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ABSTRACT: The paper explores the handling of singular analogy in quantitative induc-
tive logics. It concentrates on two analogical patterns coextensive with the traditional
argument from analogy: perfect and imperfect analogy. Each is examined within Car-
nap's A-continuum, Carnap's and Stegmiiller's A-n continuum, Carnap's Basic System,
Hintikka's o-A continuum, and Hintikka's and Niiniluoto's K-dimensional system. It
is argued that these logics handle perfect analogies with ease, and that imperfect
analogies, while unmanageable in some logics, are quite manageable in others. The
paper concludes with a modification of the K-dimensional system that synthesizes in-
dependent proposals by Kuipers and Niiniluoto.
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1. Introduction

When is it rational to be persuaded by an argument from analogy? One
consideration would have to be logical form. Since arguments from anal-

ogy are not deductively valid, it would seem natural to require that they
satisfy an inductive criterion. But what would the criterion stipulate? As a
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first approximation, one could say that an analogy is rationally acceptable
only if its conclusion is more probable on the evidence than any rival con-
clusion based on the same evidence. The problem would then be to esti-
mate these probabilities.

Quantitative inductive logics offer clear and intuitively satisfying re-
sults in many cases, but whatever their merits, critics complain that they
misfire when applied to analogy. The gencalogy of this claim seems to go
back to Hesse (1963, Ch. 3; 1964; 1968) and Achinstein (1963). Conse-
quent to these studies, the literature on analogy in quantitative inductive
logics reveals a certain lacuna. Analogy as general inference has been stud-
ied systematically in Pietarinen (1972), for example, yet the type of sin-
gular inference captured in the traditional argument from analogy remains
something of an untold story, receiving glancing attention at best.1 There
appear to be at least three reasons for this. The traditional argument from
analogy is a relatively complex inference, first of all, molecular rather than
atomic; hence it is unlikely to attract much attention from logicians work-
ing on inductive foundations. Secondly, the fact that analogical inference is
not logically fundamental sometimes obscures its foundational role in
cognition. Finally, since the initial successes of quantitative inductive
logics were with singular inductions and the initial failures with inductive
generalizations, the latter presented the immediate challenge. But now that
the more recent of these logics have tenable policies on inductive generali-
zation, at least one loose end concerning singular induction remains: singu-
lar analogy in its traditional form. To address it is the aim of this paper.

The inquiry proceeds as follows. Since how analogy fares in quantitative
inductive logics cannot be reckoned without sorting out various forms of
analogy, Section 2 proposes a typology of analogical inferences. Two of
the resulting types are coextensive with the traditional argument from
analogy, and Sections 3-7 detail their handling in the systems of Carnap
(1952), Carnap and Stegmiiller (1959), Carnap (1971, 1980), Hintikka
(1966), and Hintikka and Niiniluoto (1976) in turn. These sections are
partly expository, but they also extend and apply the original systems that
have nothing to say about analogy (Carnap 1952, Hintikka and Niiniluoto
1976) or even positively exclude it (Hintikka 1966, p. 115). By the end of
Section 7, an approach to singular analogy based on the work of Carnap
(1952), Hintikka and Niiniluoto (1976), Kuipers (1978a, 1984), and Ni-
iniluoto (1981) emerges. Section 8 ventures a few remarks about its philo-
sophical interest.
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Novel use is made of several formulas, generalizations of an idea of
Carnap, for rapid calculation of the probability of certain analogies. The
formulas emerge in the assessments of Carnap (1952) in Section 3c¢; of

Hintikka (1966) in Section 6c¢; and of Hintikka and Niiniluoto (1976) in

Section 7c.

2. Types of Analogy

Distinctions are especially wanted when it comes to analogy for, as J.S.
Mill observes, "There is no word (...) which is used more loosely, or in a
greater variety of senses, than Analogy" (1974, p- 554). If we begin with
the obvious divide between general analogies, which include at least one
quantified sentence, and singular analogies, which have no such sentences, we
can focus on the latcer, subdividing as necessary in a kind of Porphyrian
tree. Locating the critical joint among singular analogies requires some
attention to the root concept of similarity. Even a cursory review of the
literature on analogy reveals that the relata of the similarity relation are
not all of the same type. What is called analogy in some places features
similarity among individuals, but other analogies are based on similarity

among properties. An example of the former is the traditional argument
from analogy:

Al: Fana Ga.
Fb.
So Gb.

Contrast Al with the following argument, discussed in Pietarinen (1972,

pp- 68-69) and elsewhere:

A2: Faa Ga.
-Fb.
So Gb.

The strikir}g thing about A2 is that its premises show no similarity be-
tween the individuals z and 4. It capiralizes instead on the similarity be-
tween 4s property FG and #'s inferred property FG . One might then be
inclined to posit two types of singular analogy: individual analogy for
arguments like Al and property analogy for those like A2. This would be

premature, I believe, for two reasons. First of all, there are singular analo-
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gies that fall neatly into neither category because they rely on both known
similarity among individuals and similarity among properties. A simple
example is

A3: FaaGanaHa.
Fb A -Gb.
So Hb.

Here the known similarity between individuals (#z and Fb) is balanced by
the known dissimilarity (G and -Gb&); the balance is tipped by the prop-

erty analogy between FGH for aand FG H for b. A fuzzy boundary is not
necessarily fatal, however. The second and decisive consideration is that
there is a higher vantage point from which Al, A2, and A3 can be viewed
synoptically: the conclusions of all three arguments maximize similarity
to the strongest properties represented by the evidence. That is, the evi-
dence in both Al and A2 includes the strongest property FG, so we con-

clude FGrather than FG in the first case and F G rather than FG in

the second. Likewise, because the evidence in A3 includes the strongest

property FGH we infer FG H instead of FGH .

The key distinction for singular analogy is not then between individual
and property analogy; it is, I suggest, between what I will call broad anal-
ogy and narrow analogy. Think of analogy as a bridge across a river; the
analogy's premises are piers supporting a platform, the conclusion, over
which one can pass to the other side. The piers can be broad in the sense that
how the evidence is distributed for projected and unprojected properties is
explicitly taken into account. A standard example is the roulette wheel of
unknown bias. Given a small number of trials, the likelihood of a pro-
jected property -a five, say, on the next spin- may reasonably be judged
higher if unprojected properties like neighboring numbers have been fre—
quently successful (Jeffrey 1980, p. 3; Skyrms 1993, p. 274). But the piers
can also be narrow in that the distribution of evidence among these unpro-
jected properties is not taken into account. If 99 of 100 squirrels have bee.n
observed to be gray in 95 cases, russet in 3, and black in 1, the hypothesis
that the remaining squirrel is gray would be based on a narrower range of
evidence, one which slights the relative frequencies of the unprojected
properties (russet and black) in favor of that of the projected property

(gray).
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Developing the concept of broad analogy requires Carnap's distinction
between analogy by similarity and analogy by proximity (1980, pp. 40-41, 68-

71). As an example of the former, suppose that a small sample discloses

individuals that are FG but none that are FG or FG ; nevertheless, the
similarity relations among these properties would make it seem more

probable that the next individual is FG rather than FG 2 Analogy by
proximity occurs when the order of observation affects probability.3 Sup-
pose that a certain individual is known to instantiate a certain predicate; if
order makes a difference, the probability that the next (most proximate)
individual also has the predicate is assumed to be greater than the prob-
ability that the twentieth individual, say, has it. Both analogy by similar-
ity and analogy by proximity have subspecies; the former is divided into
existential and enumerative types in Niiniluoto (1988), and the latter
branches into proximity in the past and proximity in the future in Kuipers
(1988).

Like broad analogy, narrow analogy comes in more than one form. I
propose to revive and reshape a distinction that appeared early on in the
debate over quantitative inductive logic. Though this distinction was bein
drawn by both Hesse (1963, p. 121; 1964, pp- 320, 326) and Achinstein
(1963, p. 216) at about the same time, the terminology I shall adopt is
due to the latter. A perfect analogy, in Achinstein's sense, "attributes to an
individual all of the properties which the observed individual is known to
have" (1963, p. 216). Our Al is an instance. An imperfect analogy, on the
other hand, attributes to an individual only some of the properties of the
observed individual, as in A2 and A3.

Though the imperfect-perfect distinction will be handy here, recasting
it somewhat is necessary. To see why, notice Achinstein's claim that

(...) the usual case of analogy, if not indeed what is meant by a case of analogy, is one
in which an individual & mentioned in the evidence has many, bur not all, of the
properties of the individual ¢ mentioned in the hypothesis. (1963, p. 216)

Likewise Hesse, criticizing Carnap on perfect analogy, asserts that

(..) this type of argument is not what has been traditionally understood by argu-
ment from analogy, since analogical inference has always supposed differences as
well as similarities between the two analogues. (..) That is to say the assumption,
made in Carnap's type of inference, that the evidence ascribes to the individuals
only the same property P, in both cases, and thar there are not initially known to be
any differences between them, is at best an idealization of the real situation. It

will generally be the case that, if the total evidence is taken into account, superfi-
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cially similar instances will be found to be different in some respects. (1964, p.
320)

Achinstein's and Hesse's point should be conceded at once, I think: the usual
analogy involves differences as well as similarities among analogues. In-
deed, their point should even be strengthened: @// analogy involves differ-
ences as well as similarities. For as long as we know enough to know that
there are two objects involved, we know enough to know that some of their
properties are different. When the objects are physical, for instance, their
spatial properties must be different, and this difference brings others in its
train.

Nevertheless, this does not license the conclusion that the perfect anal-
ogy is "at best an idealization of the real situation." Why it does not can be
gleaned from this nuanced passage from Mill.

An argument from analogy, is an inference that what is true in a certain case, is true
in a case known to be somewhat similar, but not known to be exactly parallel, that
is, to be similar in all the material circumstances. An object has the property B: an-
other object is not known to have that property, but resembles the first in a property
A, not known to be connected with B; and the conclusion to which the analogy

points, is that this object has the property B also. (1974, p. 794)

The argument Mill describes is our analogy Al. He does not claim, how-
ever, that there are no known differences between the two objects; he says
only that they are "similar in all the material circumstances.” Hence it is
logically possible that the two objects are "somewhat similar,” as he says,
in that some of their properties are known to be different, but that all
known relevant properties are the same.4 This is not just a logical possibil-
ity, however; it is a recurrent feature of ordinary life. Think of the infer-
ence that the road under the next overpass will be slick because, five hun-
dred meters back, the road under an overpass was slick. Or the hypothesis
that a diskette manufactured by Erasem is defective because two others
from the same box are.

So what we have are two kinds of narrow analogy. In one, some proper-
ties are different but all relevant properties are the same. In the other, all
relevant properties are not the same. But the first is none other than perfect
analogy, rightly viewed. The second is imperfect analogy. The distinction
is not, as Achinstein and Hesse contend, that the imperfect has known dif-
ferences and the perfect has none, for both have them.5 It is that the known
differences in the imperfect case are deemed relevant, while those in the
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perfect case are not. Hence there is nothing unrealistic or idealized about
perfect analogy; it too takes differences into account.

| The preceding typology of singular analogy can be summarized as fol-
ows:

[ existential
— similarity
——  enumerative
broad -
— in the past
. | proximity
singular analogy | in the future
— perfect
narrow —
| imperfect

Some of these kinds of singular analogy have been more conspicuous than
others, and they will continue to be in this paper. Carnap thought that the
similarity influences registered via analogy by similarity and analogy by
proximity "have only secondary significance” (1980, pp. 41, 66, 70). In
addition, some have expressed doubts "about whether the idea of analogy
by proximity is after all very important as such” (Kuipers 1988, p. 311).
However this may be, analogy by proximity is far removed from our pres-
ent concerns and will be discussed no further here. Moreover, the other type
of broad analogy, analogy by similarity, appears rather late in the litera-
ture on quantitative inductive logics. It seems to have come into focus only
when it was noticed that certain inductive logics are more successful with
some narrow analogies than with others. Pursuing analogy by similarity
was a way of trying to fix that. Historically, then, narrow analogy was
first; it includes the arguments from analogy discussed by Mill (1974, pp-
554-561). We will respect this priority here, concentrating on narrow anal-
ogy and treating broad analogy by similarity only as needed.

3. Carnap's A-Continuum

Since the A-continuum is a point of departure for later inductive systems,
the following discussion develops its salient features. There are three sub-
sections: a) contours of the A-continuum; b) applying the A-continuum to
narrow analogy; and c) assessment of narrow analogy in the A-continuum.
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a) Contours of the A-continuum

Carnap's inductive logics are built around a nucleus of basic themes.
Among them is the segregation of statistical probability, whose statements
are synthetic and belong to the object language, from logical probability,
whose statements are analytic and proper to the metalanguage. A second is
the view that it is logical probability, not statistical probability, which is
"the basis of all inductive reasoning" (1963, p. 967). Finally, consistent
with his approach to deductive logic from about 1935 on, Carnap treats
inductive logic as a branch of semantics and accords a central role to the
semantic concept of logical range -or model, as we would say today.6
Whereas in deductive implication the models of the premises are entirely
included in those of the conclusion, in inductive arguments only some of
the premises’ models are included in those of the conclusion. For example,
if the probability of the conclusion given the premises is 2/3, the conclu-
sion's models contain 2/3 of those of the premises.

Carnap sets out along these lines to explicate the concept of logical
probability, limiting his A-continuum of (1952) to first-order languages L
with identity that have a finite number IV of individual constants and a
finite number # of logically independent primitive predicates. Within such
languages, molecular predicates can be formed through Boolean operations
on the primitive predicates, and of these molecular predicates, one group
receives special attention: the class of Q-predicates. A Q-predicate is a
strongest predicate formed by the conjunction of every primitive predi-
cate, negated or not, of L. There are 2# = K different Q-predicates, which
are mutually exclusive and jointly exhaustive. For example, for L with
k = 2 and primitive predicates F'and ‘G, there are 22 = 4 Q-predicates.

Q1 (%) Hx) ~n G(x)
(%) Hx) n-G(x)
Q3(x) -Fx) ~n Glx)
Q4(x) -F(x) A -G(x)

Together, they exhaust the kinds of individuals describable in the lan-
uage.

i (gjarnap's explication of logical probability is a definition of the degree

of confirmation o(A,¢) for any hypothesis / based on evidence ¢ formulable

within L. The guiding idea behind the A-continuum is that «(4,¢) should lie

within an interval bounded by an empirical factor and a logical factor. The

empirical factor is the ratio of favorable instances of a predicate in a sam-
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ple to the sample's total number of individuals. For molecular predicates,
this ratio can be expressed as p/#; for Q-predicates, as nq/n. The logical
factor is relative width, the coverage (so to speak) of the instantiated
predicate relative to the total number X of I's Q-predicates. Because mo-
lecular predicates can always be analyzed into some number w of Q-
predicates, their width is w and their relative width is w/X. Q-predicates,
which are a special case. have width of 1 and relative width of 1/X.

The values of the empirical and logical factors thus establish an interval
somewhere between 0 and 1 inclusive, and «(4,¢) is to be located between
or on the interval's endpoints. Exactly where is determined by identifying
c(h,€) in certain key situations with the value of a mathematical function:
the weighted mean of the empirical and logical factors. If the weight of
the empirical factor is conventionally set to #, the total number of indi-
viduals in the sample, then the value of the function is governed by the
weight of the logical factor -a particularly simple form of the mean. Cay-

- nap calls this logical weight "A'. A's value, which can be any real number

from 0 to  inclusive, is equal in weight to the observation of the same
number of individuals. Its different values demarcate different inductive
methods within the eponymous continuum.

Suppose now that observation of a determinate number of individuals
yields evidence eq, which states no more than whether each observed indi-
vidual has or does not have a Q-predicate 'Q'7 Suppose also that a hy-
pothesis hq attributes 'Q' to an unobserved individual on the basis of eq. If
it is further assumed tha* A can vary with K'but not with nq and 7, then the
desired degree of confirmation is given by the following expression:

A (K)
R
c (o, = i
(i Q) n+ A\ (K) (v

More generally, let the evidence ey say only which individuals of a
sample instantiate a molecular predicate 'M' and which do not, and let a
hypothesis / ascribe M’ to an unobserved individual given ey. Then

wh (K)

K

Nt
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(1) and (2) can be adapted for specific use in one of Carnap's two types
of inductive methods. In Carnapian methods of the first kind, A does not
depend on Kand is a constant. Then (1) takes the simpler form

A
nQ + X
c(hy eQ) = : (3)

7+ A

and (2) changes accordingly. But in methods of the second kind A varies
with K. Carnap's preferred method ¢ is the simplest such method, ob-
tained by making A(K) = K. In that case (1) reduces §till further to
nQ + 1 ’

n+ K

& (hay Q) = 4)

The preceding definitions of degrees of confirmation are all for special
situations in which a certain type of predicate is attributed to a single un-
observed individual on the basis of a certain kind of sample. (1) has ex-
tremely far-reaching consequences, however. It is the characteristic function
for the entire A-continuum; once values characteristic of any inductive
method in the continuum are assigned to it, then the values of care fixed
for any pair 4,e of sentences where ¢ is not logically false.

The transition from the special case represented by (1) to the general
case is basically a three-step process. The first step is to use (1) in defining
a measure function y for state descriptions. A state description is a conjunc-
tion whose clauses consist of each of L's primitive predicates either af-
firmed or denied of each individual nameable in the language. Hence each
such description reports a possible state of the world as completely as L
permits. State descriptions can be stated equivalently in Q-form, th;-xt is,
as a conjunction of NV Q-sentences, each of which attributes a Q-predicate
to one of the Vindividuals of L. Consider a state description # in Q-form
such that 'Q;' is instantiated by #; individuals, 'Q,' by 75, and so on to 'Q¢’
by k. Each of these numbers 7q is the Q-number of its associated predi-
cate, and X nq = N. Then relying on Carnap's product rule (1952, p. 12)
and repeated applications of (1) (and writing "A" in place of "M£K)' for sim-
plicity), we obtain
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A ) A A
. %[E(l+?{—)(2+[?)...(n(2-l+——[€)] 5
Ho = AL +2) 2+A) ... (V-1 +2) )

for the measure of a state description in .8

The second step is to extend this measure function so as to admit not
just state descriptions but any sentence of L as argument. This is easily
accomplished, however, since any sentence sof L that is not a state descrip-
tion provides less than the full description of the world supplied by a state
description. It is therefore equivalent to a disjunction of more than one
state description or, if it is logically false, to the negation of a disjunction
of all state descriptions (Carnap, 1950, pp. 289-90; 1952, pp. 11, 18).
Moreover, since state descriptions are mutually exclusive, Carnap's addi-
tion axiom (1952, p. 12) stipulates that the p-value of s is equal to the sum
of the p-values of its component state descriptions. (5), therefore, provides
the p-value of any sentence sof L that is not logically false. If s is logically
false, its p-value is of course 0.

The final step is the general definition of c(4,e) in terms of p-values.
For any sentences 4,e where p(e) # 0,

uen h)
ctheg=—mm 6
) e (6)

(6) can be viewed as an instantiation of the classical definition of condi-
tional probability.

b) Applying the A-continuum to narrow analogy

Once d(h,¢) is fully defined, it can be turned to specifics like analogy.
Some extrapolation from earlier works is unavoidable, however, since
Carnap does not treat the topic in (1952). In announcing what was to be-
come the A-continuum's central method, ¢*, in (1945), he describes the in-
ference by analogy as follows:

The evidence known to us is the fact that individuals zand 4 agree in certain prop-
erties and, in addition, that « has a further property; thereupon we consider the hy-
pothesis that 4 too has this property. (...) The hypothesis 4 says that & has not only the
properties ascribed to it in the evidence but also the one (or several) ascribed in the

evi%ence to # only, in other words, that & has all known properties of a. (...) (1945, p.
87)
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This description is repeated verbatim in Carnap (1950, p. 569).

Carnap is plainly speaking of perfect analogies to the exclusion of the
imperfect variety. He makes short work of the subject, treating analogy as
a special form of predictive inference: a conclusion about the composition
of an unobserved sample drawn from the composition of an observed one.
One result is a remarkably simple formula for perfect analogies in .10
Let "M, be the conjunction of primitive predicates, negated or not, known
to be true of 4, and let "A5' be the conjunction of primitive predicates
known to be true of 4. In addition, let # be understood to share all known
properties of 4, and to have other known properties as well. Hence the
Q-predicates formed from "M are a proper subset of those formed
from 'M,', and the width of the former, wy, is less- than that of the latter,
wy. Now suppose we want the degree of confirmation of the analogical
hypothesis that & has the #properties it is not known to have -that 4,
in other words, is also M;. According to (6), *(Myb, Mya ~n Mrb) =
= p*(Mya n My b)Ip*(Mra A Myb). The p-values of this expression are ob-
tained by repeated applications of (2) according to the product rule. Then
since M(K) = K'in ¢, we have

A Mh) w !l K Q+w)/(1Q+K 1+ wy )
(M b, M i} } .
S Man M) = T TR Tem

(7) holds for what Carnap calls 'simple analogy’, where the inference is
from one individual to another, but multiple analogies from two or more
individuals to another can be handled by replacing (7)'s empirical factor
"1/1" with '2/2', '3/3', etc.

c) Assessment of narrow analogy in the A-continuum

Carnap seems never to have generalized (7) for the whole k—contingum, but
it is quickly and usefully done. Where 'wy' and 'wy' have the meanings they

have in (7),

A (K)
5 )
c (M1 5, Mltl A Mzb) = N ([{) (8)

1+(WZT)

1+ (wy
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Multiple perfect analogies can be treated by adjusting the empirical factor
as in (7).

Nor does Carnap observe that (7) can also be adapted to cases where the
evidence is mixed in the sense that more than one Q-predicate is known to
be instantiated. Care must be taken, however, so that any part of the evi-
dence concerning predicates logically impossible for the partially known
individual of the conclusion to instantiate is excluded from the empirical
part of the formula.1l Consider, for example, the following evidence: «

and bare FG, cis FG ,dis FG ,andeis F In calculating the probabil-
ity of the hypothesis that ¢ is G, the evidence concerning & should be ex-
cluded from the variant of (7) since it is incompatible with what is known
about e. Thus the empirical factor would be 2/3 with FG, not 2/4, as can
be verified with the characteristic function. Adhering to this proviso on
evidence, then, (7) can be stated more generally. Suppose that # individu-
als 1 (7= 4,b,..., y) have been examined and that »; have My, a property of
width wy attributed to the 7 + 1st individual z by the analogy's conclusion.
Suppose also that 7 have M, a property of width w» > wy that z is already
known to have. Then where E; is the conjunction of all the evidence about
the individuals 7 the degree of confirmation in ¢* of the analogical hy-
pothesis that z is M can be calculated via (6) and (2) as:

/
o (Miz B » M) - (m +w)! (n+ K) _ mrw . ©)
(my+ wn) I (n+ K) m+ wy

Just as (7) was generalized as (8) for the entire A-continuum, (9) can be
likewise expanded. Appealing once again to (6) and (2) yields the A-

continuum's version of (9):

A (K)

m + (W) ———)

c(Miz, E; A Myz) = T . (10)
my + (wn T)

Though (10) holds all across the continuum, it has simpler special forms.
For Carnapian methods of the first kind, 'A(K)' reduces to A’ in both =
merator and denominator, and for ¢*, of course, (10) reduces to (9). The
advantages of (10) are the advantages of (9) but magnified: easy yield of
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the same results obtainable with more labor from the characteristic func-
tion. The labor saved is usually considerable.

Critics of the A-continuum like Achinstein and Hesse acknowledge its
ability to deal with perfect analogies, but object to its handling of the
imperfect type (Achinstein, 1963, p. 216; Hesse, 1964, p. 320). Achinstein,
for example, considers the hypothesis that a sample conducts heat given
that it is rhodium and that a sample of platinum and a sample of osmium
conduct heat (1963, p. 217). Since rhodium, platinum, and osmium are all
metals, they share some -but not all- primitive properties, thereby encour-
aging the imperfect analogical conclusion that the rhodium conducts heat
because the platinum and osmium do. The degree of confirmation of this
hypothesis given the evidence should be higher than the same hypothesis
given only that the sample is rhodium. But in Carnap's continuum, as
Achinstein shows, this is nowhere so (1963, pp. 220-21). Moreover, should
nonmetals like oxygen and hydrogen be observed to conduct heat, that
would provide the same support to the rhodium hypothesis as evidence of
heat conduction by platinum and osmium; but the former have few primi-
tive properties in common with rhodium and the latter have many. Hence
the A-system fails for imperfect analogies.

4. Carnap's and Stegmiiller's A-n Continuum

Carnap recounts that he modified his approach to inductive logic in 1951,
soon after the writing but before the publication of (1952) (1963, pp. 75,
974 n45). The change was motivated by the realization that the A-system is
fully reliable only for predicates that belong to a single family, e.g., the
family of colors. While the methods of (1952) can still be relied upon for
approximations, the modified approach is to regard each primitive predi-
cate as a member of a family composed of it and its negation. Three
primitive predicates, therefore, become three families composed of two
predicates apiece (1963, p. 974). : '

Carnap and Stegmiiller exploit this modified approach in a new set of
axioms for inductive logic in (1959, pp. 242-52). Because the axioms
permit the derivation of the A-continuum's characteristic function, perfect
analogies fare here just as in the earlier continuum. But to improve the A-
continuum's results with imperfect analogies, the axioms also constrain
possible definitions of a measure function p different than the A-
continuum's (5) so that (4,¢) may be defined as in (6). Initially, two can-
didates for this measure function are considered.
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To introduce the first, let &; be a family of 4 primitive predicates,
and let &, be a family with 4, such predicates. The Q-predicates
Qij (¢=1,2,., ks j= 1, 2,..., k) formed from the predicates of these
families comprise a pseudo-family &, with 414 = K members. Say that
each instantiated Q-predicate is true of njj individuals. Then the measure
of a state description 7 is calculated as in the A-system for a language with
ky by Q-predicates. Thus the measure is given by (5) adapted to this special

case:

bk
O a2 00 1. M
1,2(2) _ i=1j=l[K (1 K) (2 +K ) (nJJ 1 +K)}
T AL +R) 2+4) ... (N-1+2) : (11)

(11) provides a Q-measure, as I shall say, for it is keyed to state descrip-
tions couched in terms of Q-predicates.

The second candidate is a P-measure, based upon state descriptions
structured by primitive predicates. Here the idea is first to calculate the
measure of each family of £ primitive predicates with (5) as if it were a
language with # Q-predicates in the A-system, and then to take the product
of the measures for each family. Where the measure of the distribution of

L's individuals relative to the first family is u;, and the measure of the

same individuals' distribution relative to the second family is ui, the

measure of a state description # can be expressed as
V2 1 2
@ = x W (12)

How well do these measure functions deal with imperfect analogies?
Let us see. Consider the three state descriptions:12

(1) FGw A FG x A FGy A FG 2
(n) FGw A FGx A ﬁ?y AEG 2
(13) FGw A FGx A FG_y AFG 2

For # and # it should turn out that
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c(FGxAFGy ,FGwa FGz) < c(FGxn FG y , FGwA FG z),

and we would therefore expect that (a) u(#) < w(#). In addition, since for
# and 3 we require that

c(FGy n FG z, FGwA FGY) < ¢ (FG y A FG z, FGw A FGY)

we would expect that (b) u(%) < u(s). But ulk'z meets (a) though not (b),

for Q-measures treat all Q-predicates alike, ignoring the fact that the Q-

predicates of #3 show analogy by similarity while thoese of # do not. ulklz,

on the other hand, meets (b) though not (a); P-measures do pick up analogy
by similarity, but overlook the difference between the disorderly world
represented by # and the more orderly one represented by 2.

In an attempt to retain the advantages but excise the disadvantages of
the first two measure functions, Carnap and Stegmiiller propose another
candidate. This third measure function is defined as a weighted mean of
the first two by using an additional parameter, n, as the weight. Where
O<n<l,

(B = ox w2+ [(1-m) x W5X0) . (13)

n is what Kemeny calls the "analogy-constant” (1963, p. 733). The closer it
is to 1, the more 1, , approximates a P-measure and the more sensitive to
imperfect analogy it becomes. As n approaches 0, however, b, , approxi-
mates a Q-measure and places more weight on the regularity v.vith which
Q-predicates are instantiated. But as long as its value stays within 0 and 1
noninclusive, y, , satisfies both (a) and (b).

Carnap and Stegmiiller's definition of , , is limited to just two fami-
1,2
A
cate families and then defined an n-family version of p, , (1964, p. 325):

lies of predicates. But Hesse generalized both " and u;/z for n predi-

by = x w0 ) x ) (14)
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Moreover, she has shown that this generalized measure function satisfies
certain general conditions (1964, pp. 322-23), and that this is sufficient to
ensure reasonable confirmation values for imperfect analogies like Achin-
stein's rthodium example (1964, pp. 325-26).

Nevertheless, Hesse has also pointed out that this technique for imper-
fect analogies seems strangely imperfect. She objects to the "somewhat
arbitrary and ad boc" nature of Carnap's and Stegmiiller's n-solution (1964,
p. 325), and I concur. Although the A-n system is a technically acceptable
patch of the A-continuum, returning satisfactory values for imperfect as
well as perfect analogies, it provides no guidance on the choice of a value
for 1. Why one would shift n towards 0 or towards 1 is apparently to be
decided on the spur of the moment.

5. Carnap's Basic System

The tenor of Carnap's posthumously published Basic System (1971, 1980)
is caught by his conjecture that it is sufficient to base inductive logic on
two magnitudes: the width and distance of properties (1980, p. 29).13
Width is the logical width that figures so prominently in the A-continuum.
Distance, which Carnap conceives by "analogy to the dependence of a
physical effect of one body on another upon the distance between the bod-
ies," is similarity among properties (1980, p. 48). Each magnitude receives
a parameter: Y for width and 1 for distance. In addition, A is carried over
from (1952) to represent logical weight. If a definite value has been chosen
for A, say A%, it can be used to determine the value of 0, n*:

)“*
W= —. (15)
A¥+ 1

In the latter sections of the Basic System, in fact, A displaces n and thereaf-
ter functions as the "main parameter” (1980, p- 93).

The result is a system which, without abandoning the A-continuum, ex-
hibits a number of critical differences. The axiomatic base has been sim-
plified, first of all (1980, pp. 105-6). Moreover, both the A-continuum's
methods of the first kind and the second kind, including ¢*, are regarded
as inadequate general rules. The reason is that both assign the same A-value
to all predicate families of the same size, but Carnap now prefers to key A
to distance rather than size (1980, pp. 115-119). In addition, whereas the
carlier system permitted % to take values of 0 and «, the Basic System
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views these extreme values as improper (1980, pp. 94-95). But the pivotal
difference for our purposes is the restatement of the characteristic function
(or representative function, as Carnap now calls it).14 Assume a family of
mutually exclusive primitive predicates and evidence ep that one of these
predicates, say P; is instantiated by mp of » individuals. In addition, each
primitive predicate has a y-value ranging from 0 to 1 noninclusive that
represents its relative width; the various y-values sum to 1. Then the degree
of confirmation of the hypothesis 4p that the next individual will instanti-

ate P'is

np + 7\.’Yp

cUhp, o) = —— B (16)

n+ A

(16), the Basic System's representative function, amounts to a major
expansion of the system of (1952).15 The A-continuum requires that the
widths of the properties all be the same, but v in the Basic System admits
unequal as well as equal widths. As a result, two types of predicate fami-
lies figure in the Basic System. A-families satisfy the A-condition that the
degree of confirmation of hypotheses projected with their predicates de-
pends only on 7p and # (1980, pp. 84, 87, 97). A-y- families, on the other
hand, fulfill the A-y-condition, which consists of the A-condition plus the
additional stipulation that the various y-values be equal (1980, pp. 87,
101). These latter families are therefore a special case of the former, and
the A-continuum (excluding the extreme systems where A = 0 and «) is the
corresponding subsystem of the Basic System.

How then does singular analogy fare in the Basic System? A-y-families
obviously succeed no more nor less than the A-continuum: perfect analogies,
which can be dispatched by the short formula (10), do well; but imperfect
analogies do not. A-families could conceivably be treated along the lines
of the A-n continuum, but Carnap makes it clear that he is undecided about
whether to keep his and Stegmiiller's earlier solution or not (1980, p. 46).
Moreover, though Carnap discusses broad analogy as well as narrow anal-
ogy for the first time in introducing the distinction between analogy by
similarity and analogy by proximity (1980, pp. 40-41, 68-71), there is no
doubt that broad analogy has no place in the Basic System; the A-condition
that both predicate families satisfy directly excludes it (Carnap 1980, p.
84; Jeffrey 1980, p. 3). For if degree of confirmation depends only on np
and #, it cannot depend on distance (similarity among predicates). Hence
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the Basic System imposes n-equality: all pairs of distinct predicates
within a family are treated as equally similar (1980, p- 57). Despite Car-
nap's initial successes with perfect analogy, then, his bequest to inductive
logic included analogy as a largely unsolved problem.

6. Hintikka's a-2 Continuum

Like the discussion of Carnap (1952), this section will be divided into
three subsections: a) contours of the a-A continuum; b) extending the -2
continuum to narrow analogy; and c) assessment of narrow analogy in the
o-A continuum.

a) Contours of the a-A continuum

Since the a-A continuum of Hintikka (1966) has Carnap's A-system as a
special case, Hintikka can be said to take up the project of quantitative
inductive logic where Carnap left it in (1963). Even so, there are major
differences of approach. Carnap defends a logical interpretation of prob-
ability, for example, whereas Hintikka is more Bayesian, maintaining that
there is no way to determine the values of inductive parameters like A on
strictly logical grounds (1969, pp. 38-40; 1970, pp. 23-25). Carnap's A-
continuum assigns zero probability to all generalizations in an infinite
domain -a result most have found unacceptable, and which is absent from
Hintikka's systems. Carnap keys on singular inductive inference (1952, p-
13), but Hintikka argues that, to prevent overdependence on domain, the
focus should be on inductive generalization instead (1965b, p. 279).

Consequently, even though the focus of this study is analogy as singular
inductive inference, inductive generalizations cannot be avoided in Hintik-
kan systems, for the values they assign to singular inductions are deter-
mined in part through values for inductive generalizations of a special sort.
As its name indicates, the a-A continuum is structured by two special pa-
rameters. Together, they influence both singular and general induction, but
the parameter A is like Carnap's A, acting first and foremost on singular
induction, whereas o's immediate effects are on inductive generalization.
Although A can be infinite and o cannot, a is comparable to A in that it
represents a priori considerations. Hintikka views it as an index of caution:
the more irregularity we expect in the universe, and hence the slower we are
to jump to lawlike conclusions, the higher o will be (1970, p. 21).
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To introduce the a-A continuum, we will need some Hintikkan termi-
nology. Where L is a language with £ logically independent primitive
predicates (assumed, as in Hintikka's original papers, to be monadic), a
constituent-predicate Ct;(x) (i = 1, 2,..., K) is a complex predicate differing
only in name from a Carnapian Q-predicate. There are K different Ct-
predicates, which are of course mutually exclusive and jointly exhaustive.
A constituent Cy is a closed sentence stating which Ct-predicates are in-
stantiated and which are not. Each constituent has a width w equal to the
number of Ct-predicates that it claims are instantiated. Thus constituents
are equivalent to sentences of the following form:

(3%) C (DA E%) Chr(W) A AGK) Cy (DA (Cry (v Cor()v...v Co ().

There are 2K - 1 mutually exclusive constituents.16 By contrast with Ct-
predicates, which define possible kinds of individuals, constituents define
possible kinds of worlds. They are the generalizations that form the core
of Hintikka's systems, the primary reason that the continuum is so different
from Carnap's methods.

b) Extending the o-A continuum to narrow analogy

a-A methods can be applied to singular analogy even though the evidence
assumptions made in the original presentation of the continuum rule them
out (1966, p. 115). The ensuing discussion concentrates on narrow analo-
gies; the basic idea is to handle them as conditional probabilities. The
analogy's conclusion is some hypothesis 4, which is assumed to attribute a
Ct-predicate to some object. The probability of 4 on the evidence ¢ of the
premises is therefore equal to p(e A h)/p(e). How, then, can the two re-
quired probabilities be calculated within o-A? Let us take each in turn,
beginning with the denominator.

(i) p(e) for narrow analogy

Given evidence e and a finite number of mutually exclusive and exhaus-
tive hypotheses /aj (=1, 2,..., ), Bayes' Theorem expresses p(e) as follows:

1

J
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In the special case of Hintikka's continuum, (@) is therefore:

K=

K-c
EO ( i ) P(CCH)])(‘?I C,<:+1) s (18)

where ¢ is the number of Ct-predicates known to be instantiated, and the
range of values for 7 permits the representation of the alternative constitu-
ents compatible with the evidence. Thus what we need are values for 2(Cy)
fmd 2(dCy). In seeing how they are determined, we will follow Hintikka
in assuming an infinite universe.17

Initially, let us consider p(G,). The methods of the a-A continuum fix
the prior probability of an arbitrary constituent of width w as follows.
Where n(2,2) =4¢z- (z+ 1) - ... - (z+ a- Difa=1, 2, 3,...and n(0,2) =4¢ 1,

wA
T (OC) '_")
K

? (G = : (19)
K A ‘
X (B r@ D)
i=0 K
If A is a constant, (19) anchors a Hintikkan version of Carnap's methods of

the first kind. But if, as in Carnap's methods of the second kind, A is 2 func-
tion A(K) of X, then (19) becomes TREe

w - K)
—)
(G = . (20)

5y r (o, 225
=0

7 (o,

When o = 0, all constituents receive equal prior probabilities. When o > 0
. . . . ’
however, constituents of different widths are given unequal prior probabili-

ties, though the ( 5 ) constituents having the same width all receive the

same a priori weight.18

The Sf:cond component of p(e) is p(d C,), the.conditional probability
of the evidence given a constituent. These probabilities are based upon the
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characteristic or representative function for the continuum.1d Hintikka's
representative function is conditional in that it depends on the assumption
that a given constituent C, compatible with the evidence is true.20 Where
€q is the evidence that nq of individuals have the Ct-predicate 'Q’ Aq is
the hypothesis that the next unexamined individual is @, and w is the width
of the constituent assumed true, the representative function is

A
nQ + —
w
¢ (o €Q) = (21)

n+ A

Now suppose that 7 individuals have been observed and that #; have the
Ct-predicate 'Qy', m have 'Qy', and so on to 7 with 'Q.". Each Ct-predicate
is instantiated by zq individuals, and

%l ng=n . (22)

Then p(d C,) is equal to

c A
T 7 (nq, —)
@ - (23)

n(n+A)

Being able to determine p(Cy) and p(d C,), as we now are, would be
sufficient to determine p(e), as we have just seen, provided that the evi-
dence is Ct-homogeneous -provided, that is, that the evidence is simply
that certain objects instantiate certain Ct-predicates. But that is precisely
what we do not have in a narrow analogy. From the point of view of evi-
dence, narrow analogies are hybrids. Some of their premises may relate
objects to Ct-predicates, but other premises -the ones reporting partial
observations- relate objects to primitive predicates. For example, our
simple perfect analogy Al attributes the Ct-predicate 'Hx) A G(®)' to «
and the primitive predicate 'Hx)' to 6. We have already seen that (23)
would suffice for p(el Cy) when e is like that of the first premise, which 1
shall call Ct-evidence. What remains, therefore, is to describe how to han-
dle the conjunction of Ct-evidence with Pt-evidence, evidence about the
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1ns§anmat10n of primitive predicates provided by premises like the sec-
ond.

The fu§10n of Ct- and Pt-evidence within a-A can be accomplished by
first restating the Pt-evidence in complete disjunctive normal form.2! The
result is a disjunction with the structure

€Q1 V €Q2 V ... V €Qns ‘ (24)

cach clause of which attributes a Ct-predicate to an object. Conjoini
(24) to the Ct-evidence ec yields P object. Lonjoining

ecleqr v e v ... v €qn), : (25)

or, distributing,
(ec r eq1) v (ec A eQ2) v ... v (ec A €Qn)- (26)

. Since (26) is Ct-homogeneous, (23) can now be applied. There are two
differences compared to its application to Ct-evidence alone, however
The major difference is that it has to be applied more than once: once f01;
cach clagse of (26). As these clauses are mutually exclusive, the probability
of (26). is simply the summation of these repeated applications of (23)
.The. minor difference is an adjustment for the partially observed » + Is;
individual. A different Ct-predicate is attributed to this individual in
cach of (26)'s clauses; if the projected predicate is '@, the clause states
that 71 + 1 of # + 1 individuals, rather than m of n, possess it, which makes
the various nq in (22) sum to 7 + 1. With these differences in mind, let x be
the number of predicate letters needed to transform the Pt-evidence into
cqmplcte disjunctive normal form, and 2x the number of disjuncts d of the
evidence (26), cach of which says that g Ct-predicates are instantiated
Then p(e Cy) for Pr-evidence is .

f‘dI A
x Q1 T <nQ’ 7)

d-1 n(n+1,4) (27)
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We are now ready to state p(e) for analogies. We assume that the same
function that can relate A to X for p(C,) in (20) can also relate A to w for
p(dCy) in (27). Then p(e), which was expressed schematically as (18), can
be fleshed out as '

e 2 (c+2)
K (+1) ME) 2 21"("@ o
%“]fc)”“’ D R
’ : (28)
M (K)

)

§ (].()n (at,
=0 z

(ii) p(e A h) for narrow analogy

Having p(e) in hand, we need only p(e A /) to be able to find the condi-
tional probability of an analogical conclusion. p(e A ) is like (28) except
for a change to the expression for p(el C.,;). Since %' attributes a Ct-
predicate to the # + 1st individual, it fills in the epistemic gaps left by the
Pt-evidence; thus ¢ A 4'is Ct-homogeneous and innocent of the complica-
tions inherent in e for analogies. As a result, p(el C.,;) is not based on (27)
but on (23), which is modified so that #; + 1 of # + 1 individuals have the

projected Ct-predicate 'Q'. p(e A /) is then equal to

¢ A (e+d)
K () E m T
«  Kee c+l) - +7
2 () m (o )
P K T (7(11-;)1, A (e+2) (29)
i
S B )
=0 g

The probability of an analogy's conclusion given its premises, p(hle),
can now be calculated as p(en £)/p(e).

c) Assessment of narrow analogy in the o-A continuum

As in Carnap's A-system, perfect analogies in the a-A continuum have
smooth sailing. The similarity is not just one of result, however, for Car-

230 THEORIA - Segunda Epoca

J.R. WELCH SINGULAR ANALOGY AND QUANTITATIVE INDUCTIVE LOGICS

nap's system is a special case of Hintikka's, as remarked. Moreover, and
more important for our purposes, there is a close connection between Car-
nap's ¢ and Hintikka's generalized combined system (GCS), which is the
point along the a-A continuum where A = Mw) = w except in (19) and (20),
where A = A(K) = K for prior probabilities of constituents.22 The connec-
tion is that, as & grows without bound, the values obtained for singular in-
ference in GCS approach those of ¢ (1966, p. 128). For perfect analogies,
this means that (9), the shortcut for perfect analogies in ¢*, provides limit
values for perfect analogies in GCS as o ~» .

Indeed, there is an extensive subclass of cases for which (9) gives the
exact value in GCS regardless of the value of a. To see what they are, let
us first avail ourselves of some obvious simplifications. We have just seen
that the probability of singular analogical hypotheses is determined in the
a- continuum by the quotient (29)/(28). But the denominators of (29) and
(28) cancel immediately. What remains both above and below the line is a
summation over a product of the three factors within brackets: an N-
component, as [ will call it, for the number of constituents of a given width
compatible with the evidence; a P-component for the prior probabilities of
these constituents; and an R-component based on the appropriate represen-
tative function. In short, both numerator and denominator consist of a
summation over products NPR. Now since A(X) = K for prior probabili-
ties of constituents in GCS, the P-components in numerator and denomina-
tor simplify to n(a, ¢ + 7). And since elsewhere in GCS A = AM(w) = w, the
o-A representative function (21) reduces to

no + 1
c(hg, Q) = R (30)

n+w

which permits simplification of the R-components. Finally, it will facili-
tate matters below to generalize (30) so that it applies not only to molecu-
lar predicates with w = 1 (Ct-predicates), but also to molecular predicates
with w2 1 such as those that figure in the evidence for analogies. So just as
(2) is (1) generalized in ¢*, the following expression is (30) generalized in
GCS. Let evidence ¢, state that n, of # individuals have a molecular
predicate ‘M, and let A, be the hypothesis that the next individual will
also be M. The width of M'is w,;, which is distinct from the width w of
the constituent that conditions the representative function as in (21). (30)
then becomes
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nM o+ WM .
c(hvs e) = ——— (31)
n+ w

Drawing all this together, and relying momentarily on (30) rather
than (31), we can express the probability in GCS of an analogical hypothe-
sis that a partially observed individual has a given Ct-predicate as

plen B p(e):

, 1
gln(nQ )

K K-c
2 ) mee) —rmmre ]

(32)

1
gl n (nq, 1)

Ke Ko &
E‘O A i )7 (0, e azéll n(n+ 1, c+i)

The special cases we are concerned with here are perfect analogies where
both e h'and ‘¢’ agree on the number of Ct-predicates that are instanti-
ated. Hence c is the same in the expressions for p(e A 4) and p(e), which
suggests the term 'c-uniform' for these analogies. Al of Section 2 is not -
uniform, for example, since ‘e A /' recognizes one Ct-predicate while ‘e’
wavers between one and two. But if Al's evidence is augmented by the ob-
servation that another individual is FG , the result is c-uniform; both e 4’
and ‘¢’ countenance two Ct-predicates.

One property of cuniform analogies is the identity of the N- and P-
components in (32)'s numerator to those in the denominator. Consequently,
if the nonidentical R-components for p(e A /) and for p(e) are represented
as 'Reh' and 'R’ respectively, and the NPR components are given subsc.ripts
pegged to (32)'s i that indicate (indirectly) the width of their associated
constituents, (32) has the structure

e h
NoPoRE + NiPLR™ + ... + NicoPie RS 33

]VQP()R% + Nlle? + oo +'N](-CPI(—L‘R]?-L;
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Now the last factor in the expansion of any Reh component gives the prob-
ability on the evidence that the individual z of the analogy's conclusion has
the Ct-predicate 'M;'. The numerator of this factor takes the form ; + wy,
where 71 is the number of individuals known to have M; and wj is the
predicate's width. Because this numerator is common to all Reh compo-
nents, it can be factored out of the expression for ple n h). A parallel ar-
gument holds for the last factor in the expansion of any Re component. The
numerator of each such factor is 7 + w;, where 7 is the number of indi-
viduals known to have 'A%, a disjunction of Ct-predicates that includes
'M,;', and w; is its width. Because this numerator is common to all Re
components, it too can be factored out of the expression for p(e). Where
"Reb-" and 'Re-' are the R-components diminished by factoring, (33) is then

(m +wy)  NoPoR§ + NiPLR™ & ... + Nig Py R 60
3

(my+wy) NoPoR§ + MNPRT + ..+ Ng P R%,

In these cases, however, the N, P, and diminished R-components of the
numerator are identical to those of the denominator. The result is whole-
sale canceling of the righthand parentheses; all that remains are the paren-
theses on the left. So here all the apparent complications of (29)/(28) boil
down to a simple application of (9). But the condition on the statement of
evidence given above with (9) must be respected as always.

As a quick example, suppose that the Ct-predicates FG' and 'FG 'are
instantiated respectively by 2 and 4, and that a partially known individual
¢ instantiates 7. We want the probability of the analogical hypothesis that
cisalso G. Here both 2 A /' and ‘¢’ agree on the number of Ct-predicates
that are instantiated: ¢= 2. Hence K- c= 2 in both numerator and denomi-
nator of (32), and the N- and P-components are plainly identical. All that
really needs to be shown is that the diminished R-components of the nw
merator are identical to those of the denominator. The number of factors
in the R-components of both e h) and p(e) for analogy is always n + 1;
both expressions concern the same series of individuals, though from dif-
ferent points of view. The expanded R-components that follow are ob-
tained through repeated applications of (31), and associated with constitu-
ents of widths 2, 3, and 4:
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0+1 1+1 1 0+1 1+1
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i D

i i —
1+2 2+2 3 143 243 1+4 2+4

Factoring out the numerators in the last factor of each addend for both
ple A h) and p(e) gives

0+1 1 1 0+1 1 1 Ofl 1 S

142 242 3 143 243 4 144 244 141
0+1 1 202 2

11[(1
(1+1) '5:

1 0+1 1 1 0+1

1
+2) [(— — )+
(2+2) [(2

1
142 242 3 143 243 4 144 2+4

The same result can be had from (9) in a fraction of the time. . .
Once the utility of (9) for cuniform analogy has beeg established in
GCS, it is tempting to stretch the point. If (9), which is native to &, could
be generalized as (10) for the entire A-continuum, could it also be. genergl—
ized for the o-A continuum? Suppose that the evidence Ej concerning 7 in-
dividuals 7 (i = #,4,..., y) is that n; possess a Ct-predicate 'M;' of width wy
and that 7, have 'M;', a disjunction of Ct-predicates of width w, that con-
tains 'M;'. The »n + 1st individual zalso has M;. Then where w is the width
of the constituent assumed true, the o-A version of (9) for the analogical

hypothesis that zis A} would be

L (w)
ny + (wl w
P (Mlz, Ei A M:)_Z) = N (w) . <35)
my + (wy )

That (35) holds for c-uniform analogy all across the continuunfl can be eas-
ily shown by the factoring procedure rehearsed above for (9) in GCS. But
the same proviso on logically incompatible evidence that applies to (9)
and (10) applies also to (35). The result, as usual, is labor saved.
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A common sort of cuniform analogy merits mention apart. Besides
c-uniformity, these analogies meet two further conditions: ¢ - K and
A = AMK). When ¢ = K, all Ct-predicates are known to be instantiated;
hence w= Kin (21), the o-A continuum's representative function. Then pro-
vided A = M(K), the rest of (21) reduces trivially to (1), the comparable
A-continuum function. Here, then, a-A-systems collapse into A-systems, and
(35) is equivalent to (10).

The -4 continuum is also like Carnap's earlier system in its handling
of imperfect analogy. The A-continuum does not deal adequately with
imperfect analogy, as we have seen, nor does Hintikka's successor system.
Hesse points out that the difficulty is the same in both systems: the sym-
metry of Q-predicates, in Carnap's case, or Ct-predicates, in Hintikka's.
This symmetry ensures that for a confirmation function @

() the prior probabilities are assigned in such a way that o(Ch (@) A Cr(b),
where Cy #% Ch, has the same value however similar or different # and & may be;
that is, for example, if Cy is P\PyD;,..., B, it has the same value whether Cy is
P PDs,..,Px,or A P2Ps,., Pk Now although Hintikka's system is not for-
malized in this paper, it is clear that his confirmation functions, like Carnap's, are

symmetrical wich respect to C-predicates, and it therefore follows that these con.
firmation functions do not satisfy the analogy criterion. (1968, pp. 221-22)

There are at least two strategies for adjusting the a-A system so that it
can cope with imperfect as well as perfect analogies. One, based upon Car-
nap's and Stegmiiller's approach in the A-n continuum, is to define a meas-
ure function parallel to (13) above that uses an analogy constant like 7 to
mediate between P- and Q-measures. This procedure has been illustrated
by Pietarinen in (1972, pp. 91-94).23 However, we have already noted
Hesse's complaint that the Carnap-Stegmiiller solution is ad hoc, and Ni-
iniluoto makes the same charge against Pietarinen's extension of i to the
a-A system (1981, p. 2).

The other strategy, proposed by Hintikka, is a variant of the o-\ contin-
uum in which the primitive predicates are ordered; the Ct-predicates then
turn out to be asymmetrical (1968, p. 228). Hintikka works out this pro-
posal in detail, suggesting three different ways of ordering the primitive
predicates (1969, pp. 28-33). Though his main concern is to show that these
methods can solve Hempel's and Goodman's paradoxes of confirmation,
the extension to analogy has been carried out by Pictarinen (1972, pp. 94-
99).24 This ordering strategy would be applied to Achinstein's rhodium
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analogy, for example, as follows. Suppose that some of our primitive
predicates are "metallic” in that they identify properties that metals have
and nonmetals do not. Let these predicates form the family & and the
remaining primitive predicates the family 5. Then the universe of dis-
course is partitioned twice: first according to the predicates of &, then
the resulting classes according to those of &73. The effect is asymmetry
among the Ct-predicates: evidence that a property is present in metals like
platinum and osmium counts more in hypotheses about rhodium than com-
parable evidence about nonmetals like oxygen and hydrogen. The fact that
the primitive predicates for thodium are more similar to those for metals
than nonmetals is thereby registered. As Hintikka shows, this procedure is
not limited to the case of two predicate families; it can also be achieved
with a greater number of families and a corresponding increase in the num-
ber of partitions (1969, pp. 31-34).

This second solution relies on extra-systemic judgments about the or-

dering of primitive predicates, as Hintikka emphasizes. But unlike the first -

solution, it does not appear to be @d hoc. Hence not only does the a-A con-
tinuum advance beyond Carnap's systems in its handling of inductive gen-
cralization; it brings imperfect analogy, which was never satisfactorily
assimilated by Carnapian methods, under the tent. At this point, then, our
resources for dealing with narrow analogy are not in bad shape-though, as
we will see, they can be improved. But the problem of broad analogy has
not been addressed at all.

~

7. Hintikka's and Niiniluoto's K-Dimensional System

As before, the discussion will proceed in three stages: a) contours of the K-
dimensional system; b) applying the K-dimensional system to analogy;
and c) assessment of analogy in the K~dimensional system.

a) Contours of the K-dimensional system

The glaring weakness of Carnap's inductive logics is their management of
inductive generalization, a difficulty acknowledged by Carnap himself
and apparently the root of his claim that the business of science is not to
establish universal laws but to confirm instances of laws -primarily through
singular inference.25 Hence the program of Hintikka (1965b), (1965¢), and
(1966) to retrofit the Carnapian framework with a sustainable policy on
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inductive ge;neralization. Hintikka and Niiniluoto add a fourth install-
ment, an axiomatic K-dimensional system (hereafter KDS) in (1976).26

. The ax10{natic base of KDS is slender. Like Carnap, first of all, Hin-
tikka and Niiniluoto require a probability distribution that is symr’netric
(de' Finetti's exchangeability) and satisfies the probability calculus. But
unlike Carnap, whose characteristic or representative function depenc‘is on
tbe sample only for nq and # (the number of observed individuals with a
given Q—pr.edicate and the total number of observed individuals), KDS's
.represe‘ntatlve function relies on the sample for nQ, n, and ¢ (the nL;mber of
mgantxated Ct-predicates). Hintikka and Niiniluoto express this second
axiom by saying that, whereas the A-function has the form f(nq, n), KDS's
function has the form Anq,n,0 (1976, pp. 58-59). The additional argu-
ment ensures that the simplest constituent compatible with the evidence
receives thf: highest confirmation in the long run (1976, pp. 60, 73).

.In addition to these axioms, KDS includes X free parameters, where
K is, as before, the number of Ct-predicates specifiable in the language
The parameters are values for the representative function at f0,c0 where
e=1,2,..., K1, and for A1,K+1,K), T

The parameters and axioms together determine a range of inductive
systerrgs. Ttgle mngce1 of KDlS is not coextensive with that of the o-A contin-
uum, but the two do overlap considerably; GCS, for example, belones
both 0'6—7» a{ld KDS (1976, pp. 59-60). Kuipers has shown thalz the systeris E)Of
KDS are in fact those members of Hintikka's o- system in which A(w) is
p.rop'omgnal to w but withour Hintikka's particular choice of the prior
distribution p(G,) in terms of o." (1978a, p. 262). P

H{ntlkka and Niiniluoto make it clear that their results are intended to
be primarily qualitative (1976, pp. 60, 73). Commenting on this Kuipers
obserY'es that the systems of KDS "seemed to be extraordinarily ,com li-
c.ated,' and that "this feature made it hard to obtain much quantitativePin-
§1ght in the systems, which explains why the analysis of Hintikka and Ni-
iniluoto was mainly restricted to qualitative considerations” (1978a
262). K'ulpers proves, however, that the systems of KDS, which he calls, 'P—.
systems', are equivalent to a class of systems he calls 'Q-systems', and that
Fhe mathematical 'machinery' of Q-systems is highly transparent; it is as
simple as could reasonably be expected” (1978a, p. 263).27 ’

Let us briefly cxgmine these Q-systems, therefore, before turning to
analogy in KDS. .Kulpers presents them axiomatically (1978a, p. 265), but
for our purposes it suffices to note a few salient features. Like (21)’ the
analogous function for the o-A continuum, the representative function f(;r Q-
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systems is conditional in being relative to the truth of a constituent com-
patible with the evidence. Suppose evidence eq that ng of # individuals
instantiate a Ct-predicate '‘Q’ and hypothesis 4q that the next individual
will also be Q. Then where w is the width of the constituent assumed true
and p a real-valued parameter such that 0 < p < o, the representative func-
tion can be formulated as

_mrPh (36)

n+ wp

¢ (hq, eq) =

Putting p = M w and the prior probabilities of constituents in line with (19)
or (20) generates the o-A systems, including GCS (A = K = w), the
A-continuum (K= w, o0 = =), and ¢ (A = K= w, o = «). To this extent,
Q-systems are familiar. But their parameters are specified differently
. than in KDS. Whereas the KDS parameters represent posterior probabili-
ties concerning individuals; those of Q-systems range over prior probabili-
ties of constituents. There are K-1 of these parameters p(C,), where
w=1,2,.., K-1.28

Generalizing the representative function for molecular predicates with
w> 1 has already proved useful in the A-continuum and in GCS, and it will
prove so here as well. For p and was in (36), evidence ey that a molecular
predicate ‘M’ of width wy is instantiated by my of # individuals, and
hypothesis /4 that the next individual will also be A, (36) can be ampli-

fied as

C(m,m>=_w_' (37)

n+ wp
(37) is the KDS analogue of the A-continuum's (2) and GCS's (31).

b) Applying the K-dimensional system to analogy

Because of the equivalence between Q-systems and those of KDS, it is pos-
sible to study the latter, as Kuipers says, "in their 'Q-garb™ (1978a, p. 272).
In particular, it is possible to show in a mathematically explicit way how
to deal with narrow analogy in KDS. The strategy is fundamentally the
same as it was in the o-A continuum: the probability of the conclusion 4
given the evidence ¢ of the premises is equal to p(e n £)/p(e).
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The basic ingredients for the requisite (e) are as in the o- i :
2(Cy) a)'fld pdCy). But p(C,) in an—systgm is a freely chose}r: ;ZY;E;L:?Z;
thoug-h it can be set according to (19) or (20), it need not be. ple Cy) for
Ct—ewden'ce is a variant of (23) obtained by replacing the o-2 representa-
tive function with (36), the corresponding Q-function. The result is

QI:II n (nQ, p)

n (n, wp) 8
pld Cy) for the Pt-evidence of analogy is therefore
2
N ng n (nq, p)
(39)

a1 nw(n+l,wp)

ir;szag)i of (27). Reflecting these changes, p(e) is then a scaled-down version
) :

cd

IT 7 (no,p)
K¢ K- Z Q@ Q
(T p(c,
i 7 7 {Ce) %1 T (n+ 1, (e+d) p) I (40)
Finally, p(en 4) is a parallel version of (29):
IC_I 7 (no, p)
Ko QP
> 59 (41)

=)

n(n+ 1, (c+1) p)

c) Assessment of analogy in the K~dimensional system

Tq track the behavior of perfect analogy in KDS, we recall that the prob-
ability of a partially observed individual having a given Ct-predicate is
ple A h)lp(e) expressed as in (41)/(40). This quotient, like (32), has the
structure of (33): both numerator and denominator are summati;)ns over
products of N-components (the number of constituents of a given width
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compatible with the evidence), P-components (the prior probab%lities of
these constituents), and R-components (based on the representative func-
tion). . '
Now suppose we take the special case of c-uniform anﬁalogy .(analogles
where both ¢ A A" and ‘e’ concur on the number of instantiated Ct-
predicates) that we explored previously within the o-A continuum. Because
¢ is the same in the expressions for both p(e A 4) and p(e), the N— and P-
components of the numerator are identical to those of the deno.mmator. But
how are the R-components, obtained from iterated applications of (37),
related to each other? We have already observed that R-components for
analogies have the same number of factors: 7 + 1. In;gddition, the factoring
sequence that led from (33) to (34) for GCS can be repeated here. F(?r
cach Reh component in p(e A ) concludes with a factor Whose numerator is
'ny + wip', where 7 is the number of individuals instantiating 'A;', the Ct-
predicate projected by the analogy's conclusion, and w is its wlidth. Anfi
cach R® component in p(¢) has a final factor with a numerator of m o+ wp,
where m is the number of individuals instantiating 'A%, a disjunction of
Ct-predicates including 'M;', and w; is its width. When both numerators
are factored out, the result -structurally analogous to (34)- produces dimin-
ished R-components Reb- in the numerator and Re- in the denominator:

- - ch-
(1 + w1 p) NoPoRE + NyPLRS + ... + N Pre R, )

(712 + wzp) NOP()RS‘ + NlPlR(le— + ..o+ NK—CPKLCR]?:C

But since the numerator's diminished R-components are identical to 'the
denominator's, they cancel along with the N- and P-components, leaving
just
(m + wy p) . (43)
(m + wyp)

So for c-uniform analogies in KDS, one can take the express route via (43)
instead of (41)/(40).29 What (35) does for the o-A continuurp, (43) does
for KDS. As always, however, any evidence incompatible with the anal-
ogy's conclusion must be excluded from (43)'s empirical factor.
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KDS is successful with perfect analogy, as Niiniluoto has shown, but it
does not return acceptable values for the imperfect variety (1981, pp. 7-
10). Attempting to remedy that has led a number of thinkers to explore
the kind of broad analogy Carnap called analogy by similarity. Among
them are Niiniluoto (1980, 1981, 1988), Spohn (1981), Constantini
(1983), Kuipers (1984), Skyrms (1993), and Festa (1997). Space con-
straints preclude a survey of this literature, but 1 will briefly describe
Kuipers' approach in (1984), which Niiniluoto has explicitly endorsed
(1988, p. 287).

Kuipers observes that (1), Carnap's characteristic function for the A-
system, can be looked at as an application of the straight rule to nq real
empirical instances of a certain Q-predicate and A(K)/K virtual logical
instances of the same predicate (1984, p. 69). Why not then treat analogy
by analogy with these virtual logical instances? Why not add virtual
analogical instances to (1) so that similarities among predicates are fac-
tored in? That is, let the number of virtual analogical instances of a spe-
cific Q-predicate on the evidence ¢ be nq(e) 2 0. Each Q-predicate will
have its own nqQ(e), which together add up to n(7). Then (1) could be given
an analogy factor nQ(e/M(n) to go along with its empirical factor nqQln
and its logical factor 1/K. That is, (1) would become

A (K) ©
o E (44
QY= n+ A (K) +n(n) .

Like the empirical factors and logical factors, the various analogy factors
sum to 1. (44) would hold only for the part of KDS coextensive with the A-
continuum, but Niiniluoto speculates on extending the procedure to the
rest of KDS in (1988, pp. 289-292).

This is an attractive proposal, intuitive and clear, but how would the
analogy factors be chosen? Intuitively, the idea is to make them propor-
tional to the relative similarities of the Q-predicates. Techniques for
measuring these similarities have been proposed by Niiniluoto (1981, pp.
12-14), Kuipers (1984, pp. 67, 73-74), and again by Niiniluoto (1988, pp-
279-80). Suppose we take the first of these proposals as an illustration. Let

v be the number of primitive predicates not shared by the Q-predicates
'Q/ and 'Q,". Then the Q-predicates' degree of resemblance 7 can be ex-

pressed as
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1
Ry = ——— . (45)
1+ dyy

If we have just two primitive predicates, 'F' and ‘G (45) gauges the de-
grees of resemblance between the Q-predicate 'FG'on the one hand and

FG, FG | 'FG | and 'FG 'on the other to be 1, 1/2, 1/2, and 1/3 in
turn. The application to (44) is straightforward: the analogy factors can be
made proportional to the degrees of resemblance determined by (45).
Specifically, (45) measures the degree of resemblance between the Q-
predicates represented by the evidence and the Q-predicates being pro-
jected. ,

As a simple example, take our imperfect analogy A2. Relative to the
minimal language where K'= 4, A-methods assign A2's conclusion a degree
of confirmation of .5, thereby allotting to the rival conclusion that & is not
G the same degree of confirmation. But that is to consider the less similar

Q-predicate 'FG 'just as likely as the more similar 'FG ' They are not
equally likely, however, if we use (44) and (45) instead. (45) determines
the degree of resemblance between the predicates in evidence (FG'and
'FG v FG ) and the Q-predicates FG, 'FG ', and 'FG 'to be 17/56,
15/56, and 13/56 respectively. Suppose we use these values as analogy fac-
tors in a version of (44) patterned after ¢* (M(K) = K). Then A2's conclusion
receives a degree of confirmation of 8/15 (about .53), dropping that of the
rival conclusion that 4 is not Gto 7/15 (about .47). Comparably unequal
results are obtained with other (44)-based methods.

So not only can (44) be relied upon for analogy by similarity; it affords
smooth handling for imperfect analogy, and of course for perfect analogy
as well. Compared to Carnap's and Stegmiiller's technically adequate solu-
tion to the problem of imperfect analogy, (44) is both simpler and more
general, and its analogy factors are grounded in an objective metric of
similarity.

8. Conclusion

That quantitative inductive logics have matured to the point where they can
handle both forms of narrow analogy as well as analogy by similarity is
technically important, but it is not only that. For they provide us with a
critical tool for assessing analogies that is mathematically explicit. If, as
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suggested in Section 1, an analogy is rationally acceptable only if its con-
clusion is more probable on the evidence than any rival conclusion based on
the same evidence, then these logics make the formal criterion of greater
probability operational. What is more, if the argument from analogy has
the epistemically foundational role I believe it can be shown to have, then
logics such as these assume critical importance at the very roots of knowl-
edge. An argument classifying something as a certain kind has not only the
obvious constraint on true premises; it has, in addition, a usable check on
its form.30

Notes

I One of the few exceptions is Niiniluoto (1988).

2 Recent work on analogy by similarity includes Skyrms (1993) and Festa (1997).

3 Skyrms (1991) develops proposals by Kuipers (1988) and Martin (1967) in showing how
to handle finite Markov chains as one kind of analogy by proximity.

4 Relevance is the line between evidence and knowledge or, put another way, evidence is
r.elevant knowledge. How we make judgments of relevance is a psychological ques-
tion, and h9w we ought to make them is a logical question. But that we make them is
not a question at all; it is a fact. These issues, which are complex indeed, cannot be pur-
sued further here.

5 It may be said in Achinstein's and Hesse's defense that Carnap's description of perfect
analogy was probably the root of their error.

G Carnap was converted to a semantic view of logic by Tarski. He relates in (1963, pp- 60-
67, 71-72) that the concept of range came from Wittgenstein (1922) and Waismann
(1930-31). He comments repeatedly on the centrality of range in both deductive and
inductive logic; in (1942, pp. 96-97), for example, and in (1945, pp. 73-75).

7 eq here is not éq in Carnap (1952) but ¢. For the difference, see (1952, p. 12). Similarly,

. , . .
ho hc:re is Carnap's /;. The changes have been made in the interests of more suggestive
notation.. :

8 For the details of the derivation, see Carnap (1952, pp. 16-18, 30-31).

9 Thave changed Carnap's individuals 4to 2 and cto bin order to mesh with usage else-
where in this paper.

10 The formula survives in Carnap's later work in (1950, p- 569) and Carnap and Steg-
miiller (1959, p. 227).

1 This does not violate Carnap's requirement of total evidence. See Hempel (1965, pp-

64-65).
12 Here I follow Hesse's presentation in (1964, p. 324).

13 Carnap talks of widths and distances of regions in an attribute space, but for our pur-
poses these refinements are inessential.
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14 Both Carnap and Hintikka switched from the term 'characteristic function' to 'repre-
sentative function' for describing their respective functions. The change was made "to
avoid clashes with the standard mathematical and statistical terminology,” as Hin-
tikka explains in (1969, p. 44 n15).

15 (16) appeared in Stegmiiller (1973, p. 496) prior to the publication of Part 2 of Car-
nap's Basic System.

16 The constituent that says that no Ct-predicate is instantiated is normally eliminated.

17 These methods are also applicable o finite universes. See Hintikka (1966, pp. 120-22).

18 It is worth noting that expressions like the 7 terms in (19) and (20) can be nonintegral.
These expressions can be expressed as factorials, however, and the factorial function is
routinely extended to nonintegral arguments with the gamma function. Thus (19), for
example, can be generalized as

w A

I (o + Ve )

w A
F(—F)
(G) =
P W ;\’ 3

T (o + ! )
(%) £

Mo

Tu‘

i
el

and (20) in parallel fashion. Like rephrasings are at hand when needed for the o-A
formulas which follow.

19 As remarked in note 14, Hintikka switched from the term 'characteristic function' to
‘representative function’. Even though he was still using the former in (1966), in ac-
cordance with his later usage I will henceforth use 'representative function'.

2 Hintikka's reasons for preferring his version of the function over Carnap's are pre-
sented in (1965¢, pp. 28-30) and (1966, p. 119).

2l Details can be found in Hintikka (1965a).

22 GCS is described in Hintikka (1966, pp. 127-28). Hintikka introduced his combined
system in (1965c¢) and generalized it in (1966).

2 Though Pietarinen focuses on inductive generalization, his approach is plainly adapt-
able to singular induction as well.

%4 The emphasis is once again on general inference, but the adaptation to singular infer-
ence is straightforward.

25 An early statement is Carnap (1943, pp. 88, 90—93).

26 Kuipers speculates on the reasons for this new attempt in (1978a, p. 262).

27 Kuipers (1978b, Ch. 6) is also of interest on the relations among various Hinrikkan
systems.

28 Since the prior probabilities of all constituents sum to 1, P(CG) is fixed by the prob-
abilities of the other constituents and is therefore not a parameter.
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29 That (43) is the natural extension of (9) in KDS was pointed out to me by Theo
Kuipers (personal communication).

30 For help in locating hard-to-find sources, I am indebted to different people in differ-
ent ways: Rick L. Chaney and Julie Arata Heringer of Saint Louis University's Madrid
campus; Ron Crown of Saint Louis University's Frost campus; and Blanca Bengoechea
and Ana Marfa Jiménez of the Instituto de Filosofia at the Consejo Superior de Inves-
tigaciones Cientificas in Madrid. In addition, the comments of two anonymous refe-
rees for .leeoria aided considerably in the final revision of this paper, but any faults it
may retain are my own.
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