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Abstract. A common strategy for simplifying complex systems involves partitioning
them into subsystems whose behaviors are roughly independent of one another at shorter
time-scales. Dynamic causal models (Iwasaki and Simon, 1994) explain how doing so
reveals a system’s non-equilibrium causal relationships. Here I use these models to eluci-
date the idealizations and abstractions involved in representing a system at a time-scale.
The models reveal that key features of causal representations – such as which variables
are exogenous – may vary with the time-scale at which a system is considered. This has
implications for debates regarding which systems can be understood causally.

A tell-tale feature of complex systems is that they exhibit different behaviors at differ-
ent time-scales. Accordingly, we should expect there to be systematic differences between
the causal relationships observed over longer and shorter time-scales. But how, precisely, do
causal representations vary with the time-scale at which a system is considered? Answer-
ing this question is crucial for providing an account of causation that applies to complex
systems. Moreover, questions about time-scale are relevant even in domains where the
importance of time is less salient. As I will argue, even causal representations that do not
explicitly refer to time may build in idealizing assumptions that are only warranted at par-
ticular scales. To understand causal representations in general, we need an account of the
abstractions and idealizations involved in representing a system at a particular time-scale.

Here I develop one such account by appealing to the concept of near-decomposability
(Simon, 1962). A common strategy for modeling complex systems involves partitioning
them into subsystems whose behaviors are nearly independent of one another over shorter
time-scales. Systems that can be partitioned this way are near-decomposable. The concept
of near-decomposability has been central to philosophical discussions of complexity (Wim-
satt, 1972; Bechtel and Richardson, 2010), and continues to ground discussions of the limits
of causal or mechanistic explanations (e.g. Rathkopf, 2018). Nevertheless, there has been
almost no philosophical discussion of how, specifically, decomposing a system facilitates
causal representation. In what follows, I show how dynamic causal models (Iwasaki and
Simon, 1994) partition near-decomposable systems into subsystems in order to represent
the causal relationships in a system when it is away from equilibrium. I then argue that
these models provide a basis for thinking about the abstractions and idealizations involved
in considering a system at a particular time-scale.

The framework presented provides a tool for thinking about which types of systems
can be represented causally. Two controversies in the philosophy of causation concern
whether there can be causal relationships in 1) closed deterministic systems and 2) complex
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systems. The worry about causation in closed deterministic systems is that the content
of causal models is determined in part by their exogenous variables, and it is unclear how
to interpret such variables in cases where the modeled variables are not being influenced
by factors external to the system. The following discussion makes precise one sense in
which whether a variable counts as exogenous depends on its relationship to a broader
system and reveals that which variables count as exogenous can vary with time-scale. The
issue for (certain) complex systems is that it is allegedly not possible to decompose such
systems into modular parts. The following clarifies the relationship between causation and
decomposition, and reveals that whether a system is decomposable is sensitive to the time-
scale at which it is represented. Although the framework presented does not resolve these
debates, it provides a representational framework for addressing them more systematically.

The paper is organized as follows. Section 1 reviews the notion of near decompos-
ability. Section 2 presents Simon’s causal ordering account, and section 3 explains how
dynamic causal models generalize this account. Section 4 links dynamic causal models to
near-decomposability. Section 5 offers an account of how causal representation vary with
time-scale. Section 6 relates this account to debates about causation. Section 7 concludes.

1. Near Decomposability

A system is near-decomposable if it can be divided up into subsystems such that:

(1) The short-run behavior of each of the component subsystems is approximately
independent of the short-run behavior of the other components.

(2) In the long run, the behavior of any one of the subsystems depends on the behavior
of the other subsystems only in an aggregate way.

Simon (1962) illustrates near-decomposability with an example. Imagine a building
that is partitioned into rooms, which in turn are partitioned into cubicles. The walls
between the rooms are somewhat effective thermal insulators, and the partitions between
the cubicles are poor insulators. The building is thermally insulated from its environment,
and begins in a state in which each cubicle has a different temperature. In the analogy,
the rooms are the subsystems. In the short run, each room reaches a local equilibrium
temperature more-or-less independently of the others. In the long run, the temperature
of any room depends on that of all the rooms, and the system converges on a common
equilibrium temperature.

A few features of near-decomposability are worth highlighting. First, whether two
subsystems count as independent varies with the time-scale at which the system is con-
sidered. That is, subsystems are not fully independent, but sufficiently independent when
considered over a sufficiently short time-scale. Second, decomposing a system enables one
to treat the subsystems as having local equilibrium states. Since the system is always
tending towards the long-run equilibrium, there is no time at which the subsystems are
entirely static. But in the short-run what happens within the subsystems is so much more
important than what happens across them that one can model the subsystems as reaching
constant values independently of one another. Third, while it is natural to focus on the
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the decomposability of near-decomposable systems, the aggregate dependence of particular
subsystems on the others is just as important.

Simon introduced near-decomposability as part of a theory of variable aggregation.
When a system is near-decomposable, there are methods for representing each subsystem
with a single course-grained variable. Wimsatt (1972) introduced near-decomposability
into philosophical discussions of complexity. The concept also guides Bechtel and Richard-
son’s (1993/2010) work on experimental strategies for localization in complex systems.
Near-decomposability continues to orient discussions of the limits of causal or mechanistic
explanations. Notably, Rathkopf (2018) argues that certain network-based explanations
are not causal/mechanistic on the basis that they describe non-decomposable systems.1 As
philosophers of science further consider more holistic forms of explanation, questions about
the relationship between a system’s being near-decomposable and the possibility of making
causal attributions about it will become increasingly pressing.

2. The Causal Ordering Method

In addition to inventing the concept of near-decomposability, Simon also pioneered
causal modeling methods, and saw these projects as closely connected.2 The precise con-
nection will not become clear until section 4, after introducing dynamic causal models in
section 3. These models generalize Simon’s (1953) earlier account, to which we now turn.

Simon (1953) sought to determine the basis for the asymmetry of causation, given
that scientific laws are represented using symmetric equations. For instance, the ideal gas
law relates a gas’ equilibrium pressure (P ), temperature (T ), and volume (V ):

(1) PV = kT

In (1), which variables are on the right- or left-hand side is purely conventional, and
the equation says nothing about which variables asymmetrically depend on which others.
Simon’s insight is that even though a particular equation will not represent causal direc-
tionality, a set of equations can. For instance, consider a gas in a fixed-volume container
immersed in a constant-temperature heat bath. The fact that the values of temperature
and volume are determined exogenously – independently of the values of the other variables
– can be represented with the following equations.

(2) T = c2
(3) V = c3

Given these equations one can solve for the values of T and V , and once these values are
solved for equation (1) yields the value of P . Simon claims that the causal ordering of the
variables – that is, the (partial) ordering of the variables such that effects come later than
their causes – is determined by the ordering in which one solves for the variables. Since
the equations for T and V need to be solved in order to solve for the value of P , T and V
are causes of P .

1See (Burnston, 2019) for a critical discussion of this and similar arguments
2Hoover (2015) explores this connection in the context of non-stationary time-series models from econo-

metrics. See Weinberger (2019) for further discussion.
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Figure 1. Bathtub Model: Qin: Rate of flow in; Qout: Rate of flow out;
D: Depth; P : Pressure; K: Size of Drain

Simon’s method might look unfamiliar, but when there is a unique causal ordering
it yields the structural equations that many philosophers know and love. The symmetric
equations can be rewritten so that each variable appears on the left-hand side of a single
equation and can be interpreted as an effect of the variables (if any) on the right-hand side.
Such equations typically indicate how the effect variables would respond to interventions
on their causes. But why should this work? To start, note that – like contemporary
techniques – Simon’s method does not yield causal knowledge without causal assumptions.
Facts about which variables are exogenous are causal facts. Simon is clarifying the types
of assumptions that jointly yield a causal representation. His central idea is that facts
about what causes what follow from facts about which sets of variables are governed by
autonomous mechanisms. The autonomy of mechanisms is embedded in the fact that
not every equation contains every variable, so the values of subsets of variables can be
determined independently of those of the others. From this, the causal ordering follows.

3. Dynamic Causal Models

I now turn to dynamic causal models, which generalize Simon’s method. I’ll keep
technical details to a minimum. Interested readers may consult Simon and Rescher (1966),
Iwasaki and Simon (1994), Dash (2003), and Weinberger (2019).

Iwasaki and Simon (1994) present an example in which water flows into a bathtub at
a rate of Qin and out at a rate of Qout (figure 1). The short-run behavior of this system
is simple and familiar. Increasing Qin increases depth (D), and the resulting increase in
pressure (P ) at the bottom of the tub determines Qout (which also depends on the size of
the drain, K). What makes this case interesting is the system’s longer-term dynamics. In
some cases – and we’ll focus on these – the system reaches an equilibrium state in which
Qin equals Qout and the other variables reach constant values.

We begin with a static equilibrium model for the system. Such a model would predict
(e.g.) how the bathtub’s equilibrium depth responds to interventions changing Qin or K.
The model, given in figure 2, is counterintuitive.3 It is crucial to remember that it concerns
only the equilibrium values of the variables. For instance, one might suppose that Qin

3This model is derived from equations ((6)-(10)) below.
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Figure 2. Bathtub Model at Equilibrium

influences Qout via D. But even though a short term change in D (e.g. pouring a bucket of
water into the tub) would influence Qout and thus temporarily move the system away from
equilibrium, the only thing determining Qout’s equilibrium value is Qin. Even given this
explanation, there remain puzzles regarding whether Qout and P can be independently
manipulated. But since this model is a way-station for getting to the dynamic causal
model, we need not address these here.

What makes this model an equilibrium one? Answering this requires us to further
unpack the model’s variables. Quantities such as depth are represented using a single
variable. This is non-trivial. If we wanted to represent the change in depth over time, we
would need distinct variables corresponding to distinct times.4 Given that each quantity
in the model is represented with a single variable, how are they temporally related? We
should think of the variables as measured simultaneously (at equilibrium). The causal
difference-making relationships are then explicated not temporally, but counterfactually:
K causes P at t because K has value k and P = p and were K to have had some alternative
value k′, P would not equal p.

Since causal relationships (generally) take time, why are these represented as simul-
taneous? We need not understand the modeled relationships as genuinely simultaneous,
but as indicating that the effect has had adequate time to respond to any changes in the
values of its causes. There are two (complementary) ways one might think about this. One
is that when considering the system at a longer time-scale, the time required for the cause
to influence its effect is so small (relative to that time-scale) that we can treat it as instan-
taneous. A second is that the variables are measured at the same moment, but because
the effect has fully adjusted to any changes in its causes’ values and these values are no
longer changing at equilibrium, the simultaneous values enable one to infer the diachronic
relationship between the effect and its earlier causes.

Equilibrium models assume that the variables are at steady-state, and thus have had
enough time to adjust to changes in the values of their causes. In dynamic causal models,
not all of the variables have had time to reach steady-state. For such variables, we include
both a variable and its time-derivative in the model. In the model we will presently consider,
there is a time-derivative for D. Including a variable and its derivative in a model requires
one to introduce additional equations:

4Proof: Since the values of a variable form a partition, a variable’s taking on one value excludes its
taking another. But the water being 1m at one minute does not exclude its being .5m at another. Thanks
to Malcolm Forster for emphasizing this point.
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Figure 3. Dynamic Bathtub Model

(4) Integrate(D′) = D
(5) D0 = d

Formally, equation (4) indicates that integration and differentiation are inverse operations.
Practically, integration takes the values of D′ and D at a time and predicts D’s value at the
next time step. It is because doing so requires the value of D at t that we need equation (5),
which supplies an initial condition for the initial application of (4). Through derivatives
and integration equations we incorporate time into a model, as we will see further.

Here are the forms of the symmetric equations from which the equilibrium model was
derived:

(6) 0 = f6(D,P )
(7) 0 = f7(K,P,Qout)
(8) 0 = f8(K)
(9) 0 = f9(Qin)
(10) 0 = f10(Qin, Qout)

It was from equations (9) and (10) that we derived Qout from Qin, and Qin determines
Qout (directly) only at equilibrium. When D is not at equilibrium, we replace (10) with:

(11) D′ = f11(Qin, Qout)
This equation, combined with (4)-(9) yields the graph in figure 3.5 One could further
consider a graph with a time-derivative for every modeled variable (Iwasaki and Simon,
1994, p. 159), although this does not substantially change the representation.

The derived causal ordering is intuitive. D causes P which, along with K, determines
Qout. The variables linked by solid arrows should be understood as simultaneous (as
interpreted above). The integration link indicates that the influence of Qin and Qout via
depth on the rest of the system occurs over a longer time-scale than the other causal
relationships, though more remains to be said about interpreting such links.

5D0 is not represented in the model, but equation (5) affects the ordering by rendering D exogenous.
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Figure 4. Rolled-Out Discrete Representation With the Derivatives Removed

4. Decomposing Dynamic Systems

We seem to have drifted far away from near-decomposability. It turns out, however,
that when we reflect upon the temporal relations in the dynamic causal model, the intro-
duction of the derivative-integration link pair constitutes a way of decomposing the variable
set into nearly-independent subsystems. In particular, the dynamic model in figure 3 di-
vides the system into the two (very unequal) subsystems {Qin} and {P,D,K,Qout}.6 I
will now spell out how dynamic models involve such a decomposition.

Although the dynamic model contains a cycle via the integration link, one could
provide an equivalent “rolled out” acyclic representation in which variables connected by
causal arrows are represented as synchronic and those connected by integration links are
diachronic. To better understand the dynamic graph, it helps to compare it to a rolled out
graph in which the derivatives and integration links are removed (figure 4). This graph
gives the impression of providing a discrete representation of the causal relationships, with
no fancy gadgets to confuse us. Contemplating what this graph does and does not capture
elucidates the temporal relations in the dynamic graph.

A common reason for providing representations with time-indexed variables is to use
the temporal ordering to infer facts about the causal ordering. Given the preponderance
of causally-related simultaneous variables it should be clear that that is not what is going
on here. The key information provided by the temporal indices is that synchronically- and
diachronically-represented variables influence one another over comparatively shorter and
longer time-scales. While in principle, one could specify the temporal units for which the
graphs in figures 3 and 4 apply, the utility of the representation does not derive from its
specifying the relations among a particular set of time-indexed variables, but in its making
a qualitative distinction among interactions that are so quick that we can treat them as
instantaneous (at a time-scale) and those we cannot.

6Readers having trouble thinking about {Qin} as a subsystem are welcome to think about it as an
aggregate variable for an additional bathtub system placed above our own, so that the output of that
system is the input to our own. Additionally, one could also treat {K} as its own subsystem without any
consequences for the discussion.
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What do the derivatives add? When one distinguishes between variables that are at
and away from equilibrium, the latter are history-dependent in a way that the former are
not. Compare P 1 to D1. The value of P 1 depends only on its cause at that time step (D1).
In contrast, the value of D1 depends on D’s value at the previous time step. Variables
away from equilibrium have a “memory” in a way that variables at equilibrium do not.
Since a variable’s time-derivative predicts its subsequent values only in combination with
its current value, time-derivatives enable one to capture this past-dependence.

I have been talking as if variables whose causes are at the same time-step are at
equilibrium while others are not. But this is not quite right. Whenever some variables
in a system are away from equilibrium, none of the variables can reach their long-run
equilibrium values. It is more precise to say that the variables with simultaneous causes
are at a local equilibrium, in that each has fully responded to the value of their causes
at that time-step. So P 1 and Q1

out fully reflect the values of D1 and K1. But because D
reaches steady state more slowly than the others, it serves as a bottleneck hindering the
whole system from reaching equilibrium.7

A final subtlety concerns the influence of Qin and Qout on D via D′. The influences
of the flow variables on the others differ from other causal relationships not merely in their
longer duration, but also in their influencing the system globally rather than locally. The
causal significance of Qin and Qout is that their difference indicates how far the system is
from equilibrium and thus matters for predicting its longer-term behavior. Accordingly,
these variables influence the system in an aggregate way. One might worry about whether
such aggregate influences are genuinely causal and one might suppose that a completely
dynamical representation of the system (i.e. one obtaining at arbitrarily short time-scales)
would not need to make assumptions about the system’s longer-term behaviors. I will not
address this worry here. The key point is that if one is not considering the system down
to arbitrarily small time-scales, one needs to model the fact that the bathtub’s current
state in relation to Qout − Qin provides information about its future state. Whether the
aggregate influences via the integration link are causal, they need to be considered in order
to isolate the short-term local influences among the simultaneous variables.

Bringing these points together, dynamic causal models divide up a variables set into
subsets of synchronic variables such that variables within each subset influence one an-
other locally over shorter time-scales and reach a short-term equilibrium independently of
variables outside of the subset. The variables within a subset depend on those outside of
the subset, but only in an aggregate way. In other words, the temporal relations within
and across the subsets correspond to those between and across the subsystems of a near-
decomposable system, according to the definition in section 1. Dynamic causal models use
derivative-integration link pairs to integrate both these shorter-term local and longer-term
aggregate relationships into a single representation.

To summarize, we considered an example of a system away from equilibrium. In the
example, a dynamic model was necessary to derive the set of causal relationships that
we would intuitively ascribe to the variables in the system. We further saw that dynamic

7Shannon Nolen helpfully suggested this explication. A “bottleneck” is a rate-limiting factor.
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causal models work by modeling the system as near-decomposable. We thus have a concrete
illustration of how decomposing a system is necessary to represent the causal relationships
among its variables away from equilibrium.

5. The Time-Scale Relativity of Causal Representations

We now have a link between causal representations and near-decomposability. But
one might still suppose that our discussion is limited to cases in which we are concerned
with a system’s equilibrium behaviors. In this section, I propose that the tools presented
here enable one to think more generally about how causal representations vary with the
time-scale at which a system is considered.

Operationally, considering the system at a longer time-scale corresponds to sampling
it at a slower rate and considering it at a shorter time-scale corresponds to sampling it
more frequently. Equilibrium models may be thought of as those in which one considers
the system at a longer time-scale at which all of the variables have had time to reach
equilibrium, while in dynamic models not all of the variables have reached equilibrium.
To be clear, equilibrium and dynamic models do not necessarily need be explicated in
terms of time-scales – the difference between them concerns whether the variables are at
steady-state. But for the wide range of systems with relatively stable equilibria and where
perturbations away from equilibrium are relatively transient, equilibrium and dynamic
causal models provide a basis for thinking about the way our causal representations of a
system differ across longer and shorter time-scales.

Iwasaki and Simon (1994) provide two formal operators for deriving how a system’s
representations change as one varies the time-scale at which it is considered: equilibration
and exogenization. Applying equilibration to a variable in a dynamic model yields a model
in which that variable has reached equilibrium.8 One can think of this in terms of “zooming
out” to a time-scale at which the time it takes for that variable to reach steady state is
is so small relative to that time-scale that we can treat it as instantaneous. In contrast,
exogenization corresponds to “zooming in” and considering the system at a shorter time-
scale. Doing so can have the following effects. First, variables that depend on other
variables only minimally at the shorter time-scale can be treated as not depending on
them at all. Second, variables changing extremely slowly at the shorter time-scale can
be treated as constants. Both of these transform variables that are non-exogenous in the
original representation to exogenous ones.9

I can now present my proposal for why dynamic models tell us something about causal
representations more generally. Even causal representations not explicitly given as relative
to a time-scale often rely on assumptions that are valid only at particular time-scales.

8For a description of equilibration, see Iwasaki and Simon (1994) or Dash (2003). In the bathtub model,
equilibrating D involves replacing D′ with 0 in equation (11), deleting equations (4) and (5), and solving
for the causal ordering. The reader may verify that this yields the equilibrium causal model. Intriguingly,
equilibration resembles what Wilson (2017) calls “Euler’s equilibrium-based strategy” (p. 77, see also pp.
63-70, 75-80)

9In dynamic causal models, the set of exogenous variables include not only constants, but also variables
depending on their time-derivatives alone (i.e. those changing as a function of time).
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Figure 5. Effects of Rainfall and Acres of Wheat Planted on Wheat Grown

Consider an example from Simon and Rescher (1966) in which the amount of wheat grown
in a field depends on the amount of rainfall and the amount of acres planted (figure 5).
Rainfall is about as uncontroversially exogenous as any variable – rainfall influences crop
growth, not vice versa. But over a sufficiently large time-scale – say, a century – agriculture
does influence climate. So the amount of wheat grown does influence rainfall, although the
effect is minuscule at shorter time-scales. The basis for treating rainfall as exogenous is
that if we are considering the relationship between rainfall and wheat growth over several
years, we can ignore this longer-term influence. Formally, if began with a model with a
cycle between rainfall and wheat, we could derive the shorter term model in figure 5 by
exogenizing rainfall. The non-exogenized model would represent a broader system of which
our model is a subsystem.

This simple example illustrates how causal representations can be implicitly time-scale
relative. It is commonly remarked that the behaviors of systems (especially complex ones)
vary with the time-scale at which they are considered. But, to my knowledge, no philoso-
pher has offered a concrete illustration of how a system’s causal representations vary with
time-scale or explained how the representations relate to one another. Equilibration and
exogenization allow one to precisely specify the relationships between the representations
of a system characterized at different time-scales.

Having formal operations for the way a system’s representations vary with time-scale
is crucial for understanding the abstractions and idealizations involved in considering a
system at a particular time-scale. To show that a model involves time-scale-dependent
assumptions, one can illustrate how to derive it using equilibration or exogenization from
models at different time-scales. A standard gloss on the distinction between abstractions
and idealization is that while the former leave out details, the latter make false claims about
the system. Equilibration involves abstraction in that it involves omitting details about the
system’s shorter-term behavior away from equilibrium, and idealization in that a system
is unlikely to be exactly at equilibrium and its interactions will not be truly instantaneous.
Exogenization involves idealization, since the exogenized variables are not truly causally
independent of the others. As usual, the line between abstraction and idealization is blurry,
and nothing here rests on where we draw the line. What matters is that one can use these
operations to spell out the assumptions involved in considering a system at a time-scale
and to determine which features of our representations will depend on which assumptions.
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Near-decomposability allows us to see why causal representations are time-scale rel-
ative. Causal attributions, on Simon’s account, rely on assumptions about which subsets
of variables are independent. In near-decomposable systems, facts about variable inde-
pendence are time-scale relative. At shorter time-scales we treat the subsystems as in-
dependent and view influences from other subsystems as exogenous. The subsystems are
not independent at longer time-scales, and thus the set of variables considered exogenous
changes. Causal representations are time-scale relative because they rely on facts which
are themselves time-scale relative: independence and exogeneity.10

6. Implications

The framework presented provides a new tool for thinking about the content of causal
models. For instance, Ismael (2016), following Pearl (2009), claims that the asymmetry
of cause-effect relationships is relative to a choice of exogenous and endogenous variables.
But what does this choice depend on? Using the present framework, we can see how a
variable’s exogeneity depends on the time-scale at which the system is considered and
its relationship to broader external systems (such as the broader climate system in the
agriculture example). The question of whether, in general, exogenous variables correspond
to exogenized systems has broad metaphysical implications. An affirmative answer to this
question would support Hausman’s (1998) contention that there are no asymmetric causal
relationships in closed deterministic systems. In contrast, (Frisch, 2014, p. 95) denies that
causal models require exogenous variables implying the existence of a larger subsystem in
order to be causally interpreted. Although the present discussion does not resolve this
debate, it presents a way of making the relationship between exogenous variables and
candidate broader systems concrete and reveals why in at least a wide range of cases the
causal relations in a modeled system will depend on its relationship to a broader system.

The framework is also helpful for making headway in debates about whether causal
(and/or mechanistic) explanations are appropriate in complex systems consisting of highly
interdependent variables (e.g. Chemero and Silberstein, 2008; Rathkopf, 2018). Here the
concern is that such systems are allegedly not decomposable and that decomposition is
necessary for causal/mechanistic explanations. On the one hand, the foregoing confirms the
link between decomposition and causal explanation by revealing that one must decompose
the bathtub system to represent its non-equilibrium causal relationships. On the other
hand, the discussion reveals that the variables in a system can both be highly interdependent
in the long-run and nearly independent at shorter time-scales. These debates would benefit
from more careful attention to the scale-relativity of representations, since this matters both
for the decomposability of and the causal relationships that are attributed to a system.

10Jim Woodward’s symposium contribution also emphasizes independence and scale-relativity, although
his independence corresponds to the relative invariance of coarse-grained variables to more fine-grained
details of their realization. This provides a distinct and complementary basis for understanding the scale-
relativity of causal representations.
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7. Conclusion

The foregoing provides a proposal for thinking about how causal representations of
a system vary with the time-scale at which it is considered. One aim of this discussion
was to illustrate the philosophical payoff of having a formal representation of (a form
of) time-scale dependence. Since the assumptions that here produce time-scale relativity
involve idealizations, one might suppose that such relativity is merely a feature of the
representation, and that in principle one could develop a representation that is not similarly
scale-dependent. But I would argue that the types of idealizations described are inextricable
from the foundational concepts of causal modeling. Assumptions about exogeneity and
independence are the ingredients from which causal representations are built. If these
concepts are themselves time-scale relative, then time-scale relativity is an indispensable
feature of causal representations.
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