmann equation was formulated by (Nordheim 1928) and (Uehling and 

Uhlenbeck 1933). It is therefore not surprising then to see an H-theorem in a full non-relativistic 

quantum regime along with a proof that includes a quantum analog of the HMC.19 But perhaps it 

is surprising to see an analog of the H-theorem in relativistic quantum mechanics that includes (as 

in non-relativistic quantum mechanics) an analog of the HMC. In quantum field theoretic 

statistical mechanics, the equilibration entailed by the analogous H-theorem there follows from 

features of the continuous wave function in keeping with a metaphysics of QFT that privileges 

fields over particles. It assumes the system is closed and truly out of equilibrium (not in touch with 

a heat bath), and the Boltzmann equation needed for the H-theorem in that context is rigorously 

derived in (Snoke, Liu, and Girvin 2012 which includes a proof of the quantum field theoretic 

analog of the H-theorem). 

 

2.3.4 The Key Asymmetric Assumption 

 

 The temptation to sweep the H-theorem under the rug really does seem to come from the 

lasting conviction that it was somehow shown to be suspect by the reversibility and recurrence 

 
18 On deriving stationarity and uniqueness from Boltzmann’s H-theorem, see (Cercignani 1988, 143). 
19 See (Tolman 1979, chapter 12 entitled “The Quantum Mechanical H-Theorem” with the proof appearing 

on pages 455-477 followed by an application to interacting systems at 477-480). See also the reasoning in (Nordheim 

1928, 690-695). 
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objections (of which there are quantum analogs). The key to seeing why these objections do not 

work resides in the needed time-asymmetric assumption that is the HMC.20 What precisely is the 

HMC? My rough statement in sect. 1 is, I believe, pretty much correct. However, there is some 

debate about the precise form of the assumption in the statistical mechanics literature. Some 

(mostly philosophers following (Ehrenfest & Ehrenfest 1990)) argue that it is the Stoßzahlansatz, 

an ansatz relating the number (or the probability) of seeing a pair of molecules with velocities v1 

and v2 (around d3v1 and d3v2 respectively) to the product of finding a molecule in that same pair 

with v1 around d3v1, and the other molecule in that pair with v2 around d3v2 (see e.g., Callender 

2011, 85); (Uffink 2017 etc.). This Stoßzahlansatz is often thought to just be what some have called 

the factorization condition: 

 

(Eq) 7: 

𝑓(2)(𝐯1, 𝐯2) = 𝑓(𝐯1)𝑓(𝐯2) 

 

given that 𝑓(2) is the distribution function for two (a pair of) molecules, atoms, or particles in the 

system.21 But Fields Medal winner (for work on the Boltzmann equation) Cédric Villani (2002) 

has convincingly shown how (Eq. 7) (or related factorization expressions) does/do not fully 

capture the content of the HMC. To accurately represent the HMC, the equation must be 

sufficiently generalized, and it is unclear how to proceed. Indeed, it appears that the HMC has no 

mathematical representation at all. As Villani remarked, “the physical derivation of the Boltzmann 

equation is based on the propagation of one-sided chaos, but no one knows how this property 

should be expressed mathematically…”22 Herbert Spohn concluded similarly, “the decrease of 

[the] H-function is linked to instants of molecular chaos. These properties remain a guess.”23 That 

the HMC eludes rigorous mathematical representation constitutes a problem. I have (in Weaver 

2021) called it the No Mathematics Problem (NMP).   

 There is some agreement and continuity from Lorentz and Boltzmann all the way down 

through the decades to Spohn (1991) and Villani (Villani 2006, 785), that the early or original 

characterizations were right. The HMC says that two incoming particles have velocities that are 

uncorrelated, but subsequent to collision, the velocities of those two particles become correlated.24 

This asymmetry propagates for all future time. As Lanford pointed out in (1975, 77), proofs of the 

Boltzmann equation and H-theorem “need this assumption at all positive times, not just for t = 0.” 

The HMC is therefore not merely an initial condition, for the asymmetry propagates for future 

times. 

All of the disagreement and contention about how to put the HMC aside, everyone agrees 

that it is: 

 
20 As I have already pointed out, this was first recognized by Lorentz (Lorentz 1887). It was then recognized 

by George Bryan (1864-1928) and Samuel Burbury (1831-1911). See (Bryan 1895); (Burbury 1894, 1895). Strictly 

speaking, the condition or assumption at work in the minds of others such as Burbury was not identical to the HMC 

as I’ve articulated it. See (Dias 1994) for more on Condition A, i.e., what was perceived to be the necessary assumption 

in the work of Burbury. Dias argues that Burbury’s Condition A is related and indebted to Maxwell’s Proposition II 

in (Maxwell 1860a, b).  
21 See (Callender 2011, 85); cf. (Uffink 2007, 1036). 
22 (Villani 2002, 99).  
23 (Spohn 1991, 76). I cannot launch a full defense of this point here. I ask the reader to see the reasoning in 

(Villani 2002) for a more rigorous defense. 
24 I will now speak as if the constituents of monatomic gases are particles, and use the terms ‘particles’ and 

‘molecules’ interchangeably.  
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(i) …about collisions, the driving force of entropic increase 

(ii) …not merely an initial condition (the one-sided chaos propagates) 

(iii)…not part of the classical dynamical equations of motion (it is sometimes called an “extra” 

mechanical assumption) 

(iv) …and like the Boltzmann equation, the HMC is not time-symmetric. The direction of 

chaos propagation is toward the future and not toward the past. 

 

 We should now ask: why is the HMC temporally asymmetric? What explains its temporal 

arrow? This is the Chaos Asymmetry Problem (CAP).25  

Let’s now turn to the provision of some motivation for the resolution of the reversibility 

paradox (which also resolves the NMP and CAP) in (Weaver 2021) to motivate the causal 

interpretation of the HMC. 

 

3 The Reversibility Paradox 

 

 In (Weaver 2021), I argued that the resolution of the CAP and NMP resides in the 

resolution of yet another problem, viz., the reversibility paradox already introduced. First 

proposed (to Boltzmann) by Boltzmann’s colleague, Johann Josef Loschmidt (1821-1895), 

William Thomson (or Lord Kelvin; 1824-1907), and then later by Edward P. Culverwell (1855-

1931), the reversibility worry capitalizes on the time-reversal invariance of the microdynamics of 

statistical mechanical systems.26 Again, it says that if all of the velocities of the molecules of a 

(e.g., monatomic) gas system are reversed under the performance of the time-reversal operation 

(remembering that this involves flipping the sign of t and also reversing or flipping all signs of all 

odd forms of t), H will increase over minus-time and as a result, the gas system will evolve away 

from the Maxwell distribution instead of toward it. Such a result very plainly contradicts the H-

theorem which in this case entails that for monatomic gas systems, H monotonically decreases 

over time until it hits the Maxwell distribution (I’m assuming that the Boltzmann equation holds 

for such systems and that for them f satisfies the Boltzmann equation for all times of their 

evolutions).  

 My resolution of the reversibility paradox capitalized on what I insisted was a metaphysical 

and interpretive hypothesis about the nature of the acting forces in collisions between molecules, 

the very collisions referenced by the HMC. My choice interpretive hypothesis affirmed (Causal 

Collisions): 

 

Within the collisions that are quantified over by the…HMC…and that produce entropic 

increase thereby making true the Boltzmann equation…and H-theorem…are instances 

of an obtaining fundamental causal relation that is formally and temporally asymmetric. 

Particular instances of this fundamental relation in evolutions of thermodynamic 

 
25 On the Lanford theorem and the assumed factorization condition, plus attempted resolutions of the NMP 

and CAP in that program, see (Uffink and Valente 2010) and (Weaver 2021, Appendix 2). 
26 See (Loschmidt 1876); (Thomson 1874); (Culverwell 1894). There has been some important recent work 

on Boltzmann’s reply to Loschmidt at (Darrigol 2021). I argue that Boltzmann probably read (Thomson 1874) in 

(Weaver 2021).  



 11 

systems necessitate one-sided chaos and produce the velocity correlations referenced by 

the HMC.27 

 

Monatomic gas systems march on toward equilibrium by virtue of causal interactions between 

their punctiform constituents. The correct explanation for the equilibration of relevant gas systems 

is a restricted causal explanation. The question: “Do all microphysical causal interactions 

contribute to the entropic increase of the relevant gas system, even collisions between particles 

and system boundaries?”, is an important one. I originally left it unanswered. I now add that the 

empirical successes of statistical mechanics epistemically justify the thesis that at least the 

collisions between particle constituents of gas systems contribute to entropic increase and that 

contribution is significant enough to facilitate epistemically justified approximations of 

thermodynamic properties and changes thereof. 

The causal explanatory potency of the H-theorem on its assumed HMC is what makes 

Boltzmann’s H-theorem an attempted mechanistic explanation of entropic increase and an 

attempted mechanistic explanation of the truth of the second law of thermodynamics for gas 

systems. The fact that the collisions involve a temporally asymmetric fundamental causal relation 

explains why merely reversing the velocities (under time-reversal) of statistical mechanical 

evolutions does not result in a reversed evolution of the system (the actual evolution “rewound”). 

The HMC was itself always understood as a time-asymmetric assumption, and so my (Weaver 

2021) response to the reversibility paradox reveals why, under the performance of a time-reversal 

invariance operation, that operation, appropriate solutions to the time-reversal invariant equations 

of motion, and the HMC do not entail a true description of an evolution featuring a reversed 

propagating (toward our past) one-sided chaos. It also explains why the Boltzmann equation is not 

time-reversal invariant (see the proof of this in Uffink and Valente 2010). The collisions that 

equation references are collisions involving fundamental temporally asymmetric causation. This 

is an interpretive maneuver with real empirical consequence. Of course, one would be well within 

one’s epistemic rights if one were to imagine a reversed evolution with a flipped chaos 

propagation, but that scenario is set up in an artificial manner. It is put in by hand. This resolves 

the CAP. To repeat for clarity: Why is the HMC temporally asymmetric? It is asymmetric because 

the collisions it references involve an obtaining fundamental temporally asymmetric causal 

relation. 

The systems imagined by Boltzmann (and for that matter Maxwell) were idealized systems 

with elastic collisions. The mechanical interactions are therefore governed by a time-reversal 

invariant collision theory. Why did I (in Weaver 2021) claim that one cannot secure an evolution 

of an appropriate gas system in which H increases (and so entropy decreases) over minus-time by 

way of time-reversal? I insisted (and continue to insist) that one take the HMC and the collisions 

it references seriously. The worlds or idealized systems imagined by Maxwell and Boltzmann 

feature temporally reversed evolutions (an idealized world/system rewound) and therefore do not 

feature systems that evolve in a way that can be partly described by the HMC. This is because the 

types of collisions I insert into the HMC are not idealized but are instead real-world collisions. 

The particles (approximated by point-masses) really do slam into each other. Maxwell and 

Boltzmann both modeled around such collisions using a conceptual strategy Mark Wilson has 

called physics avoidance.28 Binary collisions of point-masses yield blow-ups or singularities (in 

 
27 (Weaver 2021, p. 8) emphasis mine. 
28 (Wilson 2017). See (Darrigol 2018, 139); (Weaver 2021 sect. 7.2.1; I cite primary source literature to 

support this point.) 
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the mathematics). Therefore, neither the collision theory of Maxwell and Boltzmann, nor modern 

collision theory describe the intimate details of such collisions.29 Instead, certain collision 

parameters are used to capture the post-collision velocities of colliding subsystems, but what 

transpires during the ∆𝑡𝑠 when the subsystems interact is left without an explicit direct modeling. 

That is why the involved causation in Causal Collisions is not represented by the relevant 

mathematical models. And here, I leaned on the early pioneering work of Gottfried Wilhelm 

Leibniz when he maintained that during the relevant ∆𝑡𝑠, molecules or particles are joined by 

efficient causation (Leibniz 1989); (Leibniz 1998); (Weaver 2021, sect. 7.2.1). Thus, I am 

interpreting the HMC as a hypothesis expressly about real-world collisions that cannot be handled 

by the mathematics because that mathematics yields blow-ups. This constitutes a resolution of the 

NMP. I have explained why the HMC hides from modeling. 

I hope that what I’ve here summarized (in improved fashion) motivates my earlier (from 

Weaver 2021) approach to the reversibility paradox. Further evaluation of (Weaver 2021) is 

beyond the scope of this project. Instead, and as promised, I will argue that the H-theorem, HMC, 

and Causal Collisions can be used to solve another problem that Boltzmann’s H-theorem project 

encountered, viz., the recurrence paradox as articulated by Poincaré.30 As in (Weaver 2021), 

sensitivity to certain historical developments surrounding the early articulations of that paradox 

will be instructive for seeing how much work Causal Collisions can do. It is to that historical 

discussion that I now turn. 

 

4 Poincaré and the Three-Body Problem31 

4.1 Setting the Scene: The Essay Competition of 1889 

 

Novice mathematician, Oscar Fredrik or Oscar II (1829-1907) was king of both Norway 

and Sweden. Oscar II celebrated his 60th birthday on January 21st, 1889. To mark the occasion, he, 

and Swedish mathematician Gösta Mittag-Leffler (1846-1927) established an essay competition. 

They connected the competition to the academic journal Acta Mathematica, a journal which Oscar 

II financially supported.32 The competition prize was 2,500 Swedish crowns (or kronor) (for 

comparison, around this time, Mittag-Leffler’s annual salary was 7,000 Swedish crowns33 or 

kronor). 

In June of 1884, Mittag-Leffler sent a letter to the brilliant mathematician, Sofya 

Vasilyevna Kovalevskaya (1850-1891).34 In it, Mittag-Leffler reported on a recommendation from 

Oscar II and Carl Johan Malmsten (1814-1886) regarding the constitution of the review committee 

for the future 1889 essay competition. The list recommended: 

 

➢ …a Belgian or French mathematician such as Charles Hermite (1822-1901) 

 
29 Q.v., my brief discussion of regularization techniques and Karl Sundman’s result in sect. 5. 
30 I do not discuss in detail the objections and arguments of Zermelo. However, much of what I say in response 

to Poincaré can be used in a proper response to Zermelo as well. 
31 The following history (throughout sect. 4) is told in great detail by (Barrow-Green 1994, 1997), (Darrigol 

2018, 388-390), (Domar 1982), (Gray 2013, 253-299), (Rågstedt 2022), (Rowe 1998), and (von Plato 1994, 89-93). 

My retelling shall be heavily reliant upon this excellent historical work. I am especially indebted and reliant upon the 

work of Barrow-Green and Gray cited throughout this section. 
32 (Domar 1982, 6). 
33 (Domar 1982, 6). 
34 On Kovalevskaya, see (Audin 2011); (Cooke 1984); (Koblitz 1983); (Koblitz 2013, 107-136); 

(Kovalevskaya 1978); and (Stillman 1978).  
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➢ …an American or English mathematician such as Arthur Cayley (1821-1895) or James 

Joseph Sylvester (1814-1897) 

➢ …an Austrian or German mathematician such as Karl Weierstrass (1815-1897) 

➢ …the editor of Acta Mathematica 

➢ …an Italian or Russian mathematician such as Kovalevskaya, or Pafnuty Lvovich 

Chebyshev (1821-1894), or Francesco Brioschi (1824-1897)35 

 

Kovalevskaya thought it practically impossible to recruit as recommended (Barrow-Green 1994, 

109; 1997, 55). In the end, there were four topics with but three judges for discerning a winner, 

viz., Hermite36, Mittag-Leffler, and Weierstrass.  

Mittag-Leffler and company appeared to have deliberately crafted their list of topics to 

pique the interest of Poincaré. As Gray has written, “one can hardly imagine a set of questions 

better contrived to attract Poincaré: all four questions could have been tackled by him.”37 Indeed, 

one of the four topics (the fourth) directly referenced Poincare’s new function-type (i.e., fonctions 

fuchsiennes or Fuchsian functions).38  

Among the four proposed problems or questions that could be addressed in the interest of 

participating in the competition (although one could also address a topic of one’s choice), only one 

resided in the domain of celestial mechanics. That one problem was the n-body problem (see (1) 

below).39 Here is a summary (dependent upon Barrow-Green 1997, 51-70 and Gray 2013, 267-

268) of the first question/issue (probably) recommended by Weierstrass40: 

 

(1) Suppose there’s an n-particle system whose citizen particles never interact by way of 

contact collisions and whose citizen particles are all under the sway of Newtonian 

gravitation.41 Is there a way to demonstrate the stability of the planetary orbits by 

looking to a method (reportedly communicated by Johann Peter Gustav Lejeune 

Dirichlet (1805-1859) to an anonymous mathematician who was probably Leopold 

Kronecker (1823-1891)) of integrating the differential equations of motion governing 

the aforesaid particle system assumed to approximate some planetary system? 

 
35 Summarized from the reproduction found in (Barrow-Green, 1994, 109; 1997, 53, 227-228). 
36 On Hermite’s work, see (Goldstein 2007); (Goldstein 2011); (Hermite 1905-1917) and (Hermite and 

Stieltjes 1905). 
37 (Gray 2013, 268). 
38 See (Barrow-Green 1997, 230-231). According to (Gray 2013, 268), Hermite posed the fourth question 

and admitted to doing so for the purposes of attracting Poincaré.  

Fuchsian functions are a distinguished class of automorphic functions that are defined on a disk and that are 

invariant under transformations belonging to particular discrete groups. 
39 It was probably Weierstrass who recommended the n-body problem (Barrow-Green 1994, 110 and n. 9; 

1997, 59); (Gray 2013, 268). Weierstrass had an interest in that problem himself (Mittag-Leffler 1912). For more on 

the work of Weierstrass, see (Bottazzini 2003); (Dugac 1973); (Gray 2008, 68-71, 129-133); (Gray 2015, 195-216); 

(Hawkins 1977); (Boniface 2007); and (Lützen 2003, 184-187). 
40 See n. 39. On the importance of the source of the question, q.v., sect. 4.3.2 below. 
41 The wording in the English version of the original announcement at this point is as follows: 

 

“A system being given of a number whatever of particles attracting one another mutually 

according to Newton's law, it is proposed, on the assumption that there never takes place an 

impact of two particles to expand the coordinates of each particle in a series proceeding 

according to some known functions of time and converging uniformly for any space of time” 

(As quoted in Barrow-Green 1997, 229) emphasis mine. See Appendix 1. 
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4.2 Poincaré’s Submission 

 

Poincaré submitted an entry to the competition. Submissions were supposed to be 

anonymized. Poincaré did not follow directions. Everyone knew which submission was his.42 

Mittag-Leffler and Weierstrass took a month and decided, with Hermite agreeing, that Poincaré 

won the competition. But what did Poincaré say? Poincaré exegesis was/is a difficult task. Mittag-

Leffler corresponded with Poincaré so that clarification of his submission might be acquired. This 

was an indication of further violation of the rules (Barrow-Green 1997; Gray 2013; Nabonnand 

1999).  

In the end, Poincaré would add 93 pages to the original submission to help explicate his 

many new results and ideas.43 Researchers have been unable to acquire the originally 

communicated memoir. However, (quoting Barrow-Green) “correspondence at the Institute 

Mittag-Leffler suggests that, excluding the Notes [i.e., the material Poincaré produced to help 

clarify his submission], it assumed a very similar form to the first printed version”44 that is 

(Poincaré 1889).  

That some of Poincaré’s results were new was challenged by astronomer Johan August 

Hugo Gyldén (1841-1896), a member of Acta Mathematica’s editorial board. But matters were 

(perhaps) worse. The original submission (Poincare 1889) contained an important error which was 

discovered by Poincaré in light of some questions from an assistant editor with Acta Mathematica, 

viz. Lars Edvard Phragmén (1863-1937) who was later promoted to full editor and helped to a 

position in Stockholm in light of his admirable role in the ordeal under discussion.45 Poincaré 

confessed his mistake and its severity (which was quite significant) in a letter to Mittag-Leffler 

dated December 1st, 1889 (Gray 2013, 278). Mittag-Leffler subsequently asked Poincaré to rework 

the essay with corrections despite the fact that he (i.e., Mittag-Leffler) had already begun to share 

the essay with others (e.g.., Kovalevskaya, Gyldén, and Sophus Lie (1842-1899) inter alios).46 

Poincaré did just that. The published version (Poincaré 1890 [2017]) was the result, and (to quote 

 
42 Barrow-Green (1994, 113) stated, 

 

“When Poincaré’s entry arrived it was clear that his reading of the regulations had been 

somewhat perfunctory. As required he had inscribed his memoir with an epigraph, but instead 

of enclosing a sealed envelope containing his name, he had written and signed a covering letter, 

and had also sent a personal note to Mittag-Leffler. However, since he had already told Mittag-

Leffler and Hermite of his intention to enter, and he knew that they would recognize his entry 

by its content—it was an explicit development of his earlier work on differential equations—as 

well as by his handwriting, it clearly was not a deliberate attempt to flout the procedures.” 

 

In addition, Barrow-Green (1997, 61) cites evidence that Poincaré made known to Mittag-Leffler his 

intention to submit an essay for the competition. Barrow-Green (1994, 113) states that all three judges knew that 

Poincaré would submit an essay. 
43 (Barrow-Greene 1994, 115; 1997, 65). 
44 (Barrow-Green 1997, 72) emphasis in the original. 
45 (Barrow-Green 1997, 69). The error in Poincaré’s memoir pertained to Poincaré’s remarks about 

asymptotic surfaces. See (Barrow-Green 1997, 67-69); (Gray 2013, 277-280). Poincaré incorporated high praise of 

Phragmén in the Author’s Preface to (Poincaré 1890 [2017], xix-xx). Barrow-Green (1994, 118) reports that the error 

was committed at a place in the memoir that was distinct from that place about which Phragmén had inquired. 
46 (Barrow-Green 1994, 118; 1997, 67). 
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Gray) “[i]t is in many places unchanged from the one that won the prize. In others it includes the 

material first submitted as one of the notes, and in others, where the original was in error, it is 

completely new.”47  

 

4.3 The Restricted Three-Body Problem48 

 

 Poincaré’s (Poincaré 1889) was not published. As already noted, that earlier draft was the 

object of significant revisions and additions. The published version of his now famous memoir 

featured the title, “Sur le problème des trois corps et les équations de la dynamique”, or “The 

Three-Body Problem and the Equations of Dynamics”. It appeared in 1890.49 It helped to catapult 

Poincaré into the authorship of his three-volume magnum opus, viz., Les Méthodes Nouvelles de 

la Mécanique Céleste or The New Methods of Celestial Mechanics (Poincaré 1892, 1893, 1899).  

 Poincaré (1890) addressed a specific instance of the n-body problem called (by English 

scholars, according to Poincaré) the two degrees problem. Here, one looks at a system of three 

bodies: 

 

 Body #1 (primary): A celestial body with very large mass M 

 Body #2 (primary): A celestial body with very small mass m << M 

 Body #3 (the planetoid): A celestial body with infinitesimal mass m0 

 

The larger masses orbit their center of gravity in separate circles on the same plane, whilst the third 

orbits on that same plane. Poincaré set out to find the motion of the planetoid. In so doing, he opted 

to try and find a solution to what is now called the restricted three-body problem.50 Admittedly, 

Poincaré failed to resolve the problem. Poincaré promised to demonstrate the stability of the 

planetoid’s orbit “in the sense that” he claimed to be able to “give precise bounds on the maximum 

distance the planetoid escaped from the other two…”.51 While not as difficult as the more general 

three-body problem or the n-body problem, the two degrees (or restricted three-body) problem 

helps theorists approximate the behavior of complex systems like the Earth, Moon, and Sun.52  

How did Poincaré tackle the restricted three-body problem? 

 

4.3.1 The Mathematical Modeling 

 

Poincaré’s choice modeling technique adopted Hamilton’s equations of motion. 

Unfortunately, following Poincaré’s precise reasoning is overly difficult. Poincare’s notational 

style and mathematical modeling is quite opaque to the modern reader. For example, Poincaré did 

 
47 (Gray 2013, 280). For a taste of how (Poincaré 1889) differed from (Poincaré 1890), see the list of theorems 

appearing in the former but not in the latter at (Barrow-Green 1997, 247-248), and compare the tables of contents 

reproduced and discussed at (Barrow-Green 1997, 239-245, cf. 72-73). 
48 On the history of this problem, see (Barrow-Green 1997, 14-28). 
49 I will work with the 2017 translation of Bruce D. Popp, cited as (Poincaré 2017). See also (Poincaré 2003). 

The essay itself was originally published in volume 13 of Acta Mathematica. Important additional thoughts of Poincaré 

were published in (Poincaré  “Mechanism”, 1893). 
50 On more modern solutions to some three-body problems in classical celestial mechanics, see (Šuvakov and 

Dmitrašinović 2013). 
51 (Gray 2013, 271). 
52 There was an intense amount of interest in these types of issues at the time of the publication of Poincaré’s 

memoir. See (Whittaker 1988, 339), (Grant 1966), and (Gray 2013, 253). 
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not use notation that distinguishes between partial and full derivatives. One is forced to infer that 

derivatives with respect to time are full while the others are partial. In addition, he uses ‘F’ to pick 

out the Hamiltonian and the notation of the calculus of variations is dated. I will therefore help the 

modern reader come to grips with Poincaré’s work on the problem by modeling the unrestricted 

three-body problem with Hamilton’s equations of motion. I will then connect important elements 

of that modeling to Poincaré’s choice way of trying to come as close as he could to a solution of 

the restricted three-body problem (i.e., by proving a type of stability of the planetary orbits).53 

Start by stipulating that body #1 is b1, body #2 is b2, and that body #3 is b3. One can further 

stipulate that these bodies have gravitational masses, m1, m2, and m3 respectively. Specify that 𝑖 =
1, … , 3, let the jth generalized position coordinate of the ith body 𝑏𝑖 be 𝑞𝑖𝑗, and let the jth generalized 

velocity component of the ith body 𝑏𝑖 be the time derivative of 𝑞𝑖𝑗. Using the Gaussian gravitational 

constant k (as in Kepler’s third law; see Kopeikin et. al. 2011, 819), set k2 equal to unity and model 

with Hamiltonian equipment by first specifying a gravitational potential energy 𝑈𝑔. We are 

allowed to do this because it is a further assumption that our system is holonomic and conservative.  

 

(Eq) 8: 

𝑈𝑔 = −
𝑚2𝑚3

𝑟23
−

𝑚3𝑚1

𝑟31
−

𝑚1𝑚2

𝑟12
 

 

(Eq. 8) will help us model with Hamilton’s well-known canonical equations of motion that yield 

18 first-order differential equations. 

 

(Eq) 9 (set): 

�̇�𝑖𝑗 = −
𝜕𝐻

𝜕𝑞𝑖𝑗
, �̇�𝑖𝑗 =

𝜕𝐻

𝜕𝑝𝑖𝑗
 

 

where 𝑝𝑖𝑗 is generalized or conjugate momentum, 

 

(Eq) 10: 

𝑝𝑖𝑗 = 𝑚𝑖�̇�𝑖𝑗 

 

The Hamiltonian or total mechanical energy for the 3-body system is now the well-known 

expression: 

 

(Eq) 11: 

𝐻 = ∑
𝑝𝑖𝑗

2

2𝑚𝑖
+ 𝑈𝑔

3

𝑖,𝑗=1

 

 

 
53 Much of what’s said below is standard and need not be cited. But for good measure, I note that I lean in 

part on the following sources in this section (Barrow-Green 2008a, 726-728), (Meyer and Offin 2017, 61-102),  (Siegel 

and Moser 1995, 33-42 whose discussion involves regularization, and (Winter 1941)). 
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These equations are far more convenient than the Newtonian variety, but they are numerous in 

amount. To simplify further, one should look for a special algebraic constant that shows off a 

mathematical dependence between the involved variables (Barrow-Green 2008a). The imagined 

special mathematical object will remain the same in all solutions to the 18 first-order differential 

equations in the Hamiltonian formulation. Of course, the object-type I have in mind is the invariant 

integral introduced at (Poincaré 2017, 37-76) but already known to Leonhard Euler (1707-1783) 

and Joseph-Louis Lagrange (1736-1813) in a similar context (Barrow-Green 2008a). 

For the three-body problem, there are but 10 invariant algebraic integrals. One represents 

the conservation of total energy. Three give the conservation of angular momentum. Six others are 

used to represent the trajectory of the center of mass by connecting three of the six invariant 

integrals to relevant momentum variables, leaving the remaining three others for relevant position 

variables. 

Let’s slow down and repeat just a little bit for proper digestion. Let’s also connect what 

we’ve said about invariant integrals in the modeling to Poincaré’s way of attacking the restricted 

three-body problem 

Poincaré attempted to address the restricted three-body problem by modeling it with a 

system of canonical differential equations (Hamilton’s equations) whose solution—presupposed 

to exist—gives the periodic orbit of body #3 (the planetoid). This orbit begins at point ℘ that rests 

on an imaginary arc the points of which constitute nearby alternative initial positions for body #3’s 

periodic orbit (hence Poincaré’s discussion of nearby solutions and the like in Poincaré 2017). As 

can be discerned from the preceding discussion, crucial to modeling the arc’s movement is the 

specification of invariant (or (on the arc) constant in time) integrals. From the existence of invariant 

integrals, Poincaré could show that over the course of its evolution, body #3 (the planetoid) will 

be confined to a spatial region that is bounded (Gray 2013, 272). The recurrence theorem was then 

used to show that such confinement entails Poisson stability about which Poincaré stated: 

 

In the following, we will frequently need to be concerned with the question of stability. 

There will be stability, if the three quantities x1, x2, and x3 remain less than certain 

bounds when the time t varies from −∞ to +∞; or in other words, if the trajectory of 

the point P remains entirely in a bounded region of space…54 …For there to be stability, 

after sufficiently long time the point P has to return if not to its initial position then at 

least to a position as close to this initial position as desired. This latter meaning is how 

Poisson understood stability.55 

 

Hence, the recurrence theorem was used to demonstrate that body #3 (the planetoid) would return 

to its initial position, or arbitrarily close to its initial position. 

 

  

 
54 (Poincaré 2017, 5). 
55 (Poincaré 2017, 58). 
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4.3.2 No Collisions 

 

According to Poincaré (2017), a point ℘ would, over time, sweep out a curve defining the 

trajectory of the point representing the planetoid. ℘ must be tracked by a coordinate system 

(𝑥, 𝑦, 𝑧), or following Poincaré’s convention (𝑥1, 𝑥2,  𝑥3), differentiated with respect to time. As 

we’ve seen, one must look to a collection or system of differential equations not unlike those below 

to model accordingly56: 

 

(Eq) 12 (set): 

𝑑𝑥1

𝑑𝑡
= 𝑋1,

𝑑𝑥2

𝑑𝑡
= 𝑋2,

𝑑𝑥3

𝑑𝑡
= 𝑋3 

 

which is a specific instance of the more general set of equations: 

 

(Eq) 13 (set): 

𝑑𝑥1

𝑑𝑡
= 𝑋1,

𝑑𝑥2

𝑑𝑡
= 𝑋2 , … ,

𝑑𝑥𝑛

𝑑𝑡
= 𝑋𝑛 

 

𝑋1, 𝑋2 and 𝑋3 are assumed to be uniform analytic functionals that are respective functions of 

𝑥1, 𝑥2, and 𝑥3. It is perhaps more efficient to specify the relevant collection of equations as follows 

(𝑖 = 1, … , 𝑛): 

 

(Eq) 14: 

𝑑𝑥𝑖

𝑑𝑡
= 𝑋𝑖 

 

where 𝑋𝑖 now hides: 𝑋1, 𝑋2 and 𝑋3…etc.57 In such a case, the functions and functionals are 

generalized and the motion of ℘ travels in a 6N dimensional phase space. The trajectory of the 

point gives its evolution, and that evolution is determined by the system of differential equations.  

If 𝑛 = 3, then we are back to modeling a physical system in a 3D space, and (Eq. 12) gives the 

system’s velocity.  

In either the generalized or non-generalized cases, to model appropriately, Poincaré says 

one will need canonical dynamical differential equations of motion. This is how Poincaré’s way 

of doing things connects with our modern Hamiltonian modeling. The canonical differential 

equations are (again) Hamilton’s equations. 

Because our background theory is a classical (celestial) mechanical one, the uniformity of 

functional sets like (Eq. 12 (set)) ensures that every point features but one trajectory extending 

through it.58 Poincaré was aware of two exceptions to this rule of classical mechanics. He knew 

that “if one of” the functionals (i.e., X1, X2, X3 etc.) “becomes infinite or if all three are zero”, there 

would be “an exception” to the rule. The “points where these exceptions occur are called singular 

 
56 The equations of sect. 4.3.2 are taken from Poincaré 2017.  
57 See (Poincaré 2017, 43). 
58 (Brush 1976b, 630). 
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points.”59 The infinities mentioned here have to do with the well-known problem of singularities 

in classical dynamics, a problem which (to remind the reader) my (Weaver 2021) project 

capitalizes on. Again, in classical mechanics, when two subsystems collide, they coincide at a 

single point in space, and thus two trajectories pass through one and the same point resulting in 

unmanageable infinities indicative of singularities. Why is this important? Poincaré knew that 

anything close to a resolution of the restricted three-body problem would require that one use the 

power series technique of integrating a system of differential equations. This meant that the system 

of differential equations must feature functionals that can be expanded in increasing powers of the 

coordinate variables plus the powers of a parameter 𝜇. But there can be no expansion of this kind 

when the functionals are not analytic. They can fail to be analytic when the coordinate variable 

values blow-up as in the case of collision singularities.60 And so, “[c]ollisions result in singular 

points in Newton’s law of gravitation preventing convergence of series expansions. The problems 

considered must therefore be collisionless”.61 Rendering the restricted three-body problem 

collisionless constrains the nature of the defining system of differential equations used to recover 

motions.  

 One reason for disclosing the intimate historical details I articulated in sects. 4.1 and 4.2 

was to ensure the presentation of two facts.  

 

(a) Poincaré’s choice essay question (i.e., the first question about the n-body 

problem) was recommended for the essay competition by Weierstrass.  

 

(b) Both Mittag-Leffler and Weierstrass served as judges in the essay competition.  

 

It would be surprising if Poincaré did not believe these facts upon authoring, submitting, and 

revising his essay. Consider that while Weierstrass is only mentioned twice in (Poincaré 2017), it 

was well-known at the time that Weierstrass had an interest in the n-body problem (Mittag-Leffler 

1912). Mittag-Leffler kept Poincaré apprised of Weierstrass’s work in analysis62 and would have 

had an interest in defending and promulgating Weierstrass’s research programs because he was 

one of Weierstrass’s many brilliant students.63 In addition, Mittag-Leffler had a very good 

professional relationship with Poincaré64 and we know that Weierstrass would have had an interest 

in securing Poincaré’s response to the n-body problem because he studied Poincaré’s work closely 

interacting with him on the n-body problem before the essay competition (Bottazzini 2014; 

Nabonnand 1999). What is more, Weierstrass (quoting Barrow-Green) “designed his questions 

[including question #1] to appeal particularly to Poincaré.”65 Poincaré corresponded with Mittag-

Leffler about his intentions to submit an entry to the essay competition (see the correspondence 

 
59 The quotations in this and the preceding sentence in the main text come from (Poincaré 2017, 5). But see 

(ibid., 11-12) where Poincaré there communicates that collisions yield singular points.  
60 It’s true that Poincaré did not seem to have in mind non-collision singularities, but Paul Painlevé (1863-

1933) showed that such singularities do not obtain in the context of the three-body problem (Barrow-Green 1997, 78, 

175-197); (Painlevé 1895/2015). 
61 (Popp 2017, xii). 
62 See the correspondence cited in (Nabonnand 1999, 60). 
63 Mittag-Leffler defended Weierstrass’s accomplishments and reputation, promoting his work outside of the 

classrooms in which so much of Weierstrass’s brilliance was put on display. Mittag-Leffler studied with Weierstrass 

after his doctoral work.  
64 Mittag-Leffler looked to Poincaré to help him establish the reputation of the Acta Mathematica which he 

founded in 1882. Poincaré obliged. He published five papers in each of the first five volumes of the journal. 
65 (Barrow-Green 1997, 62). This point was made about all judges in sect. 4.1. 
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quoted at Nabonnand 1999, 61) and recall that in violation of the essay competition rules, Mittag-

Leffler and Poincaré corresponded during the evaluation of the essay competition submissions so 

that clarification of Poincaré’s submission could be acquired (q.v., sect. 4.2). Lastly, recall that 

alongside Weierstrass and Mittag-Leffler sat a third judge of the competition, viz., Hermite (q.v., 

sect. 4.1). Hermite was Poincaré’s doctoral advisor. It is therefore likely that Poincaré probably 

knew facts (a) and (b) upon authoring, submitting, and revising his essay. 

What is the significance of the fact that Poincaré probably knew both (a) and (b)? 

Weierstrass was responsible for a turn to rigor in the history and development of modern analysis. 

Weierstrass’s emphasis of rigor mainly consisted of the imposition of a methodological constraint, 

viz., to explicate and solve problems in terms of analytic functions.66 For Weierstrass, “Das letzte 

Ziel bildet immer die Darstellung einer Funktion”67 or “The final goal is always the representation 

of a function”. By “die Darstellung”, Weierstrass undoubtedly meant “analytic representation” 

(Lützen 2003, 188). Thus, when Weierstrass crafted his statement of the n-body problem as 

question #1 of the essay competition, he did so with the intent of soliciting a rigorous solution to 

that problem. Poincaré probably knew that a rigorous solution was required because he knew facts 

(a) and (b). Indeed, my observation here is supported by the already referenced interaction between 

Weierstrass and Poincaré on the n-body problem, interaction (again) that dates prior to the essay 

competition. Weierstrass communicated worries about Poincaré’s (1882) Sur l’intégration des 

équations différentielles par les séries (On the Integration of Differential Equations by Series) in 

which Poincaré had argued that differential equations have solutions whose contents are 

represented by series that converge with respect to any value of the new variable. Weierstrass 

challenged the idea by appeal to a three-body problem that involves collisions. Poincaré responded 

by noting that the new variable would become singular (because of the collisions). He then stated 

that “the formulas do not give anything” subsequent to collisions, “that is the best they have to 

do.”68 Non-coincidently then, “Weierstrass…specifically excluded collisions in the competition 

question” on the n-body problem.69 

I now invite the reader to draw the following conclusion. The system-types to which 

Poincaré’s famous recurrence theorem applies are system-types that do without collisions. The 

preclusion of collisions helped ensure a singularity-free treatment of orbital stability in the context 

of the restricted three-body problem. This was all in the name of rigor. The motivation stemmed 

from perceiving the type of modeling that the competition judges desired.70 But there’s a problem. 

Precluding collisions makes perfect sense in the context of proving the Poisson stability of 

planetary orbits. It does not make sense in the context of a general kinetic theory of gases for even 

dilute monatomic gases have constituent corpuscles that collide a plurality of times every second. 

If one desires to follow the evolution of a gas system more closely, one should not be completely 

happy with the “rigorous solutions” because they incorporate modeling walk-arounds and 

 
66 See (Gray 2008, 69-70) who argues that the picture of Weierstrass as the “arch rigorist” and “the man who 

put the edifice in place…”, while popular among historians, is not without need of cropping or qualification. For 

example, Weierstrass did not like Cauchy’s integral theorem and sought to push integrals and integration out of his 

theory of analysis. Still, Gray concludes that “[i]f Weierstrass was not some impossible paragon of rigor, he was 

nonetheless its most powerful advocate” (ibid., 71).  
67 (Weierstrass [1886] 1988, 176). 
68 As quoted and translated by (Nabonnand 1999, 60) who is my secondary source and on whom I lean for 

my readings of this exchange. 
69 (Barrow-Green 1997, 78); and (Appendix 1). 
70 This point should not be over emphasized. Poincaré’s essay still contained gaps in reasoning. This was 

Poincaré’s typical style. That style drew criticism from both Mittag-Leffler and Weierstrass. 
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finessing assumptions to avoid singularities.71 The cost is treating the system as if it does not 

involve real-world collisions between gas constituents. 

 

4.3.3 The Needed Recurrence Theorem 

 

 Poincaré’s memoir makes use of many theorems that I will not review here because they 

have received careful attention in (Barrow-Green 1997, 77-131).72 Chief among the many 

theorems is of course the recurrence theorem found at (Poincaré 2017, 58-68 where this page range 

includes the presentation of a corollary). The theorem is crucial to his efforts because (repeating a 

little bit) it establishes that there are infinitely many Poisson stable evolutions of the planetoid. 

Poincaré’s proof of the recurrence theorem did not use Henri Lebesgue’s measure theory 

(1875-1941) and neither did the proof found within Zermelo’s often discussed (later) work.73 

Lebesgue’s research on measure theory was not published until after the turn of the century 

(Lebesgue 1902). One doesn’t therefore see a modern rigorous proof of the recurrence theorem 

that makes use of measure theory until the work of Constantin Carathéodory (1873-1950) in 

(Carathéodory 1919; 1956, 296-300). There is some question among scholars in the literature about 

whether Poincaré’s proof is nonetheless sufficiently rigorous even if it doesn’t use measure theory. 

Brush (1976b, 631), Clifford Truesdell (according to evidence cited by Barrow-Green 1997, 86), 

and Wintner (1947) all maintain(ed) that Poincaré’s proof was in essence correct and sufficiently 

rigorous. I take no stand on this matter but note here that Poincaré’s reasoning at least provides 

sufficient epistemic justification for believing the consequent of the theorem based on its 

mechanical assumptions/presuppositions and antecedent.  

But what is the theorem precisely? Poincaré asked that one look to a system that is a point 

with coordinates 𝑥1, 𝑥2, 𝑥3 so that 𝑛 = 3. He then assumed that this point remains in a finite 

boundary or area with a finite volume described by an invariant integral which he wrote as: 

 

∫ 𝑑𝑥1𝑑𝑥2𝑑𝑥3 

 
71 The use of potentials such as the Lennard-Jones potential (LJ-P) to help model collisions is yet another 

way in which physicists practice walk-arounds. The LJ-P says: 

 

𝑉(𝑟) = 4𝜖[(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] 

 

where 𝜎 gives the distance at which the potential energy of the constituent-to-constituent interaction becomes zero 

(i.e., the distance parameter), 𝜖 gives the dispersion energy, and 𝑟 gives one the distance between the particles. It 

should be obvious from this equation that the LJ-P approaches infinity as r approaches 0. It is therefore common to 

invoke a Van der Waals barrier to prohibit such blow-ups so as to ensure that the two gas particles can be modeled 

using that potential. Indeed, there is a minimum distance 𝑟𝑚 less than which the LJ-P ceases to make sense. Thus, 

choosing to work with the LJ-P just amounts to (inter alia) making sure your choice gas constituents do not actually 

make contact. I thank Siddharth Muthu Krishnan here for challenging me to say something about potentials like the 

LJ-P. (These facts are well-known and in no need of citation-support. But for good measure, see (Losey and Sadus 

2019).) 
72 My discussion of the recurrence theorem leans on (Albert 2000, 73-81); (Barrow-Green 1997, 86-88); 

(Brush 1976b, 630-640); (Darrigol 2018, 388-403); (Gray 2013, 272-273); (Poincaré 2017); (von Plato 1994, 28). 
73 On Boltzmann, Zermelo and the recurrence theorem, see (Boltzmann 1896); (Boltzmann Zermelo’s Paper 

1897); (Boltzmann Poincaré 1897); (Kuhn 1978, 26-29, 270); (Brush 1976a, 238-240); (Brush 1976b, 627-640); 

(Darrigol 2018, 388-403); (Uffink 2013); (von Plato 1994, 89-93); (Zermelo Theorem of Dynamics 1896); (Zermelo 

Reply to Boltzmann 1896). On Zermelo, see (Ebbinghaus 2007). 
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Quite naturally then, the finite region to which our point is restricted features a volume that is 

invariant over time. Poincaré then adds, “consider an arbitrary region 𝑟0, however, small this 

region, there will be trajectories which will pass through it infinitely many times.”74  

I have included Poincaré’s statement of the recurrence theorem for historical 

comprehensiveness. The best characterization reads as follows: 

 

THEOREM I (recurrence theorem): Suppose that the coordinates 𝑥1, 𝑥2,  𝑥3 of a point P 

in space remain finite, and that the invariant integral ∭ 𝑑𝑥1𝑑𝑥2𝑑𝑥3 exists; then for any 

region 𝑟0 in space, however small, there will be trajectories which traverse it infinitely 

often. That is to say, in some future time the system will return arbitrarily close to its 

initial situation and will do so infinitely often.75 

 

As others have noted, this theorem strictly implies that for systems of the kind with which Poincaré 

was concerned, there are infinitely many solutions of the relevant system of differential equations 

describing evolutions exhibiting Poisson stability.76 But it is easy to see that this theorem will not 

work if the curves or trajectories traveled in phase space encounter singularities. That such 

singularities play havoc with solution curves in Hamiltonian mechanics is well-known (Devaney 

1982, 535). Indeed, already in the early 1880s, Poincaré had recognized that “if” a solution curve 

“never meets a singular point it can be followed forever.”77 Thus, if the curve can’t “be followed 

forever”, then the curve “meets a singular point”.  

 I cannot improve upon the statements of the theorem’s proof that appear in (Albert 2000, 

73-81), (Barrow-Green 1997, 86-88), (Darrigol 2018, 388-403), (Gray 2013, 272-273), and 

(Poincaré 2017), so I leave the proof unexpressed. Everyone accepts the theorem as such. 

 

5 Beyond Celestial Mechanics to Statistical Mechanics 

 

 After the Acta Mathematica competition, Poincaré discussed the implications of his 

theorem for the kinetic theory of gases in the context of evaluating attempted mechanical 

explanations of the second law of thermodynamics (Poincaré Mechanism 1893; Poincaré 1966). 

While he did not cite (Boltzmann 1872) or (Boltzmann 1875), Poincaré’s (1893; 1966) reasoning 

had a direct bearing on the real-world applicability of the H-theorem, an attempted mechanistic 

explanation of the second law at least in a restricted domain. He wrote: 

 

The kinetic theory of gases is up to now the most serious attempt to reconcile mechanism 

and experience, but it is still faced with the difficulty that a mechanical system cannot 

tend toward a permanent final state but must always return eventually to a state very 

close to its initial state [recurrence]. This difficulty is overcome only if one is willing to 

assume that the universe does not tend irreversibly to a final state, as seems to be 

 
74 (Poincaré 2017, 58). 
75 (Barrow-Green 1997, 86). Remember that for Poincaré, the target system abides by modeling that includes 

canonical equations of motion and a Hamiltonian function that can be represented as an invariant integral. Total 

mechanical energy is therefore conserved in the target system.  
76 See ibid. 
77 Quoting Gray’s point at (2013, 258). 
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indicated by experience, but will eventually regenerate itself and reverse the second law 

of thermodynamics.78 

 

The argument against the H-theorem from Poincaré’s recurrence theorem should now be clear.  

 

SOA = There is a (forever) closed conservative classical monatomic gas system SYS 

that is forever confined to a finite region of space. 

 

The Argument from Recurrence 

 

(1) SOA and SYS starts its evolution in a low entropic state at time t1.  

(2) The recurrence theorem and its assumptions are true (i.e., they are applicable to SYS). 

(3) If (1), then (if the recurrence theorem and its assumptions hold (i.e., they are applicable 

to SYS), then SYS will at some future time t (where t >> t1) evolve back to its initial 

low entropy state (or arbitrarily close to that initial low entropy state)). 

(4) If the H-theorem and its presuppositions are true (i.e., they are applicable to SYS), then 

it is not the case that SYS will at some future time t (where t >> t1) evolve back to its 

initial low entropy state (or arbitrarily close to that initial low entropy state).79 

(5) Therefore, it is not the case that (the H-theorem and its presuppositions are true (i.e., 

they are applicable to SYS)). 

 

The argument from recurrence is not sound. SYS is a monatomic gas system that is confined to 

a finite region and that increases in entropy. It does this by virtue of collisions between its 

constituent particles. If there are collisions between the constituents of the gas, then the recurrence 

theorem’s assumptions fail to apply to SYS’s evolution. Sect. 4.3.2 and sect. 4.3.3 demonstrated 

that the recurrence theorem requires a “no collision” or “no singularity” assumption. That 

assumption is  at odds with the general mechanism of entropic increase if that mechanism is 

properly understood. In other words, I can resolve the recurrence paradox by arguing that premise 

(2) should be rejected.  

The “no collision” assumption is incompatible with the HMC as I have understood it (i.e., 

as it is interpreted by Causal Collisions). The HMC is an interpretive hypothesis about the nature 

of the general mechanism of entropic increase. It is therefore no surprise that the recurrence 

theorem is seemingly problematic for proponents of the H-theorem’s real applicability to the actual 

world. The HMC is an assumption or presupposition of the H-theorem. The apparent problem 

goes away in a manner favorable to proponents of the H-theorem once one realizes that one 

acquires the necessary velocity changes during the process of equilibration via the asymmetric real 

(and not to be walked-around) causal collisions the HMC (as interpreted through the lens of 

Causal Collisions) references. 

There’s more to say. Recall that the mathematical modeling of collisions in both old and 

modern kinetic theory or statistical mechanics walk-around the collisions (an instance of Wilson’s 

“physics avoidance”). That is why that modeling—which is part of traditional Boltzmannian 

classical statistical mechanics or MBSM—renders that mechanics susceptible to the argument 

from recurrence. The threat that is the argument from recurrence goes away once one stops taking 

the convenient modeling walk-arounds so seriously. Let me elaborate. 

 
78 (Poincaré 1966, 203). 
79 An example of a presupposition of the H-theorem would be the HMC. 
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The HMC is an empirically well-justified interpretive hypothesis about the engine of 

entropic increase, viz., collisions (Baxter and Olafsen 2007). Systems that abide by the HMC and 

the antecedent of the H-theorem approximate real-world systems much better than the idealized 

systems targeted by the mathematical models of modern collision theory. That collision theory 

was part of the statistical mechanics of Maxwell and Boltzmann (Weaver 2021, 45-49), and (again) 

is part of MBSM.80 These varieties of statistical mechanics each face the challenges of resolving 

both the reversibility paradox and the recurrence paradox. I argued in (Weaver 2021) that to resolve 

the former paradox, one must appropriate the HMC as it is interpreted by Causal Collisions. 

Fortuitously, adding the HMC (with Causal Collisions) to one’s statistical mechanics renders 

premise (2) of the argument from recurrence false and thereby provides a resolution to the 

recurrence paradox as well. It’s simply not true that the constituents of gas systems do not actually 

involve real causal collisions. 

 The above said, my choice modern kinetic theory or statistical mechanics, does not do 

away with the idealized models of MBSM. The reassessed brand of Boltzmannian statistical 

mechanics—the version I adopt (call it RBSM)—takes on board all the mathematical formalism 

and modeling of MBSM. That is a benefit. MBSM has an impressive empirical track record, and 

I’d like RBSM to save all the phenomena that MBSM can. Yet, my understanding of the precise 

attitude one should have toward the idealized walk-around models of MBSM is indebted to both 

Bas C. van Fraassen’s work on constructive empiricism81 and the natural philosophy of Leibniz.82 

Talk of impact/collision parameters, azimuthal angles, and “collisions” without contact that enable 

recovery of post-collision trajectories or velocities that do not (i.e., the talk does not) explicitly 

represent (in the mathematical modeling) contacts that transpire during the crucial ∆𝑡𝑠 should be 

interpreted literally (it is meaningful), and so too should talk of helpful potentials used to 

approximate the evolutions of systems that likewise avoid r = 0 cases. The relevant talk, however, 

should not be believed. There are no robust ontological implications of that portion of the 

modeling. That portion of the modeling departs from the real world. When two gas particles hit 

one another, they don’t approach and then fade away without true contact. One’s attitude about 

such modeling-from-a-distance should be one of acceptance (i.e., believe that MBSM’s collision 

theory is empirically adequate), nothing more. If you want insight into what actually happens, you 

should add to your classical Hamiltonian mechanics an interpretation of classical collision theory, 

viz., the HMC as interpreted through the lens of Causal Collisions. 

 If you add the HMC (with Causal Collisions) to your classical statistical mechanics, your 

classical mechanics will become temporally asymmetric. This is because the HMC is a temporally 

asymmetric interpretive postulate. Does this mean I’m committing blasphemy? Am I suggesting 

that Hamiltonian mechanics is not time-reversal invariant? As in (Weaver 2021), I answer with an 

emphatic “No!”. Time-reversal invariance is a feature of the partially interpreted mathematics of 

Hamiltonian mechanics. It is a mathematical property of the equations of motion amidst, inter alia, 

a specification of H as the Hamiltonian set equal (for conservative systems) to the sum of kinetic 

and potential energy represented by T and U respectively. Such identifications of functions 

constitute the partial interpretation of the theory as the theory came into the world (Ruetsche 2011). 

Partial interpretations are useful in pedagogical contexts. They allow students and experts alike to 

 
80 Neglecting collisions and interactions in MBSM is a common practice. See (Goldstein and Lebowitz 2004, 

58 “one can neglect…the existence of interactions between the particles, although of course they still play a role in 

the dynamics now described by a succession of collisions….”). See also (Goldstein et. al. 2019, 28). 
81 See (van Fraassen 1980). 
82 See (Leibniz 1989, 124); (Wilson 2017, 116). 
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grasp enough of some successful theory or computational machinery to describe systems and make 

predictions. But if you’re sufficiently realist, and you believe our best physical theories sometimes 

inform us about what the world is like, then you’ll want more than a partial interpretation. You’ll 

want to discern a physical theory’s scientific ontology. You’ll want to know what, according to 

the best interpretation of that theory, it is committed to, and what makes its laws approximately 

true. According to a Boltzmannian statistical mechanics that holds on to the HMC-laden H-

theorem and Causal Collisions (i.e., according to RBSM), what helps make true the second law 

and the H-theorem are temporally asymmetric causal collisions. Thermodynamic irreversibility (in 

appropriate contexts) is a consequence of temporally directed obtaining causal relations.  

 

5.1 Sundman and Wang 

 

 Wasn’t the three-body problem solved? Hasn’t the problem of singularities been resolved 

for binary and ternary collisions? Did we not learn from Karl Sundman’s (1873-1949) tremendous 

1910 paper that the singularities in binary collisions can be surgically removed through a process 

of regularization?83 And wasn’t his result generalized (although not directly) to systems of 𝑛-

bodies (where 𝑛 > 3) by the fantastic work of Qui-Dong Wang in 1991?84  

 It is believed that Sundman solved the three-body problem by way of discovering the 

appropriate converging power series solution. To find that series, Sundman had to figure out how 

to handle singularities due to binary collisions. This is because (again, and as is well-known) 

collision-wrought singularities shrink the convergence radius of power series solutions. What 

Sundman did was take the system of equations that give you the motions of the system and, when 

dealing with binary collisions, morph them into a distinct system that represents binary collisions 

as something one can handle, viz., standard points. The intricate mathematical details are 

complicated, but the moral is that one performs the translation to ensure that one can obtain an 

analysis of the evolution of the system even after the collision by changing the equations of motion 

(altering the relevant independent variable). There are delicate questions about when one makes 

the relevant mathematical maneuvers because no one has been able to predict when one will 

encounter a binary collision given a set of initial data.85 Of course, you do get a type of analytic 

continuation after binary collisions in Sundman. Sure. But the resulting elastic bounce and post-

collision “motion” is something that is qualifiedly strange and unphysical. In their well-regarded 

discussion of collisions and the three-body problem, C.L. Siegel (1896-1981) and Jürgen K. Moser 

(1928-1999) asserted that the continuation provided by regularization “has no physical 

significance.”86 What’s worse is that even after the regularization there are (in some contexts) new 

singularities to worry about which may not be collision singularities and which cannot be avoided 

by regularization. As Wang judges, 

 

Although with regularization one can define 'motion after a binary collision', the 

regularized system can admit other singular solutions for which the concept 'motion 

 
83 On Sundman and his work, see (Barrow-Green 2010, 180-198); (Siegel and Moser 1995, 19-90); See also 

(Saari 1990); (Saari 2005, 137-206) and the primary literature cited therein. On regularization, see (Marchal 1982). 

My exposition leans on this literature. 
84 (Wang 1991). Cf. (Babadzanjanz 1979) and (Babadzanjanz 1993). 
85 (Saari 1990, 115). Saari speaks very positively of Sundman’s results. 
86 (Siegel and Moser 1995, 45). Elsewhere, Siegel stated that the “analytic continuation” provided by 

Sundman’s regularization technique “has no physical meaning”. (Siegel 1941, 432); cf. the similar point in (Barrow-

Green 2010, 181-182 also citing Siegel 1941). 
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after stop time' does not make sense. (See for example, Mather-McGehee's paper [4], 

where regularized collisions accumulate at a limit point.)87 

 

Wang’s important study of the 𝑛 > 3 cases skirted around singularities and admitted to being unable 

to directly generalize Sundman’s analytical technique.88 In the context that concerns Wang’s study, 

there are non-collision singularities to worry about too (Wang 1991, 76). I therefore find no 

successful rebuttal in the regularization literature and that without resorting to complaints about 

convergence times. 

 

6 Conclusion 

 

In (Weaver 2021), I showed that Boltzmann’s H-theorem does not face a significant threat 

from the reversibility paradox. I have shown that my earlier defense of the H-theorem against that 

paradox can be used yet again for the purposes of resolving the recurrence paradox without having 

to endorse heavy-duty statistical assumptions outside of the HMC. As in (Weaver 2021), lessons 

from the history and foundations of physics revealed precisely how such resolution is achieved. 

 

 

 

  

 
87 (Wang 1991, 74). 
88 “Because we know almost nothing about the complex singular point in the 𝜏 plane, it seems hopeless to 

try to improve the convergence of such a series” (Wang 1991, 87). Florin Diacu stated: 

 

“Quidong (Don) Wang, published a beautiful paper…in which he provided a convergent power 

series solution of the n-body problem. He omitted only the case of solutions leading to 

singularities—collisions in particular.” (Diacu 1996, 69). 
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Appendix 1: 

 

I include here an image of part of the Acta Mathematica announcement for the essay 

competition discussed in sect. 4.1. It is provided by Barrow-Green (1997, 229-230), but I take 

the image from the English translation produced in the July 30th, 1885 issue of Nature page 303. 

The announcement was forwarded to Nature by Mittag-Leffler: 
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