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Suppose that a dart is thrown, using the unit interval as a target;
then what is the probability of hitting a point?

Clearly this probability cannot be a positive real number,
yet to say that it is zero violates the intuitive feeling that,

after all, there is some chance of hitting the point.

—Bernstein and Wattenberg (1969, p. 171)

It has been said that to assume that 0 + 0 + 0 + . . . + 0 + . . . = 1 is absurd,
whereas, if at all, this would be true if

‘actual infinitesimal’ were substituted in place of zero.

—de Finetti (1974, p. 347)

Infinitesimals played an important role in the seventeenth century devel-
opment of the calculus by Leibniz and—to a lesser extent—by Newton.
In the twentieth century, calculus was applied to probability theory. By
this time, however, Leibnizian infinitesimals had lost their prominence in
mainstream calculus, such that “infinitesimal probability” did not become
a central concept in mainstream probability theory either. Meanwhile, non-
standard analysis (NSA) has been developed by Abraham Robinson, an
alternative approach to the calculus, in which infinitesimals (in the sense
of Equation 1 below) are given mathematically consistent foundations.
This provides us with an interesting framework to investigate the notion
of infinitesimal probabilities, as we will do in this chapter.

Even taken separately, both infinitesimals and probabilities constitute
major topics in philosophy and related fields. Infinitesimals are numbers
that are infinitely small or extremely minute. The history of non-zero in-
finitesimals is a troubled one: despite their crucial role in the development
of the calculus, they were long believed to be based on an inconsistent
concept. For probabilities, the interplay between objective and subjective
aspects of the concept has led to many puzzles and paradoxes. Viewed
in this way, considering infinitesimal probabilities combines two possible
sources of complications.

This chapter aims to elucidate the concept of infinitesimal probabilities,
covering philosophical discussions and mathematical developments (in
as far as they are relevant for the former). The introduction first specifies
what it means for a number to be infinitesimal or infinitely small and
it addresses some key notions in the foundations of probability theory.
The remainder of the chapter is devoted to interactions between these
two notions. It is divided into three parts, dealing with the history, the
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mathematical framework, and the philosophical discussion on this topic,
followed by a brief epilogue on methodological pluralism. The appendix
(Section 16) reviews the literature of 1870–1989 in more detail.

Infinitesimals

In an informal context, infinitesimal means extremely small. The word
‘infinitesimal’ is formed in analogy with ‘decimal’: decimal means one
tenth part; likewise, infinitesimal means one infinith part. As such, the
word ‘infinitesimal’ suggests that infinitesimal quantities are reciprocal
to infinite ones, and that infinitely many of them constitute a unit. In
Wenmackers (2018), I have introduced the term ‘harmonious’ as a property
of number systems such that “each infinite number is the multiplicative
inverse of a particular infinitesimal number, and vice versa.” In other
words, an harmonious number system does justice to the etymology of
‘infinitesimal.’ Moreover, in such a number system, “neither the infinite
nor the infinitesimal numbers are conceptually prior to or privileged over
the other in any way.”

These suggestions can be formalised in non-standard analysis (NSA),
which allows us to work with so-called hyperreal numbers. The set of
hyperreal numbers, ∗R, contains positive (and negative) infinite numbers,
larger than any (standard) number, as well as their multiplicative inverses,
which are strictly positive (or strictly negative, respectively) infinitesimal
numbers, smaller than any positive real number yet greater than zero.1

The hyperreals are harmonious in the sense just defined.
Let us now state the formal definition for infinitesimals that we consider

in this chapter. A number x is infinitesimal if

∀n ∈N : |x| < 1
n

. (1)

According to this definition, zero is an infinitesimal and it is the only real-
valued infinitesimal.2 Number systems that do not contain strictly positive
or strictly negative infinitesimals, such as R, are called Archimedean; num-
ber systems that do contain non-zero infinitesimals, such as ∗R, are called
non-Archimedean. NSA is certainly not the only framework for dealing with
infinitesimals,3 but currently it is the most common one for representing
infinitesimal probabilities, so that is what this chapter focuses on.

1 Actually, it is more accurate to write ‘a set of hyperreal numbers,’ rather than ‘the set,’
since the definition is not categoric (unlike that of R) and there is no canonical choice
among the ∗R’s. See Section 16.2 for details.

2 Some authors exclude zero in their definition of infinitesimals, but for the exposition in
this chapter it will turn out to be beneficial to include it.

3 Section 11 mentions two alternative frameworks that deal with infinitesimal numbers.
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What is an infinitesimal probability value? The answer depends on
which number system you are using: we already observed that zero is
the infinitesimal number within the real numbers, whereas the hyperreal
numbers contain (infinitely many) strictly positive infinitesimals, which
could serve as strictly positive infinitesimal probability values.

One way to obtain a new number system is by considering a suitable
quotient space. In general, the definition of a quotient space relies on the
definition of some equivalence relation on a collection of objects, which
can be (generalized) sequences.4 Informally, the equivalence relation ex-
presses a condition for two objects to be “indistinguishable” from each
other or for their difference to be “infinitesimal” or “negligible.” In the
case of (generalized) sequences, this condition has to specify (i) a crite-
rion to compare corresponding positions by and (ii) a selection rule that
specifies at which collections of indices said criterion has to hold. Both
the construction of the real numbers and that of the hyperreal numbers
fits this general description, but the relevant equivalence relations impose
different conditions for sequences to be indistinguishable from each other.

(1) The negligibility of a sequence can be formalised as “converging to
zero”: the sequence gets (i) arbitrarily close to the (rational) number
zero (ii) eventually.

(2) Another way to define negligibility of a sequence is as being (i)
exactly equal to the (real) number zero (ii) except for a small index set.

We will define the criteria and selection rules in italics later in this
chapter (see Section 8.5). For now, it suffices to know that two sequences
can be defined to be equivalent if they differ only by a negligible sequence
(in a well-defined sense). Using this equivalence relation, we can define
equivalence classes of sequences; the structure of the collection of these
equivalence classes is a quotient set. For some choices, this set may be
isomorphic to that of the set of real or hyperreal numbers. In particular, the
equivalence class of rational-valued Cauchy sequences that are negligible
in the sense of (1) is the real number zero (0R) and the equivalence class of
real-valued sequences that are negligible in the sense of (2) is the hyperreal
number zero (0∗R).

Since being exactly equal to zero implies being infinitely close to zero,
but not vice versa, we may think of 0R as the infinitesimal in the set of
the real numbers, which corresponds with an infinite equivalence class
of sequences, many of which belong to that of non-zero infinitesimals in
the hyperreal context. In this sense, the hyperreal numbers are capable of
representing finer distinctions (among sequences) than the real numbers
are.

4 For generalized sequences, see Section 9.2.
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After this brief introduction to infinitesimals, let us now give an even
briefer intro to probabilities.

Probabilities

In an informal context, probable means plausible or likely to be true.
Similar words were available in medieval Latin (‘probabilis’ for probable
and ‘verisimilis’ for likely). As such, probability can be seen as a shorthand
for ‘probability of truth’ and likelihood is a measure of appearing to be
true. This suggests that probability is a hybrid concept that combines
objective chances and subjective degrees of belief (or credences). We may
picture it as a two-layered concept with an objective ground layer, which
represents the objective state of affairs (truth), and an epistemic cover
layer, that deals with evidence presented to an agent and quantifying
the possibility of it being misleading concerning what is underneath it
(appearance).

Many authors have tried to capture this duality that is inherent in the
probability concept. Hacking (1975) describes it very aptly as the Janus-
faced nature of probability and Gaifman (1986) paints a colourful picture
of probability as living on a spectrum from purely objective to purely
epistemic forms. It may be helpful to imagine both layers as allowing for
different degrees of opacity. For an agent with limited epistemic (cognitive
and empirical) resources, the outer layer acts as a veil. First assume that
the underlying system is purely deterministic, such that there are no prob-
abilities “out there,” or, put differently, they are all zero or one. However,
the agent does not see things exactly as they are—only approximately so.
Hence, the probabilities that are relevant to such an agent may be other
than just zeros and ones.5 If the underlying system is indeterministic, on
the other hand, even an agent with unlimited epistemic resources (such as
Laplace’s demon), who could see right through the outer layer, would still
need probabilities to describe the system.

Apart from its interpretation, the topic of this chapter also requires
us to pay attention to the mathematical representation of probabilities.
Probability is usually formalised as a function from the event space—a
collection of subsets (often a sigma-algebra) of a given set, the sample
space—to the unit interval of the real numbers or a non-standard extension
thereof. A probability distribution is called fair or uniform if the same
probability is assigned to any singleton from the domain. Depending on
other background assumptions, this may imply slightly stronger properties,
such as translation invariance.

5 This viewpoint helps us to understand that Laplace (1814) was strongly involved in the
development and popularization of probability theory, while also popularizing the idea of
a deterministic universe.
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In this chapter, we will encounter infinitesimals both in the context of
subjective probability (infinitesimal credences or degrees of belief) and in
the context of objective probability (infinitesimal chances), as well as in
contexts that are intermediate on this continuum.

PA RT I

H I S T O R I C A L O V E RV I E W

In this part, we review some essential mathematical developments that
allow us to represent infinitely small probabilities as positive infinitesimals
in a hyperreal field. We also review philosophical discussions of the topic.
A much more detailed list of contributions from the period 1870–1989

can be found in the appendix (Section 16). More recent contributions are
discussed in Part IV.

The concept of infinitesimals was thought to be intrinsically problematic
and inconsistent for most of European history. An important exception
is the work of Archimedes, who allowed infinitesimals as a method to
find new results, though he did not regard them sufficient for establishing
rigorous proofs of those results. In the sixteenth century, a Latin translation
of many of the works of Archimedes was published in Europe, which led
to a revival of scholarly interest in infinitesimals, especially in Italy. (See
Alexander, 2014, for an overview of the seventeenth century response to
infinitesimals in Europe.)

In the second half of the seventeenth century, infinitesimals played a
crucial role in the development of the calculus, especially in the work of
Gottfried Wilhelm Leibniz (see, e.g., Katz & Sherry, 2012; Katz & Sherry,
2013). Whereas the guiding notion in Newton’s calculus was the “fluxion”
(the derivative of a continuous quantity), Leibniz developed his version of
the calculus starting from infinite sums (integrals). Newton’s and Leibniz’s
usage of infinitesimals was criticized early on, famously by Berkeley
(1734), who called them “ghosts of departed quantities.” Around the
1870s, the calculus received its formalisation in terms of real numbers and
standard limits, which do not allow non-zero infinitesimals. This further
consolidated the general belief that infinitesimals do not live up to the
rigour of modern mathematics, but we will see that a formalisation of this
concept was discovered later on, in the 1960s.

The current standard approach to calculus, which is used for instance in
college physics, is based on the nineteenth century formalisation, in which
the epsilon-delta definition of the limit operation takes a central place (see
Section 16.1). As a result, our standard calculus differs from both the New-
tonian and the Leibnizian version of it. The core idea of a limit operation is
closer in spirit to the Newtonian version, while Leibnizian notation proved
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to be more enduring, with, for instance, dx/ dt for the derivative of x to t.
(For Leibniz, this signified an actual ratio of infinitesimals, whereas our
standard calculus defines it as the limit of a ratio of real numbers.)

As we will see below, measure and probability theory was developed
based on the standard calculus. The non-standard approach, based on the
alternative formalisation of the calculus from the 1960s, is more recent.
(Hence the unfortunate name ‘non-standard’.) But, like infinitesimals in
general, also the more specific notion of infinitesimal probability was in
use long before its formal definition. For instance, in his famous wager
argument (Pensées L418/S680), Pascal specifically excluded them from his
argument.6

1 the pre-robinsonian era : 1880–1959

Around 1880, the current foundations of the real numbers and the standard
calculus, with the epsilon-delta definition of the limit, were well in place.
Non-standard analysis was not developed yet.

Standard measure theory was being developed by mathematicians such
as émile Borel, Henri Lebesgue, Johann Radon, Maurice Fréchet, Giuseppe
Vitali, and many others. In response to the sixth problem of David Hilbert
(1900), also the first axiomatization of probability theory was developed:
Kolmogorov (1933) presented an approach that embedded probability the-
ory into standard measure theory. (His axioms are included in Section 7.)

After the foundational work by Kolmogorov, the measure-theoretic
approach to probability became the standard formalism, which represents
probabilities as real numbers. Strictly speaking, non-zero infinitesimal
probabilities (defined as non-Archimedean quantities) are incompatible
with this formalism. Nevertheless, informal usage of the term has remained
in fashion in at least two ways. First, in some contexts it is used to discuss
events that have zero probability but that are logically possible. Second, the
phrase ‘infinitesimal probability’ is also used in the context of continuous
probability distributions, to refer to dp.7

At about the same time, Bruno de Finetti (1931) was developing a
qualitative theory for ranking events in terms of their probability. He
discovered that, in general, these rankings are non-Archimedean. His
rankings can be said to be more fine-grained than what is expressible

6 In Krailsheimer’s translation, the relevant sentence reads as follows (Pascal, 1670/1995,
p. 151, my emphasis): “[W]herever there is infinity, and where there are not infinite chances
of losing against that of winning, there is no room for hesitation, you must give everything.”

7 The notation stems from Leibniz, for whom dp indicated an infinitesimal increment
of a quantity p. In contemporary standard analysis, however, there are no non-zero
infinitesimals and dp merely indicates that the variable of differentiation or integration is
p.
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by the real-valued probability functions in Kolmogorov’s theory. Five
years later, de Finetti (1936) specifically addressed logically possible events
that receive probability zero in Kolmogorov’s theory. Here, we see that
de Finetti explicitly entertained the notion of infinitesimal probabilities,
but he ultimately chose to stick to real-valued probabilities and to reject
countable additivity.

Working on the subjective interpretation of probability, Frank P. Ramsey
and Bruno de Finetti developed the notion of coherence: in order for an
agent’s degrees of belief to be rational (at a given point in time), they
have to conform to Kolmogorov’s axioms for probability. Abner Shimony
(1955) aimed to strengthen this notion to strict coherence (now often called
regularity): it requires that the degree of confirmation of an hypothesis
h given a piece of evidence e is 1 if and only if h logically entails e.
Shimony was aware that strict coherence required infinitesimal betting
quotients—and thus was incompatible with Archimedean values—if the
sample space was infinite. Inspired by this proposal, Rudolf Carnap (1980)
set out to develop a theory for non-Archimedean credences. Although
this interesting approach was written before Robinson’s work, it was only
published afterwards. As a result, it has not been very influential.

Meanwhile, Thoralf Skolem (1934) had discovered non-standard models
of the natural numbers (Peano arithmetic), which we now call hypernatu-
ral numbers. By applying similar model-theoretic techniques to the real
numbers, Robinson would be able to develop non-standard analysis. This
brings us to the next period.

2 robinson’s non-standard analysis : 1960s

Abraham Robinson (1961, 1966) founded the field of NSA: he applied ear-
lier results from mathematical logic (such as that of Skolem) to real closed
fields in order to develop an alternative framework for differential and
integral calculus based on infinitesimals and infinitely large numbers. This
allowed for a formal and consistent treatment of infinitesimal numbers
and provided a harmonious number system (as defined in the introduc-
tion). Soon enough, NSA was applied to measure theory in general and to
probability theory in particular.

For our current purposes, it is good to be aware of two modes of op-
eration of NSA: in one, the hyperreal numbers merely serve as a means
to prove results about the real numbers, but in the other, obtaining a
hyperreal-valued function or some other non-standard object is the final
goal.8 The first mode of operation represents the oldest and still the most

8 This situation is similar to that of the complex numbers. On the one hand, as Painlevé
(1967, pp. 1–2) writes: “entre deux vérités du domaine réel, le chemin le plus facile et le plus court
passe bien souvent par le domaine complexe” (“between two truths of the real domain, the
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common application of NSA, which is to make proofs about standard
analysis shorter, easier, or both—mainly by alleviating epsilon-delta man-
agement (Tao, 2007).9 Although the most common one, this is not the only
application of NSA. The second mode of operation allows us to investigate
non-standard objects in their own right, including those that (roughly
speaking) do not have standard counterparts.10 In particular, if we are
interested in developing a probability theory that allows us to assign
non-zero infinitesimal probabilities to some events, we cannot achieve this
if we move back to the real domain in the final step.

An early example of a non-standard measure was provided by Bernstein
and Wattenberg (1969), who attempted to measure the infinitesimal proba-
bility of hitting a particular point when playing (infinitely precise) darts on
the unit interval of the real numbers. This result was a very important first
step in the development of probability theories in which the numerical
values respect the non-Archimedean ordering of the events (as studied by
de Finetti, 1936). Hence, Bernstein and Wattenberg (1969) have often been
cited by philosophers who work on the foundations of probability theory.
However, since they focused on a particular case, their result is not fully
general: they did not present a non-standard probability theory, although
their approach can be generalized and does in fact contain many of the
essential ingredients present in later developments.

3 post-robinsonian developments : 1970–1989

Seminal contributions to non-standard measure theory were obtained
by Peter A. Loeb (1975). The dominant line of research in non-standard
measure and integration theory is based on real-valued functions that
have a non-standard domain and the main application (like for all of
NSA) is finding new results in standard measure and integration theory.
Although the well-developed theory of Loeb measures has proven fruitful
in many applications, and therefore should not go unmentioned, it is not
of immediate interest to the topic of this chapter (but see Herzberg, 2007,
2010). For, although infinitesimal probabilities do occur in the construction

easiest and shortest route quite often passes through the complex domain”). This analogy
is also employed by Bartha and Hitchcock (1999, p. 416), who write: “Just as imaginary
numbers can be used to facilitate the proving of theorems that exclusively concern real
numbers, our use of nonstandard analysis will be used to facilitate and motivate the
construction of purely real-valued measures.” On the other hand, complex numbers are
also useful by themselves (for instance, to represent phasors in physics).

9 An early expression of this (prior to the development of NSA) can be found with Joseph-
Louis Lagrange, as cited in Błaszczyk, Katz, and Sherry (2013, p. 63). Recent examples are
given by Terence Tao in his blog posts (see, e.g., Tao, 2007–2012).

10 These are “external” objects, as will be defined in Section 4.
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of Loeb measures, the end goal is to obtain real-valued measures, thereby
eliminating all non-zero infinitesimal probabilities.

Although de Finetti lived long enough to see the advent of NSA and was
aware of its existence, he never used it to continue his 1936 observations
regarding infinitesimal probabilities and he did not show much interest in
applying it in his own work on probability.11

To make the earlier, often technical, work accessible to a larger audience,
including philosophers, it was important to summarize and interpret
it. Brian Skyrms played an important role in this regard. For instance,
in Skyrms (1980, Appendix 4), he discussed the trade-off between four
demands—additivity, translation invariance, everywhere-definedness, and
regularity—for standard and non-standard measures. In the same year,
David Lewis (1980) discussed infinitesimal credences, in the same spirit as
Shimony and Carnap had done prior to Robinson’s work. Later on, Lewis
(1986a) also mentioned infinitesimal chances, in wordings very reminiscent
of Bernstein and Wattenberg (1969).

Observe that at this point, there still was no non-Archimedean alter-
native to parallel Kolmogorov’s Archimedean probability theory. It was
Edward Nelson (1987) who provided the first axiomatic approach for a
probability theory with infinitesimal values. His “radically elementary
probability theory” is indeed very simple, but it requires an entirely dif-
ferent mindset than, for instance, Loeb’s approach. In particular, Nelson’s
theory cannot be used to assign probability measures to any standard
infinite set. Instead, one has to go one step back in the modelling process
and represent the set of possibilities by an infinite hyperfinite set rather
than a standard infinite set. We will introduce the notion of hyperfinite
sets in Section 4.3. Since hyperfinite sets are very similar to discrete finite
ones, after that choice, everything resembles Kolmogorov’s theory for
finite sample spaces.

At this point, we end our historical overview. More details can be found
in the appendix (Section 16). Some of the more recent approaches and
debates will be discussed in Section 8, Section 9, and Section 14.

11 See Section 16.3 for details.
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PA RT I I

M AT H E M AT I C A L P R E L I M I N A R I E S

In this part, we will briefly review some common non-standard tools
and the dual notions of filters and ideals. We will apply these notions in
the ultrafilter construction of the hyperreals. We also present the axioms
of standard probability theory. After that, we will be properly equipped to
address infinitesimal probabilities in the context of countable lotteries as
well as other cases.

4 common non-standard tools

In this section, we review some common tools that appear in (nearly) all
approaches to non-standard analysis.12

4.1 Universe

By a universe, we mean a non-empty collection of mathematical objects,
such as numbers, sets, functions, relations, etc.—all of which can be defined
as sets by working in Zermelo–Fraenkel set theory with the Axiom of
Choice (ZFC). This collection is assumed to be closed under the following
relations and operations on sets: ⊆, ∪, ∩, \, (·, ·), ×, P(·), ··. Furthermore,
we assume that the universe contains R and that it obeys transitivity (i.e.,
elements of an element of the universe are themselves elements of the
universe).

In particular, we are interested in the standard universe, which is the
superstructure V(R), and a non-standard universe, ∗V(R).

4.2 Star-map

The star-map (or hyperextension) is a function from the standard universe
to the non-standard universe.

∗ : V(R)→ ∗V(R)

A 7→ ∗A

We assume that ∀n ∈N, ∗n = n and that N 6= ∗N.
In the literature, two notations occur for the star map: before or after

the standard object. In this chapter, I have opted for the former notation,
because it allows us to read the ∗-symbol as the prefix ‘hyper-’. For instance,
∗R are called “hyperreals.”

12 For further information, see also Benci, Di Nasso, and Forti (2006, section 1) and Cutland
(1983, section 1.2).
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4.3 Internal and External Objects

It is important to realize that the star-map does not produce all the objects
in the superstructure of ∗R; it only maps to the internal objects, which live
in ∗V(R) ( V(∗R).

Some examples of internal objects (∈ ∗V(R)):

◦ any element of ∗R, so in particular any element of N or R;

◦ any hyperfinite set, such as {1, . . . , N} with N ∈ ∗N (which can be
obtained via the hyperextension of a family of finite sets);

◦ the hyperextensions of standard sets, such as ∗N and ∗R;

◦ the hyperpowerset of a standard set, A: ∗P(A), which is the collec-
tion of all internal subsets of ∗A.

Some examples of external objects (∈ V(∗R) \ ∗V(R)):

◦ elementwise copies of standard, infinite sets (notation for the ele-
mentwise copy of A in the non-standard universe: σ A), such as σN

or σR (due to the embedding of N and R in ∗R, the σ-prefix is often
dropped);

◦ the complements of previous sets, such as ∗N \ σN and ∗R \ σR;

◦ the halo or monad of any real number, r: hal(r) = {R ∈ ∗R | |r −
R| is infinitesimal}—in particular hal(0), which is the set of all in-
finitesimals;

◦ the standard part function st (also known as the shadow), which
maps a (bounded) hyperreal number to the unique real number that
is infinitesimally close to it (Goldblatt, 1998, section 5.6);

◦ the full powerset of the hyperextension of a standard, infinite set, A:
P(∗A), which is the collection of all subsets of ∗A, both internal and
external.

4.4 Transfer Principle

Consider some standard objects A1, . . . , An and consider a property of
these objects expressed as an elementary sentence (a bounded quantifier
formula in first-order logic): P(A1, . . . , An). Then, the Transfer principle
says:

P(A1, . . . , An) is true ⇔ P(∗A1, . . . , ∗An) is true.

Observe: this is an implementation of Leibniz’s “law of continuity” (or
souverain principe) in NSA (see Katz & Sherry, 2012, section 4.3). It may be
helpful to consider two examples.
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example 1 : well-ordering of N Consider the following sentence:
“Every non-empty subset of N has a least element.” Transfer does not
apply to this, because the sentence is not elementary. Indeed, we can find
a counterexample in ∗N: the set of infinite hypernatural numbers, ∗N \N,
does not have a least element. (Of course, this is an external object.)

If we rephrase the well-ordering of N as follows: “Every non-empty
element of P(N) has a least element,” then we can apply Transfer to this.
The crucial observation to make here is that ∗P(N) ( P(∗N).

example 2 : completeness of R Consider the following sentence:
“Every non-empty subset of R which is bounded above has a least upper
bound.” Again, Transfer does not apply to this, for the same reason as
in Example 1. A counterexample in ∗R is hal(0), the set of infinitesimals.
(Again, an external object.)

If we rephrase the completeness property of R as follows: “Every non-
empty element of P(R) which is bounded above has a least upper bound,”
then we can apply Transfer to it. Similarly as before, the crucial remark is
that ∗P(R) ( P(∗R).

5 filters and ideals

The introduction mentioned two ingredients for a new number system:
the second one is a selection rule. This idea can be formalised using either
filters or ideals. These are dual notions, and both are collections of subsets
from an index set that fulfil additional criteria.

Intuitively, a filter on a set is a collection of its subsets that are “large
enough,” whereas an ideal is a collection of its subsets that are “small
enough” or “negligible.” The meanings of “large enough” and “small
enough” are given by the formal definitions. The ultrapower construction
of the hyperreal numbers crucially relies on the application of a particular
kind of filter: a free ultrafilter. We review the relevant definitions here.13

F is a proper, non-empty filter on X if

F ⊆ P(X), (collection of subsets)

∅ /∈ F , (proper)

X ∈ F , (non-empty)

A, B ∈ F ⇒ A ∩ B ∈ F , (closure under finite meets)

13 Definitions are given, e.g., in Schechter (1997, Ch. 5). For a further discussion of filters,
including free ultrafilters, see, e.g., Goldblatt (1998, p. 18–21) and Cutland (1983, section 1.1).
For an introduction to the meaning and application of ultrafilters, see Komjáth and Totik
(2008).
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(A ∈ F ∧ B ⊇ A)⇒ B ∈ F . (upper set property)

The smallest non-empty proper filter is simply {X}. A filter F is principal
(or fixed) if ∃x0 ∈ X : ∀A ∈ F , x0 ∈ A.

A filter F is free if it is not principal, or equivalently: if the intersection
of all the sets in F is empty. For an infinite set X, its Fréchet filter is the
filter that consists of all the cofinite subsets of X. Such a filter is free, but it
is not an ultrafilter. (For a finite set X, the Fréchet filter is not proper.)
F is an ultrafilter on X if F is a filter on X and

∀A ⊆ X(A /∈ F ⇒ X \ A ∈ F ).

F is a free ultrafilter on X if F is an ultrafilter on X and F is free. This
definition implies that a free ultrafilter contains no finite sets. Given the
ultrafilter condition, it is equivalent to say that it does contain all cofinite
sets. In other words: an ultrafilter is free if and only if it contains the
Fréchet filter. Hence, free ultrafilters do not exist for finite X.

Given a (proper) filter on X, F , the corresponding (proper) ideal in the
Boolean algebra P(X), I , is obtained as follows:

I = {X \ F | F ∈ F}.

The smallest proper ideal is simply {∅}. The ideal corresponding to a free
ultrafilter is called a Boolean prime ideal.

6 application of free ultrafilters : hyperreal numbers

6.1 Constructing the Real and Hyperreal Numbers

In the introduction, we indicated that both the standard real numbers
and the hyperreal numbers can be defined as equivalence classes of se-
quences.14 They differ in the collection of sequences on which they operate
and in the equivalence relation that they impose.

The real numbers can be constructed based on rational-valued Cauchy
sequences. The set of such functions is defined as follows:

C = {(qn) ∈ QN | ∀ε ∈ Q>0, ∃N ∈N : ∀n, m > N
(
|qn − qm| < ε

)
}.

Two sequences in this space are considered to be equivalent to each other
if their difference (which is defined member-wise) is a sequence that gets
arbitrarily close to (the rational number) zero, eventually. This means that for
each target, from some position in the sequences onwards (i.e., eventually

14 We will not consider Dedekind cuts or other constructions.
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or cofinally), their member-wise difference is strictly smaller than the
target. Symbolically, where (qn), (sn) ∈ C:

(qn) ∼ (sn)⇔ ∀ε ∈ Q>0, ∃N ∈N : ∀n > N
(
|qn − sn| < ε

)
.

The hyperreal numbers can be constructed based on real-valued se-
quences (all of RN)—this is called the ultrapower construction of ∗R.15

Two sequences in RN are considered to be equivalent to each other if their
member-wise difference is exactly equal to (the real number) zero, except
for a small set of indices. In this case, the first part of the condition is clear
and all we are left to specify is what counts as a “small” set. If we choose
to define small sets as finite sets, and thus large sets as cofinite ones, this
coincides with the “eventuality” condition used in the construction of the
real numbers. This is equivalent to imposing the Fréchet filter, consisting
of the cofinite subsets of N (the complements of “small” sets, these are
“large” sets), to the indices of the sequences. This setup does allow us to
construct a non-standard model of the real numbers; in fact, it was the first
one that was ever constructed and it is still of interest because it yields a
constructive non-standard model.16 However, such a system is rather weak
(too weak for some of the questions we are interested in). According to
the Fréchet filter, many sets (such as arithmetic progressions17) are neither
small nor large. Usually, small and large sets are defined by fixing a free
ultrafilter on N: a set is large if it is in the ultrafilter and small if it is
not, and the ultra-condition guarantees that for each set either it is in the
ultrafilter, or its complement is.

Informally, the sequence-based construction of the hyperreals can be
thought of as follows. Consider the old equivalence class of the sequences
that we have come to regard as the real number zero and define new
equivalence classes on it, making distinctions among the infinitesimal
sequences depending on their rate of convergence. As such, we dissect
the single infinitesimal real number into infinitely many infinitesimal
hyperreal numbers. In fact, we perform a similar dissection for each of the

15 The ultraproduct construction is a general method in model theory: see Keisler (2010)
(including the references in the introduction) for more information. To see how the
ultrapower construction is related to the existence proof of non-standard models using the
Compactness theorem (see Section 16.2), observe that one way to prove the Compactness
theorem is based on the notion of an ultraproduct (cf. Goldblatt, 1998, p. 11).

16 Schmieden and Laugwitz (1958) were the first to give a construction in this style and they
used a Fréchet filter on N rather than a free ultrafilter. Unlike a free ultrafilter, the existence
of a Fréchet filter does not require any choice axiom. However, in strictly constructivist
approaches, the framework of classical logic as used by Schmieden and Laugwitz (1958)
also has to be replaced by intuitionist logic (Martin-Löf, 1990). More recently, Palmgren
(1998) has investigated constructive approaches to NSA. For an accessible introduction to
a weak system of NSA based on Fréchet filters, see also Tao (2012).

17 Arithmetic progressions are sets of the form aN + b = {n ∈N | n mod a = b} for some
a ∈N and some b ∈ {0, 1, . . . , a− 1}.
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real numbers simultaneously. Does this give us old wine in new packages?
Not quite: it is more like breaking the chemical bonds in the molecules
of the wine, and maybe even breaking the atoms—tearing apart the very
fabric of what the original numbers are made of, and recombining the
fragments in a novel way (with a completely different order structure): we
get an entirely new set of numbers out of the operation. Observe that we
still have infinitely many real-valued sequences in the equivalence class
of the hyperreal number zero (those that differ from zero at only finitely
many positions), but—in as far as they converge in the standard sense at
all—only a strict subset of them converge to the real number zero.

6.2 Remarks on the Ultrapower Construction

When a free ultrafilter is applied in the ultrapower construction of the
hyperreal numbers, its various properties affect the properties of the
hyperreals in the following ways (see Section 8.5):

◦ the upper set property of a filter is required to obtain an equivalence
relation on RN;

◦ the property of an ultrafilter, which ensures that each set is either
large (in the filter) or small (in the corresponding ideal), is required
to obtained trichotomy on ∗R (i.e., for each r, s ∈ ∗R either r < s or
r = s or r > s);

◦ the property of being free in combination with being ultra, which
ensures that every finite set is small, is required to ensure that
R  ∗R.

Although free ultrafilters can be proven to exist (given the usual set-
theoretic assumptions), it can also be proven that no explicit example
of them can be given; they are inherently non-constructible objects or
“intangibles” (Schechter, 1997).

If we drop the condition of being free, and apply the Fréchet filter
instead, we obtain a weaker but constructive model of the hyperreals
numbers. Let us consider the implication for probability by considering
the example of a fair lottery on N. On the one hand, using a Fréchet filter
would still allow us to obtain probability functions that take infinitesimal
values for finite events. On the other hand, the system is too weak to
obtain probability functions that are defined on all of P(N). For instance,
the subset of odd numbers and the subset of even numbers are neither in
the Fréchet filter nor in the corresponding ideal, so according to this filter
and ideal they are neither large nor small, such that these events would
not receive any probability value.
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7 kolmogorov’s axioms for probability theory

Since standard probability theory does not contain actual infinitesimals,
it may seem of less importance for the topic of this chapter. However,
Kolmogorov’s approach was very successful and influential: it lies at the
basis of the contemporary presentation of probability theory as a special
case of measure theory, which itself is a branch of real analysis (calcu-
lus).18 Hence, any later proposal for a new theory of probability, possibly
including infinitesimals, has to compete with it. Therefore, we do include
Kolmogorov’s axioms here, or at least an equivalent formulation thereof
(taken from Benci, Horsten, & Wenmackers, 2013). P is the probability func-
tion and Ω is the sample space, a set whose elements represent elementary
events:

(K0) Domain and range. The events are the elements of A, a σ-algebra
over Ω,19 and P is a function P : A→ R.

(K1) Non-negativity. ∀A ∈ A, P(A) ≥ 0.

(K2) Normalization. P(Ω) = 1.

(K3) Additivity. ∀A, B ∈ A such that A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B).

(K4) Continuity. Let A =
⋃

n∈N

An, where ∀n ∈N, An ⊆ An+1 ⊆ A. Then

P(A) = sup
n∈N

P(An).

18 Kolmogorov’s assumption of Countable Additivity was crucial for the incorporation of
probability theory into measure theory. This move was motivated by mathematical conve-
nience, rather than by philosophical reflection on the meaning of probability. Kolmogorov
stated (with original italics):

Infinite fields of probability occur only as idealized models of real random
processes. We limit ourselves, arbitrarily, to only those models which satisfy Axiom
VI. (Kolmogorov, 1933, p. 15)

Later, de Finetti (1974, Vol. I, p. 119) would write about Countable Additivity:

it had, if not its origin, its systematization in Kolmogorov’s axioms (1933). Its
success owes much to the mathematical convenience of making the calculus
of probability merely a translation of modern measure theory [. . . ]. No-one
has given a real justification of countable additivity (other than just taking it
as a “natural extension” of finite additivity)

Compare to Schoenflies’ reaction to Countable Additivity in Borel measure (footnote 58).
19 A is a σ-algebra over Ω if A ⊆ P (Ω) such that A is closed under complementation,

intersection, and countable unions. A is called the event algebra or event space.
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The triple (Ω,A, P) is called a probability space.
For our present purposes, the continuity axiom is the most important

one, so let me briefly mention two aspects of it. First, (K4) uses a supre-
mum, which is defined in terms of a standard limit; this limit is guaranteed
to exist for real-valued functions, but not on the hyperreal numbers. Still,
the gist of this axiom can be phrased without reference to the specific
limit operation. It can be regarded as a specific form of a more general
idea: that is, to define the absolute probability of any event from an in-
finite domain as the limit (in some sense) of a sequence of conditional
probabilities associated with that event, conditional on a suitable family
of finite events. This more general principle was called the “Conditional
probability principle” in Benci et al. (2013, section 3.2) and Benci, Horsten,
and Wenmackers (2018, section 3.2), where it was further shown how the
same idea can be applied to hyperreal-valued probability functions (using
a different kind of limit operation). Second, assuming the other axioms,
(K4) is equivalent to requiring countable additivity, which is not compati-
ble with hyperreal-valued probability functions (except in the trivial case
of a finite domain).

PA RT I I I

A X I O M AT I Z AT I O N O F I N F I N I T E S I M A L P R O B A B I L I T I E S

In the historical overview, we have already encountered two approaches to
probability theory that allow infinitesimal probabilities: the axiomatization
of Nelson (1987) and the work of Loeb (1975). What is missing so far
is an axiomatization of a theory that assigns probabilities to standard
infinite sets (such as N, on which Nelson’s approach is silent) and that
allows infinitesimal or other hyperreal values in the final result (unlike
Loeb’s approach, which is geared toward obtaining results in the standard
domain). This is the purpose of the current part.

8 infinitesimal probabilities and countable lotteries

Within philosophy, infinitesimal probabilities have often been discussed
in the context of the following example: a lottery on the natural numbers,
N, in particular a fair one (i.e., a lottery in which each individual ticket
receives the same probability as any other one). Since this example is so
common, we discuss it first, before setting up a more general framework in
the next section.20 We start from a real-valued approach (in which zero is

20 In order to describe probability functions on infinite sample spaces, focusing on N as
the sample space may seem like a very natural starting point, because N is the canonical
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the only infinitesimal) and investigate which modifications are required in
order to allow for the assignment of non-zero infinitesimal probabilities.21

8.1 Lotteries on Initial Segments of N

Ultimately, we want to describe a lottery, fair or weighted, on N, but
we start by considering a lottery, fair or weighted, on an arbitrary initial
segment of N: the sample space (set of atomic possible outcomes) is
Ωn = {1, . . . , n}. First, we introduce weights: a real number wi for each
of the elements i of Ωn. Without loss of generality, we may assume these
weights to be normalized, such that ∑n

i=1 wi = 1 (e.g., in a fair lottery
wi = 1/n for all i). Then, we define the probability on Ωn, Pn, of an
arbitrary subset of N, A, as follows:

Pn(A) =
n

∑
i=1

wi × #(A ∩ {i}),

where # is the counting measure for finite sets. (This suffices: although
A can be an infinite set, A ∩ {i} is empty or singleton.) In the case of a
fair lottery, the probability Pn(A) is just the relative frequency of A: the
fraction of elements of A within Ωn. That Pn is finitely additive follows
directly from the counting measure being finitely additive.22

8.2 Taking the Limit

Now, we want to consider a lottery on Ω = N, rather than on Ωn =

{1, . . . , n}. The idea is to consider the lottery on N as the limiting case

example of a set with the smallest infinite cardinality. It will turn out that in some sense
this problem is not the easiest one to describe, because it is in lockstep with other (less
obvious) occurrences of N. Among the infinite sets, N is our usual benchmark, so we
use it in and out of season. As a result, there are hidden symmetries in the problem of a
(fair) lottery on N, which make it harder to analyze it. To understand this statement, we
first need to encounter the problems alluded to, so we will progress as planned, but I will
return to this observation in the middle of Section 8.3.

21 The current section presents some of the ideas originally developed in Wenmackers and
Horsten (2013) in a more straightforward way.

22 For, consider a finite family of mutually disjoint subsets of N, {Ak | k ∈ {1, . . . , m}, Ak ⊆
N} (for some m ∈ N) such that for each i 6= j, Ai ∩ Aj = ∅. Defining the union of
members of the family A =

⋃m
k=1 Ak, we obtain for the probability of A:

Pn(A) = ∑n
i=1 wi × #(

⋃m
k=1 Ak ∩ {i})

= ∑n
i=1 wi ×∑m

k=1 #(Ak ∩ {i})
= ∑m

k=1 ∑n
i=1 wi × #(Ak ∩ {i})

= ∑m
k=1 Pn(Ak).
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of a sequence of finite lotteries. This idea seems apt, since we have Ω =

limn→∞ ∪n
i=1Ωi.23 We will define the probability, P, for an arbitrary subset

of N, A, analogously to the limiting relative frequency:

P(A) = lim
n→∞

Pn(A).

Remarks:

◦ P is not defined for all subsets of N.24

◦ Taking the limit of fair lotteries on Ωn (where P({i}) = 1/n for any
i ∈ Ωn) results in a fair lottery on N, with P({i}) = 0 for all i ∈N.

◦ For a fair lottery on N, P is the natural density (also known as the
arithmetic density or the asymptotic density).

◦ In a fair lottery, P is zero for all finite subsets as well as for some
infinite ones (such as the set of squares and the set of primes),25

unity for cofinite sets as well as for some infinite ones (such as the
complements of the previous examples), and intermediate values
for other infinite sets (such as arithmetic progressions26 that receive
probability 1/n for some n; e.g., 1/2 for the set of even numbers and
for the set of odd numbers).

For those who have the intuition that the probability of a particular
outcome in a fair lottery on the natural numbers ought to be infinitesimal,
the above real-valued function P that assigns probability zero to such
outcomes does fine: zero is the infinitesimal probability, the only one in the
[0, 1] interval of R. Nevertheless, it may bother some that this function does
not allow us to distinguish between the impossible event (represented by
A = ∅) and some infinitely unlikely but possible events. The worry is that

23 On the other hand, the ordered set (N,<) is qualitatively different from any (Ωn,<):
unlike all of its initial segments, N does not have a last element. This observation is
suggestive of taking a different kind of limit, which involves a hyperfinite set (which does
have a last element) rather than a standard infinite one.

24 The collection of subsets for which P is defined does not form a σ-algebra. P can be
extended to all of P(N) but the extension relies on Banach limits and is not unique.
Whereas the usual limit relies on the notion of “eventuality” that can be captured by the
Fréchet filter, which is a free filter that is constructively available, the Banach limit depends
on a free ultrafilter on N, which relies crucially on a non-constructive axiom (the ultrafilter
principle, UF). See Section 8.5 below for more details.

25 As such, this probability function can help us to make sense of Galileo’s paradox, which
revolves around the question of whether or not the set of perfect squares is smaller than
the set of natural numbers (see Mancosu, 2009). As measured by the natural density, the
answer to that question is affirmative: it assigns probability unity to the set of natural
numbers and probability zero to the set of perfect squares. On the other hand, the function
does not discriminate between a finite set, the set of perfect squares, and the set of primes.

26 See footnote 17.
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the probabilities of these events are represented by the same infinitesimal,
and since there can only be one zero (i.e., neutral element under addition),
this observation may motivate a search for non-zero infinitesimals. However,
this worry may be partially addressed by considering a non-Archimedean
ordering of the events, which is a question for qualitative probability
theory27 rather than for quantitative probability theory. Despite this, there
is an underlying issue that cannot be addressed without considering
numerical probabilities: it is that of additivity. We consider this in the next
section.

8.3 Additivity of P: Finite, Countable, or Ultra

It was mentioned (Part I) that Leibniz’s approach to the calculus was
based on infinite sums (integrals), unlike Newton’s, for whom the notion
of “fluxions” (derivatives) was more basic. Since infinitesimals were most
prominent in Leibniz’s approach, it should come as no surprise that the
concept of infinitesimal probabilities is closely connected to foundational
discussions concerning the additivity of probability values.

Skyrms (1983b) interprets the intuition that measures should be regular
(that only the null set should receive measure zero) as a Zenonian intuition
(cf. Section 16.3): a whole of positive magnitude should not be made up of
parts of measure zero. He argues that a principle of “ultra-additivity”28

has been present, albeit often implicitly, in discussions concerning mea-
sures at least since the times of Zeno and Aristotle. Since the belief in
ultra-additivity appears to be so deeply rooted in Western thought about
measures, it should not surprise us if it is present, whether presented as an
explicit assumption or a tacit one, in many discussions about probability
measures, too.

In fact, it was exactly such a principle that motivated my own search
for a fair probability function on N. My main motivation for wanting
to assign non-zero probability to non-empty sets is that it should allow
us to make arbitrary unions of events and obtain their probability by an
addition rule for the individual probabilities (in the case of disjoint events,
by taking the analogous arbitrary sum).29

27 Recall the work by de Finetti (1931) as discussed in Section 1. See also Pedersen (2014),
Easwaran (2014, p. 17), and Konek (this volume).

28 Ultra-additivity means additivity for arbitrary collections of disjoint events; it is sometimes
called perfect additivity (see, e.g., de Finetti, 1974, Vol. II, p. 118) or arbitrary additivity
(Hofweber, 2014).

29 Wenmackers (2011, p. 36): “Intuitively, one could expect probabilities to exhibit perfect
rather than countable additivity. However, this is clearly not possible with real-valued
probability functions. Even the weaker requirement of countable additivity may be prob-
lematic, as we have seen in the example of the infinite lottery. Yet, the property of perfect
additivity may be attainable by non-Archimedean probabilities.” Unaware of the work
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Let us return to the probability functions of the previous sections. Finite
additivity obtains for such a P, like it does for all the functions Pn. Since
the function P is the limit of the sequence of functions (Pn), each member
of which has the property of finite additivity (FA), one might suspect P
to have the limiting property of FA: countable additivity (CA). However,
this is not the case: limiting relative frequencies are not CA, because the
relevant limiting operations (from the construction of P and from the
condition of CA) do not commute. To illustrate this, consider a countably
infinite family of mutually disjoint subsets of N, {Ak | k ∈ N, Ak ⊆ N}
such that for each i 6= j, Ai ∩ Aj = ∅, and define the union of members
of the family, A =

⋃
k∈N Ak. We say that CA holds for a function p if the

following equality holds:

p(A) = lim
n→∞

n

∑
i=1

p(Ai). (2)

In the case of P, we find for the lefthand-side of Equation 2:

P(A) = lim
n→∞

Pn(A)

= lim
n→∞

n

∑
i=1

wi × lim
m→∞

m

∑
k=1

#(Ak ∩ {i}).

Let us now consider a fair lottery (substituting wi = 1/n) with Ak = {k}
such that A = N; we find:

P(A) = lim
n→∞

(n× 1/n)

= 1.

Then, we consider the righthand-side of Equation 2, applying it to P in
the fair case, where P(Ai) = 0 for all i:

lim
n→∞

n

∑
i=1

P(Ai) = lim
n→∞

n

∑
i=1

0

= 0.

Clearly, 0 is not equal to 1, so CA does not obtain for P, the real-valued
probability function for a fair lottery on the natural numbers.

by Skyrms (1983b), Wenmackers and Horsten (2013, p. 40) clumsily referred to a “SUM”
intuition: “SUM [is the intuition that] [t]he probability of a combination of tickets can be
found by summing the individual probabilities. [. . . ] The assumption SUM is motivated
by the intuition that the probability of a set containing the winning number supervenes
on the chances of winning that accrue to the individual tickets. The usual assumption of
countable additivity (CA, sometimes also called σ-additivity) is one attempt of making the
intuition that is encapsulated by SUM precise. We will argue, however, that this is not the
right way to do it in this case. In other words, we will argue that the implementation of
SUM is not as straightforward an affair as is commonly thought.”
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The righthand-side requires us to consider the function P and thus to
take the limit of n to infinity of Pn({i}) = 1/n first, which is zero; taking
the limit of a sum of zeros is zero. The lefthand-side requires us to consider
Pn. Sure, as n increases, Pn({i}) tends to zero for any i ∈ Ωn (like 1/n),
but the sum of all singleton probabilities is in lock-step with this decrease:
n× 1/n = 1, such that the sum of probabilities of all singletons equals
the probability of the entire sample space (total number of tickets times
probability of each ticket), which is unity. This is just FA and it holds for
any n, no matter how large. It also holds that limn→∞(n× 1/n) = 1, but
this cannot be read as “the number of tickets times the probability of each
ticket.” It is no additivity principle and it does not suggest an alternative
way of obtaining a real-valued probability function either.30 Yet, it does
suggest the following: that the singleton probabilities in a fair lottery on the
natural numbers ought to be non-zero infinitesimals, such that some sort
of infinite sum over them can result in a non-zero (and non-infinitesimal)
value corresponding to the probability of the corresponding union of
events. In particular, the sum can be unity if we add the probabilities of
all point events.31

There is another strange aspect to setting P({n}) = 0 for all n ∈N: it is
not so much that it can be used to represent a fair lottery on N, but rather
that it can also represent the limit of many kinds of non-fair probability
distributions. Consider, for instance, finite lotteries in which (i) the set of
even numbers is double as likely as the set of odd numbers, (ii) all even
numbers are equally likely and (iii) all odd numbers are equally likely.
For the limit of such weighted lotteries, too, we would have to assign
probability zero to all singleton events (and thus obtain a fair distribution
in the limit).32

8.4 Diagnosis

Within the context of standard probability theory, we have a single in-
finitesimal probability at our disposal: zero. Even for a lottery on a sample
space that is countably infinite, the lowest infinite cardinality, this turns
out to be too little for three reasons.

1. Across lotteries, it does not allow us to obtain different singleton
probabilities for limits of sequences of qualitatively different finite

30 Although this idea is suggestive of a procedure for assigning probabilities in such a way that
we can make sense of infinite sums, it does not allow us to define a probability function.

31 Recall the quote on p. 199 by de Finetti (1974, p. 347) concerning the absurdity of 0 + 0 +
0 + . . . + 0 + . . . = 1. It turns out that this idea is false if the sum represents the usual,
countably infinite sum: such a sum is not defined for infinitesimal terms.

32 As far as I know, this worry has not yet appeared in the literature.
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lotteries (e.g., finite lotteries that assign equal probability to even and
odd versus finite lotteries that do not).

2. Within a fair lottery, it does not allow us to discriminate between the
probability of many events that are strict subsets of each other (e.g.,
all perfect squares versus a single perfect square).

3. Within a fair lottery, it does not allow us to define an adequate
infinite additivity principle; alternatively, if we insist on countable
additivity, it does not allow us to describe a fair lottery on the natural
numbers.

The first reason is related to a more general observation: like any real
number, zero is the limit of qualitatively different sequences (of rational
or real numbers). In particular, sequences may differ in their speed of
convergence. This suggests that within the collection of sequences that
are considered to be infinitesimal, and thus to converge to zero, some
are smaller than others (even though their limits are all defined to be
zero when working within the real numbers). This brings us to reconsider
what the real number zero is, continuing along the lines set out in the
introduction, and to define an alternative limit operation on sequences.
One way to achieve this is found in the construction of a non-standard
model of a real closed field as was shown in Section 6.

8.5 Alternative Approach with Non-Zero Infinitesimal Probabilities

We apply the equivalence relation that is used to construct the hyperreals
(Section 6) to the sequence of relative frequencies belonging to initial
segments of N. This results in a different kind of probability function,
which takes its values in the [0, 1] interval of the hyperreal numbers.33

Wenmackers and Horsten (2013) assumed all of NSA as given, whereas
we mainly needed this alternative equivalence relation on the sequences
of relative frequencies in order to obtain a hyperreal-valued probability
value on N that allows for an infinite additivity principle.

Now that we know the outlines of our labyrinth, we can drastically
reduce the length of our escape route. With the benefit of hindsight, we
see ways to obtain our results with much less baggage. One way, which is
suitable only for fair lotteries and which is alluded to in the 2013 paper, is
to assume a numerosity function on N and to normalize it. Numerosity
theory has been developed to address some of the very same problems

33 Actually, it is more accurate to say: a set of hyperreal numbers (cf. Footnote 1), because
the result of the construction depends on the free ultrafilter and there are uncountably
many. We do not dwell on the issue of non-uniqueness now, but we will come back to it in
Section 14.
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that are also discussed in the literature on a fair lottery on N (Benci &
Di Nasso, 2003; Mancosu, 2009). The main difference is that it is not a
probability function but a measure of set size that should coincide with
the usual counting measure for finite sets, so it is not normalized and
assigns unity to singletons rather than to N. However, because of the nice
algebraic properties of numerosity theory, normalizing the numerosity
function, in order to obtain a fair probability measure, does not cause any
complications at all.

Alternatively and more elegantly, one could set up an axiomatic system
that states the existence of probability functions on N that may assign
non-zero values to singleton outcomes (possibly all equal) and repurpose
the previous results in order to prove its consistency.

For instance, consider this proposal for the axioms governing P.

Everywhere defined. P is defined on all subsets of N: its domain is
the powerset of N, P(N).

Hyperreal-valued. The range of P is the unit interval of some
suitable field R.

Regular. P(A) = 0 iff A = ∅.

Normalized. P(N) = 1.

Finitely additive. ∀A, B ∈ P(N) if A ∩ B = ∅, then P(A ∪ B) =
P(A) + P(B).

Ultra-additive. For any collection of mutually disjoint subsets of
N34 an analogous additivity property holds.

We do not prove the joint consistency of the proposed axioms here: it is a
consequence of what preceded and can be viewed as a special case of the
proof in Benci et al. (2013).

8.6 Examples

Now that we have seen that there exists a hyperreal measure that captures
the idea of a uniform probability distribution over the natural numbers,
let’s illustrate some consequences. In this section, P always refers to such
a distribution. (For proofs, see Benci et al. 2013.)

By assumption, P assigns the same infinitesimal probability to any
singleton outcome of the lottery. If we regard P as a normalized numerosity
function, we see that ∀n ∈ N, P({n}) = 1/α, where α ∈ ∗N \N is the
numerosity of N.

34 The collection can have an arbitrary cardinality, although, of course, at most countably
many of its members can be non-empty.
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For any finite set A ⊂ N, the numerosity equals the finite cardi-
nality (#), so: P(A) = #(A)/α, which is an infinitesimal. For example,
P({1, 2, 4, 8, 16, 32}) = 6/α.

For an infinite subset B, P(B) differs by at most an infinitesimal from
the natural density of B (if the latter exists). For example, if B is the
set of even numbers, the natural density is 1/2 and either P(B) = 1/2
(if the even numbers are in the free ultrafilter used to construct P) or
P(B) = (1− 1/α)/2.

For a set that lacks a natural density, P is infinitesimally close to some
Banach limit. Different Banach limits of the same set and Ps constructed by
a different free ultrafilter can differ by more than an infinitesimal amount.
(See Kerkvliet and Meester, 2016, for an example.) In particular, there are
subsets of N for which the possible P-values range from an infinitesimal
to one minus an infinitesimal. This range can be regarded as a measure of
how pathological a set is.

9 more scenarios involving infinitesimal probabilities

In the previous section, we discussed one particular scenario that involves
infinitesimal probabilities: a lottery on the set of natural numbers. In this
section, we give a more comprehensive overview of common examples
that feature in discussions of infinitesimal probabilities. Then we show
how we can generalize the approach of the previous section to an all
encompassing theory that is able to assign infinitesimal probabilities to all
of these scenarios.

9.1 Common Examples

We list the examples involving infinitesimal probabilities below, sorted
by increasing cardinality of the sample space: finite, countably infinite, or
uncountably infinite.

First, there are some examples with finite sample spaces that allow for
infinitely small differences in probability among the possible outcomes.
The simplest such case is that of an almost fair coin toss, in which there is
an infinitesimal advantage to one of the sides.

Second, there are examples with countably infinite sample spaces, in
particular with uniform probability distributions. We already discussed the
most common example of this kind: a lottery on the set of natural numbers,
in particular a fair one. A fair lottery on N is also known as the de Finetti
lottery (Bartha, 2004) or God’s lottery (McCall & Armstrong, 1989). In
this category, there are also fair lotteries on other countable sets, such as
Z, Q, and the unit interval of the rational numbers: [0, 1]Q. Discussions
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of non-uniform probability distributions on countable domains are less
common, but they do exist, especially in the context of discussions of
the incompatibility between CA and uniform probability distributions on
countable domains.35

Third, there are examples with uncountable sample spaces, with uniform
and arbitrary probability distributions. Two popular ways of presenting
this is as throwing darts uniformly at the unit interval of the real numbers,
[0, 1]R (e.g., Bernstein & Wattenberg, 1969) or as a fair spinner with unit
circumference (e.g., Skyrms, 1995; Barrett, 2010).36 Variations on this theme
include the uniform probability on a unit sphere and the associated Borel–
Kolmogorov paradox of a meridian versus the equator. A different way of
obtaining an uncountable domain is by considering a countably infinite
sequence of stochastic processes, each with a countable number of possible
outcomes. The most common example of this kind is an infinite sequence
of tosses with a fair coin (in which the outcomes of the tosses are taken
to be statistically independent: an infinite Bernoulli process; e.g., Skyrms,
1980; Williamson, 2007; Weintraub, 2008).37

Categorizing a probabilistic problem by one of these three labels need
not be final. Once we have a method of representing probability distri-
butions on uncountable domains, we may arrive back at the finite and
countably infinite case by conditionalization (assuming the relevant events
are measurable; cf. Skyrms, 1983b). It may also happen that we want to
replace a finite sample space by an infinite refinement of it (for instance,
a suitable product space of the initial sample space). For instance, Ped-
ersen (2014, p. 827) mentions a case in which “an agent’s state of belief
cannot rule out arbitrarily deep[ly] nested subdecompositions of a finite
decomposition of a dartboard.”

Some of these scenarios cannot be described by standard probability the-
ory, whereas others—it has been argued—cannot be described adequately
by it, or would benefit from an alternative treatment involving infinitesimal
probabilities. So far, we have seen isolated recipes for hyperreal-valued
probability functions: Bernstein and Wattenberg (1969) gave a recipe to
assign uniform probabilities to subsets of the unit interval of the real

35 For instance, Kelly (1996) has reflected on the consequences of denying the existence of a
fair infinite lottery: this would have the strange implication that when one wants to test
a universal hypothesis by repeated experiments, one would—in the case in which the
hypothesis is false—encounter a counterexample sooner rather than later.

36 This example was also mentioned in Lewis (1980), and many others.
37 It should be noted that Skyrms (1980) refers to the work of Bernstein and Wattenberg

(1969), but they only described a hyperreal-valued probability measure on subsets of [0, 1].
However, for assigning infinitesimal probabilities to infinite sequences of coin tosses, a
hyperreal-valued probability measure on subsets of {0, 1}N would be needed instead.
Yet, the informal account given by Skyrms (1980, pp. 30–31) is consistent with later
developments of hyperreal probability functions on {0, 1}N (see, e.g., Benci et al., 2013).
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numbers. And, in the previous section, we discussed a recipe for assigning
regular probabilities to the canonical countably infinite sample space, N.
In the end, we would like to have a method that is fully general, which
can be applied to all the examples above, and more. We describe such a
method below.

9.2 Non-Archimedean Probability (NAP) Theory

In this section, we will review some crucial elements that allow us to
generalize the approach from Section 8.38 In Section 8.5, we replaced the
standard limit operation that associates at most one real number with a
sequence of (possibly weighted) relative frequencies by a non-standard
limit that associates a hyperreal number with each of these sequences.
Sequences can be thought of as functions from N (the index set) to some
set, X. In the case of relative frequencies X = Q, but in general we
allow real-valued weights, so then X = R. Both the standard and the
non-standard limit operation can be understood such as to involve a
filter on the index set (the Fréchet filter on N and a free ultrafilter on N,
respectively).

A probability function has to assign values to sets in P(N), not to N

itself, so the appropriateness of using countable sequences and filters on N

to set up such a function is not immediately clear, even in cases in which
the sample space is countable. Observe that we used the countable indices
to correspond to the relative frequencies of initial segments of N. Since
the usual ordering of the natural numbers induces a natural ordering on
this collection of initial segments, we are able to work with sequences of
the corresponding relative frequencies and with filters on N.

Our choice for the collection of initial segments may seem self-evident,
because we are familiar with it from the context of natural density, but it
is not canonical: we could have considered Pfin(N), the collection of all
finite subsets of N (or those except the empty set, Pfin(N) \∅). In that
case, we can slightly generalize the approach: Pfin(N) with the subset
ordering forms a directed set.39 We can use this directed set as an index
set, instead of N, obtaining a generalized sequence, also called a net (see,

38 The information given here suffices to get a rough idea of the approach. Further details
(for instance, restrictions on the free ultrafilter to secure certain properties of the resulting
probability functions) can be found in Benci et al. (2013).

39 A directed set (X,4) is a special case of a preordered set (see, e.g., Schechter, 1997, p. 52).
A preordered set is a pair (X,4) consisting of a set X and a preorder 4 on X, i.e., a relation
on X that is transitive (for all x, y, z ∈ X, if x 4 y and y 4 z then x 4 z) and reflexive (for
all x ∈ X, x 4 x). For a directed set, there is an additional condition on the preorder:

∀x1, x2 ∈ X, ∃y ∈ X : (x1 4 y ∧ x2 4 y).
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e.g., Schechter, 1997, pp. 157–158): a function from a directed set, which
serves as the index set, to a set, X. Filters on N are a special case of this
more general setup, since they are collections of subsets of N that can be
directed by the subset relation.

If we want to assign probability functions to subsets of some sample
space Ω other than N, we can follow a similar approach: change the
relevant index set to Pfin(Ω) \∅. In this case, we also have to consider
free ultrafilters on Ω.

These are the axioms for Non-Archimedean Probability (NAP) theory
from Benci et al. (2013), where the triple (Ω, P, J) is called a NAP space:

(N0) Domain and range. The events are all the elements of P (Ω) and P
is a function

P : P (Ω)→ R

where R is a superreal field.

(N1) Non-negativity. ∀A ∈ P (Ω), P(A) ≥ 0.

(N2) Normalization. ∀A ∈ P (Ω), P(A) = 1⇔ A = Ω.

(N3) Additivity. ∀A, B ∈ P (Ω) such that A ∩ B = ∅,

P(A ∪ B) = P(A) + P(B).

(N4) Non-Archimedean Continuity. ∀A, B ∈ P (Ω), with B 6= ∅, let
P(A|B) denote the conditional probability, namely

P(A|B) = P(A ∩ B)
P(B)

.

Then

� ∀λ ∈ P0
fin(Ω), P(A|λ) ∈ R+, and

� there exists an algebra homomorphism

J : F
(
P0

fin(Ω), R
)
→ R

such that ∀A ∈ P(Ω), P(A) = J
(

ϕA
)
, where ϕA(λ) =

P(A|λ) for any λ ∈ P0
fin(Ω).

Axiom (N4) specifies P for an infinite sample space Ω as a non-standard
limit of probability functions restricted to (or conditionalized on) finite
subsets of Ω.

Some properties of NAP theory:
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◦ NAP theory produces regular probability functions. Hence, they
allow us to conditionalize on any possible event by a ratio formula
(i.e., any subset of the sample space, except the empty set).

◦ Within NAP theory, the domain of the probability function can be
the full powerset of any standard set from applied mathematics (i.e.,
of any cardinality), whereas the general range is a non-Archimedean
field. Hence, there are no non-measurable sets.

◦ Kolmogorov’s countable additivity (which is a consequence of the
use of standard limits) is replaced by a different type of infinite
additivity (due to the use of a non-Archimedean limit concept).

◦ For fair lotteries, the probability assigned to an event by NAP theory
is directly proportional to the numerosity of the subset representing
that event.

◦ NAP functions are external objects: they cannot be obtained by taking
a standard object (such as a family of standard sets) and applying
the star-map to it.

A price one has to pay for all this is that certain symmetries, which
hold for standard measures, do not hold for NAP theory. This theory is
closely related to numerosity and has a similar Euclidean property: a strict
subset has a smaller probability, as is necessary by regularity. Hence, for
infinite sample spaces, NAP is bound to violate the Humean principle of
one-to-one correspondence. This principle requires that if the elements of
a given set can be put in a one-to-one correspondence with the elements of
another set, then their “sizes”—or in this case, probabilities—will be equal.
Translation symmetries require that P(A) = P(A + t) (with A, A + t ⊆ Ω
and A + t = {a + t | a ∈ A}). Since this amounts to a particular type of
one-to-one correspondence, these symmetries are not guaranteed to hold
in NAP (cf. Williamson 2007; Parker 2013; and Section 14.1), although they
can hold up to an infinitesimal (Bernstein & Wattenberg, 1969). Bartha
(2004) and Weintraub (2008) have pointed out before that these measures
are strongly label-dependent, but it is probably more accurate to say that
once events have been embedded in a sample space (i.e., each event is
described as a particular subset of a particular sample space Ω), this
embedding needs to be applied in a consistent way henceforth (Hofweber,
2014; Benci et al., 2018).

For more details and proofs, see Benci et al. (2013). The next part
elaborates on the motivation for and the philosophical discussion of these
results.
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PA RT I V

P H I L O S O P H I C A L D I S C U S S I O N

10 motivations for infinitesimal probabilities

In the foregoing parts, we have encountered motivations for introducing
infinitesimal probabilities as given by various authors. Most of these moti-
vations occurred in the context of a particular interpretation of probability,
with some arguing for the relevance of infinitesimal chances and others
advocating for the introduction of infinitesimal credences. In this section,
we search for the leitmotifs that arise from this polyphony.

Let us first revisit Bernstein and Wattenberg (1969): although they gave a
probabilistic scenario as the motivation of their paper, the technical details
of their results do not depend on the interpretation in terms of probability.
If we want a measure that allows us to represent the length of countable
collections of points as a non-zero infinitesimal, we can use the result of
Bernstein and Wattenberg (1969) without modification. On the one hand,
it may fit even better in such a context, since the Lebesgue measure was
originally motivated as an idealization of length measurements. Hence,
obtaining a non-standard measure that is infinitely close to Lebesgue
measure (at least, where the latter is defined) can be regarded as an
alternative idealization of length measurements. On the other hand, the
request for representing the measure of non-null countable sets as an
infinitesimal may seem especially pressing when this measure is a measure
of probability (rather than length). This motivation may be formulated as
follows: probability measure should be maximally sensitive to distinguish
possibility from impossibility. Indeed, we have encountered this motivation
for infinitesimal probabilities via regularity at various instances throughout
this chapter.

Depending on the context, this motivation is related to a different kind
of modality:

◦ objective probability: some chance (quantifying an ontic possibility);

◦ subjective probability: open-mindedness (quantifying an epistemic
possibility).

We have encountered the epistemic motivation under the names ‘strict co-
herence’ and ‘regularity’. Hájek (2012b, p. 1 of draft) “canvass[es] the fluc-
tuating fortunes of a much-touted constraint, so-called regularity,” which
“starts out as an intuitive and seemingly innocuous constraint that bridges
modality and probability, although it quickly runs into difficulties in its
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exact formulation.” He takes “to be its most compelling version: a con-
straint that bridges doxastic modality and doxastic (subjective) probability.”
Easwaran (2014) presents regularity as a normative constraint on ratio-
nal credences, which are related to doxastic modality, but he adds that
other authors allow for various transmodal connections. Dennis Lindley
called this demand, that prior probabilities of zero or one should only be
assigned to logical truths or falsehoods, “Cromwell’s rule.”40 Regarding
the ontic motivation, Hofweber (2014) introduces a minimal constraint
(MC) on the proper measurement of chances, which is akin to but not
quite the same as regularity, which can be phrased in relation to various
modalities. He concludes that: “In the regularity principle, modality is
best understood as epistemic, and chance is best understood as credence.
In (MC) chance should be understood as objective chance” (p. 6).

At the root of this common motivation for infinitesimal chances and
infinitesimal credences, there may be an even more basic motivation or
implicit assumption, which Skyrms (1983b) calls the principle of “ultra-
additivity” (and which also constituted my main motivation for starting
a research project on infinitesimal probabilities). We discussed this in
Section 8.3 (see also Section 16.3). Thus, the motivation for introducing
infinitesimal probabilities can be summarized by the following slogan:41

Without infinitesimals, probabilities just don’t add up.

11 alternatives to hyperreal probabilities

11.1 Other Ways to Introduce Infinitesimal Probabilities

There do exist ways to formalise infinitesimals other than Robinson’s
hyperreal numbers. One of them is smooth-infinitesimal analysis (SIA),
which describes nilpotent infinitesimals: non-zero numbers whose square
is zero. This system relies on intuitionistic logic. However, I am not aware
of any proposals for smooth-infinitesimal probabilities.

40 This is a reference to the following phrase from a 1650 letter by Oliver Cromwell: “I
beseech you, in the bowel of Christ, think it possible you may be mistaken” reprinted in,
Carlyle (1845). Like strict coherence, Cromwell’s rule is clearly intended as a criterion for
open-mindedness: even a well-confirmed theory like Einstein’s general relativity is not as
certain as a logical truth. Lindley (1991, p. 104) asks us to “leave a little probability for the
moon being made of green cheese; it can be as small as 1 in a million, but have it there
since otherwise an army of astronauts returning with samples of the said cheese will leave
you unmoved.” And Lindley (2006, p. 91) links this open-mindedness criterion also to the
Jain maxim “It is wrong to assert absolutely.” (This was probably influenced by statistician
Kantilal Mardia, who practised Jainism.)

41 Benci et al. (2018) list perfect additivity as one among four desiderata for their theory, the
others being: regularity, totality, and weak Laplacianism.
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Then there is the class of Conway numbers, which includes the infinites-
imals from any non-standard field. This option has been suggested for
application to probability theory, for instance, by Hájek (2003; see Sec-
tion 12 below) and by Easwaran (2014). I, too, believe this can be a fertile
approach. A first proposal has been offered by Chen and Rubio (2018), but
it is too early to evaluate it here.

11.2 Related Approaches Without Infinitesimals

Besides the possibility of introducing infinitesimals within a different
framework, there are also relations between hyperreal infinitesimals and
systems that do not include any infinitesimal numbers at all. For instance,
one may combine an Archimedean quantitative probability theory (in par-
ticular, the orthodox approach with real-valued probability functions), with
a non-Archimedean qualitative probability theory.42 Moreover, Halpern
(2010) reveals some deep connections between hyperreal-valued prob-
ability functions, conditional probabilities (including Popper functions;
see also Vann McGee, 1994), and lexicographic probabilities. Recently,
Brickhill and Horsten (2018) have given a representation theorem that
relates NAP functions and Popper functions; they also give a lexicographic
representation.

Skyrms (1983a) considers three ways of giving probability assignments
a memory. One of his proposals was to “utilize orders of infinitesimals
to implement long term-memory,” such that “[s]uccessive updatings do
not destroy information, but instead push it down to smaller orders of
infinitesimals” (p. 158). He evaluates this proposal as having a certain
theoretical simplicity, but lacking practical feasibility. However, given
that the proposal essentially boils down to introducing lexicographical
probabilities, it may turn out that this judgment was too harsh.

11.3 Yet Another Point of View

Introducing non-standard probabilities amounts to changing the range of
the probability function. Skyrms (1995) considers an alternative way to
achieve strict coherence, which involves changing the domain, such that
the events to which infinitesimal probabilities are assigned in the previous
approach are no longer in the event space at all. In this context, he cites
(Jeffrey’s translation of) Kolmogorov (1948):

The notion of an elementary event is an artificial superstructure
imposed on the concrete notion of an event. In reality, events

42 This was suggested by de Finetti, cf. Section 1. See also the discussion of the “numerical
fallacy” by Easwaran (2014).
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are not composed of elementary events, but elementary events
originate in the dismemberment of composite events.

Let me unpack this. In Kolmogorov’s (1933) approach, the sample space
was assumed to contain all fully specific possible outcomes: the elements
of the sample space are called “elementary events.” On the other hand, we
have the informal notion of concrete events or possible outcomes, which
does not presuppose infinite precision. Here we see that Kolmogorov
(1948) rejected his former approach in favour of a more realistic one: if we
take into account the limited precision of any physical measurement, we
can distinguish outcomes only with limited precision, too. With increasing
precision, we can decompose events into more fine-grained ones, but not
up to elementary precision.

Although no infinitesimal probabilities occur in the second approach,
it is still relevant in the context of the current chapter, because of an
interesting analogy: in both cases, starting from the orthodox approach, a
symmetry is quotiented out to arrive at the new structure (cf. the reference
to quotient spaces in the introduction).

12 interplay between infinitesimal probabilities and infi-
nite utilities : pascal’s wager

We have seen in Section 3, that discussions of rational degrees of belief
often proceed via a betting interpretation (e.g., motivating adherence to the
axioms of probability theory by the avoidance of a sure loss). As such, they
involve considerations of monetary loss or gain. However, the subjective
value of money need not be linear. Therefore, it is useful to introduce
utility as a more abstract measure that represents subjective worth directly.
Utility is usually taken to be a real-valued (interval scale) measure.

However, non-Archimedean probabilities do not mix well with real-
valued utilities. Hence, to deal adequately with infinitesimal probabilities
in the context of decision theory, a non-Archimedean utility theory is
needed, such as the one developed by Pivato (2014).

We consider the famous example of Pascal’s wager. With this argument,
found in his Pensées, Pascal purported to show that it is rational to wa-
ger for God’s existence. In modern terminology, we have to consider all
combinations of the existence or non-existence of God, on the one hand,
and an agent’s belief or disbelief in God, on the other hand. This leads
to four cases each with their own expected utility. In the case that God
exists, it is assumed that there are everlasting heavenly rewards for those
who believe (positive infinite expected utility) and everlasting infernal
punishments for those who disbelieve (negative infinite expected utility).
In the case that God does not exist, there are a lifetime of earthly burdens
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for those who believe (negative finite expected utility) and a lifetime of
earthly pleasures for those who disbelieve (positive finite expected utility).
If the agent is maximally uncertain about the existence of God (assigning
50% probability to the possibility of existence and 50% probability to the
possibility of non-existence), the expected utility of believing is infinitely
better than that of disbelieving. So, according to this argument, if one has
to wager, it is better to wager for God’s existence.

In the context of a discussion of Pascal’s wager, Oppy (1990, p. 163)
considers the epistemic possibility “that the probability that God exists is
infinitesimal,” in which case “the calculation of the expected return of a
bet on [the existence of] God is no longer as straightforward as the initial
argument suggested.”

Following up on this suggestion, Hájek (2003) considers whether sal-
vation has an infinite utility. He mentions two formal approaches that
allow us to tell apart various infinite expectation values that occur in Pas-
cal’s wager and related problems. Hájek mentions NSA as one possibility
of dealing with infinitesimal probabilities and infinite utilities, but he
favours Conway’s numbers, citing their ingenuity and user-friendliness.
He speculates that such a formal approach can illuminate a whole range
of problems involving infinitesimal probabilities (such as the two envelope
paradox).

On p. 38, Hájek writes that “the infinitesimal probability can ‘cancel’
the infinite utility so as to yield a finite expectation for wagering for
God.” The idea of cancelling is indeed what NSA allows us to formalise:
each infinitesimal is the reciprocal of an infinite number and vice versa.
Multiplying an infinite hyperreal number and its multiplicative inverse, a
particular infinitesimal, yields unity. So, on the one hand, we may obtain
finite (non-infinite) and non-infinitesimal values by multiplying infinite
and infinitesimal numbers. On the other hand, there are also combinations
of infinite and infinitesimal numbers whose product is an infinitesimal or
an infinite number. More details can be found in Wenmackers (2018). For
a treatment with surreal probabilities and utilities, see Chen and Rubio
(2018): their approach also allows them to treat the St. Petersburg paradox.

13 the lockean thesis and relative infinitesimals

Whereas standard probability measures may seem too coarse-grained for
some applications, where we would like to distinguish between possible
and impossible events, they may not seem coarse-grained enough for other
applications, as we will see in this section.

Suppose that you have detailed knowledge of the probabilities in a given
situation. It has been argued that it may still be beneficial to hold some
full (dis-)beliefs (Foley, 2009). But when is it rational to believe something
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in this case? The Lockean thesis suggests that it is rational to believe
a statement if the probability of that statement is sufficiently close to
unity.43 This is usually modelled by means of a probability threshold. As is
demonstrated by the Lottery Paradox (Kyburg, 1961), the threshold-based
model is incompatible with the Conjunction Principle. Moreover, it can be
objected that the actual probabilities are too vague to put a sharp threshold
on them, and that a threshold should be context-dependent.

Based on certain analogies between large and infinite lotteries, Wen-
mackers (2012) suggests the use of NSA to introduce a form of vagueness
or coarse-graining and context-dependence in the formal model of the
Lockean thesis.44 Hrbáček (2007) develops relative or stratified analysis,
an alterative approach to NSA that contains “levels” as a formalisation
of the intuitive scales-of-magnitude concept. Applying Hrbáček’s frame-
work, Wenmackers (2013) introduces “Stratified Belief” as an alternative
formalisation of the Lockean Thesis.45

The basic idea is to interpret the Lockean thesis as follows: it is rational to
believe a statement if the probability of that statement is indistinguishable
from unity (in a given context). The context-dependent indistinguishability
relation is then modelled using the notion of differences up to a level-
dependent, ultrasmall number. These ultrasmall numbers, also called
“relative infinitesimals,” are ordinary real numbers, which are merely
unobservable, or do not have a unique name, in a given context. The
aggregation rule for this model is the “Stratified conjunction principle,”
which entails that the conjunction of a standard number of rational beliefs
is rational, whereas the conjunction of an ultralarge number of rational
beliefs is not necessarily rational.46

14 recent objections and open questions

In this section, we give a brief overview of developments from the two last
decades in which new objections against and defences for infinitesimal
probabilities have been added to the literature. It may be too early to
evaluate the most recent collection of attempted refutations and acclaims
for infinitesimal probabilities. Still, we briefly mention some here. More
discussion can be found in Benci et al. (2018).

43 This is reminiscent of the concept of “moral certainty”; see also footnote 79.
44 An earlier version can be found in Wenmackers (2011, Ch. 4).
45 An earlier version can be found in Wenmackers (2011, Ch. 3).
46 Although this model is intended to describe beliefs that are almost certain, it can be used

for weaker forms of belief by substituting a lower number instead of unity.
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14.1 Symmetry Constraints and Label Invariance

In a number of publications, Bartha applies ideas from non-standard
measure theory to problems in the philosophy of probability. Bartha and
Hitchcock (1999) use NSA in the usual way, i.e., in order to obtain a real-
valued probability function. Bartha and Johns (2001) also consider the
application of NSA to a probabilistic setting, but they favour a simpler
appeal to symmetry in order to obtain the conditional probabilities relevant
to their problem. (Later, Bartha, 2004, discusses de Finetti’s lottery and
uses infinitesimal probabilities as one way to escape the conclusion that
CA is mandatory, since they exhibit hyperfinite additivity instead.)

Considering the case of an ω-sequence of coin tosses, Williamson (2007)
demonstrates the incompatibility between infinitesimal probabilities and
requiring the equiprobability of what he calls “isomorphic events,” which
are “events of exactly the same qualitative type” (p. 175). In particular, for
ω-sequences of coin tosses, he argues that the probability assigned to the
event should not depend on when exactly the tossing started. Williamson
contrasts his finding with that of Elga: whereas Elga (2004) finds regularity
to lead to too many eligible non-standard distributions, Williamson finds
regularity in combination with what he calls “non-arbitrary constraints”
to rule out all candidate distributions.

Weintraub (2008) attempts to demonstrate that Williamson’s argument
depends on the assumption of label-independence, which is itself in-
compatible with infinitesimal probabilities. More recently, Benci et al.
(2018) analyze Williamson’s argument in the light of NAP theory. They,
too, conclude that isomorphic events cannot be assigned equal hyper-
real-valued probabilities without contradicting the assumptions on which
this theory relies. Simultaneously, Howson (2017) argues—without using
any details of NAP theory—that “it is not regularity which fails in the
non-standard setting but a fundamental property of shifts in Bernoulli
processes.” However, Parker (2018) argues that these objections to the
argument of Williamson (2007) fail.

14.2 Non-uniqueness of Hyperreal Probabilities

Elga (2004) considers the zero-fit problem of the “best system” analysis
of laws: if all systems of laws assign probability zero to the actual history
up to now, then one cannot identify the best system based on a measure
of goodness-of-fit. He entertains the option of applying non-standard
probability functions and thus to assign a non-zero infinitesimal probability
to the actual history, thereby escaping a zero fit. Ultimately, however, he
rejects this proposal:
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We have required our nonstandard probability function to be
regular, and to approximate given standard probability func-
tions. But those requirements only very weakly constrain the
probabilities those functions assign to any individual outcome.
[. . . ] And the fit of a system associated with such a function
is just the chance it assigns to actual history. So the fit of such
a system indicates nothing about how well its chances accord
with actual history.

The relevant construction of a non-standard probability function is given
in an appendix, where Elga phrases the conclusion as follows: “[T]he
probabilities that these approximating functions ascribe to actual history
span the entire range of infinitesimals [. . . ]. So by picking an appropriate
approximating function, we can get any such system to have any (infinites-
imal) fit we’d like.” In other words, Elga concludes that there are too many
ways of assigning different infinitesimal probabilities to the same history
and that there is no principled way to prefer one over the others.

Herzberg (2007) contrasts Elga’s viewpoint, in which all hyperreal-
valued functions that differ from a particular real-valued function by at
most an infinitesimal (where the latter is defined) are to be treated on a
par, with the praxis of NSA. As Herzberg points out, applications of NSA
typically involve the construction of a particular non-standard object, usu-
ally some hyperfinite combinatorial object, leading to a particular internal
probability measure. In order to appreciate how Herzberg’s viewpoint
differs from Elga’s, it is helpful to consider an example.47 Anderson (1976)
presents an internal representation of Brownian motion, which makes it
possible to treat Brownian motion in terms of (infinite) combinatorics.48 In
order to be scientifically relevant, however, such an alternative description
has to fulfil two criteria: (1) it has to approximate the standard probability
function associated with the process (in this case, the Wiener measure)49

and (2) it has to promote further research (as is indeed the case for Ander-
son’s work; consider, for instance, Perkins’, 1981, work on Brownian local
time). Although many non-standard measures fulfil the first condition, the
vast majority of them do not fulfil the second one.

Many worries and some open questions about infinitesimal probabilities
arise due to the non-uniqueness and associated arbitrariness of hyperreal-
valued probability measures (also discussed, e.g., by Hofweber, 2014).50

47 I am grateful to Frederik Herzberg for this suggestion.
48 See also Albeverio, Fenstad, Hoegh-Krøhn, and Lindstrøm (1986, section 3.3).
49 Since internal probability functions differ from standard ones both in terms of domain

and of range, this approximation can be thought of as a two-step procedure, the second of
which involves the standard part function.

50 As mentioned in Section 5, free ultrafilters are intangible objects. As a result, non-standard
probability functions that rely on these filters are intangibles, too.
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When comparing the situation to that of real-valued probability functions
that are CA, there is a trade-off between definiteness of the domain and
definiteness of the range. In the case of an infinite sample space, CA
functions have many non-measurable events in the powerset of that sample
space. Which subsets of the sample space are measurable and which are
not is to a certain extent arbitrary. If we settle for FA, we can extend
the real-valued function to the entire powerset (by considering Banach
limits; see for instance Schurz & Leitgeb, 2008), but then we introduce a
lot of arbitrariness. Again in the case of an infinite sample space, NAP
functions allow for the same kind of variation in their standard part as the
FA functions do, and more given that also the infinitesimal part may vary
(see for instance Kremer, 2014). Given that it reappears in slightly different
guises across different frameworks, we cannot set aside this arbitrariness
as a flaw of one particular theory. Rather, it reminds us that the powerset
of an infinite sample space contains a lot of uncharted territory.51

At least some of the worries related to arbitrariness are alleviated if we
take into account the distinction between the ontology of infinitesimal
probabilities and the deductive procedures they encourage: very similar
modes of reasoning can be applied in related frameworks that suggest a
different ontology (recall Section 11).52

More generally, various authors argue that hyperreal numbers are not
quite right for the task at hand (e.g., that the infinitesimals are too small;
Easwaran, 2014; Pruss, 2014). Easwaran (2014, pp. 34–35) argues that “the
structure of the hyperreals goes beyond the physical structure of cre-
dences” and that they “can’t provide a faithful model of credences of the
sort wanted by defenders of Regularity.” On the other hand, Hofweber
(2014) tries to defend infinitesimal chances and outlines some additional
principles (non-locality, flexibility, and arbitrary additivity) that are re-
quired for a theory to capture our concept of chance. Also Benci et al.
(2018) are optimistic that NAP theory can be defended against many of
the previously raised objections.

51 In particular, even if the sample space is just countably infinite, its powerset (which
contains the events to which we want to assign probabilities) is uncountably large. Among
the uncountably many sets that are neither finite nor co-finite, there is a wild variety
(for instance, in terms of Turing degrees or other complexity measures) and it is here
that we should take heed of Feferman’s reservations about considering the totality of all
arbitrary subsets of N, P(N), as a well-defined notion; see, e.g., Feferman (1979, p. 166)
and Feferman (1999). I am grateful to Paolo Mancosu for suggesting this connection.

52 Following a distinction introduced by Benacerraf (1965), a similar remark has been made
by Katz (2014, section 2.3) regarding interpretations of the work of Euler (and also that of
Leibniz) in the context of standard or non-standard analysis.



infinitesimal probabilities 237

14.3 Cardinality Considerations

Hájek (2012b) argues that regularity is an untenable constraint on cre-
dences, even if we allow probability functions to take hyperreal values.
He invites us to “imagine a spinner whose possible landing points are
randomly selected from the [0, 1) interval of the hyperreals,” concluding
that regularity fails if we apply the same interval of hyperreals as the
range of a function that assigns probabilities to events associated with this
hyperreal spinner. He envisages

a kind of arms race: we scotched regularity for real-valued
probability functions by canvassing sufficiently large domains:
making them uncountable. The friends of regularity fought
back, enriching their ranges: making them hyperreal-valued. I
counter with a still larger domain: making its values hyperreal-
valued

and so on. Following up on Hájek’s informal suggestion of an arms race,
Alexander Pruss (2013) proves that for each set of probability values, possi-
bly including hyperreal values, there exists a domain on which regularity
fails.

However, as NAP theory illustrates, the defender of regularity need not
participate in this race at all and Hájek considers this option, too: “Perhaps
we could tailor the range of the probability function to the domain, for
each particular application?” However, he worries “that in a Kolmogorov-
style axiomatization the commitment to the range of P comes first.” He
continues by saying that “[i]t is not enough to say something unspecific,
like ‘some non-Archimedean closed ordered field. . . ’ Among other things,
we need to know what the additivity axiom is supposed to be.” Of course,
NAP theory does exactly this: by requiring ultra-additivity, for any sample
space a range can be constructed that ensures regularity. However, one
cannot switch the quantifiers: in agreement with Pruss (2013), there is no
universal range that can ensure regularity for all sample spaces.53

14.4 Non-conglomerability

Before we can address this worry, we first have to introduce the notion of
conglomerability.

We will call a (hyper-)real-valued probability function P finitely, count-
ably, or uncountably conglomerable if and only if for any finite, countable,

53 Hájek (2012b) also states that “[i]f we don’t know exactly what the range is, we don’t know
what its notion of additivity will look like.” Maybe prolonged exposure to real-valued
measures, in which ultra-additivity is clearly unattainable, makes us overlook this very
natural notion of additivity that does not depend on any further parameters?
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or uncountable (resp.) partition {A1, A2, . . .} of the sample space (whose
members are measurable according to P) and for any event A that is mea-
surable according to P, the following conditional statement holds. If a and b
are (hyper-)real numbers such that ∀An ∈ {A1, A2, . . .}, a ≤ P(A|An) ≤ b,
then a ≤ P(A) ≤ b.

In standard probability theory, both finite and countable conglomerabil-
ity are guaranteed to hold. The proof of this relies crucially on the axiom
of normalization and on the axiom of finite or countable additivity (resp.).
Even in the standard approach, uncountable conglomerability does not
hold in general.

Theories that lack normalization or countable additivity, are not guar-
anteed to be countably conglomerable. In particular, both de Finetti’s
proposal for FA probability theory and NAP theory are finitely but not
countably conglomerable.54

Pruss (2012, 2014) raises this as an objection to theories that allow in-
finitesimal probabilities. In recent work, DiBella (2018, p. 1200) shows
that the failure of countable conglomerability already arises in qualitative
probability theories that are non-Archimedean and that this carries over to
any quantitative theory that is non-Archimedean (of which NAP theory
is an example). Since it is such a general feature of the underlying proba-
bility ordering, he suggests that non-conglomerability is not suitable as a
criticism of non-Archimedean theories.

15 epilogue : on the value of methodological pluralism

I would like to end this chapter with some remarks that may apply to
formal epistemology (and related endeavours) more generally. Only by
comparing different methodologies may one obtain some indication of
their strengths and limitations and how they distort the results.

We tend not to notice what is always present. An atmosphere was
present before our ancestors developed eyes and to this day the air between
us remains invisible to us. By experimenting with other gas mixtures, we
learn, not only about those new substances, but also about the air that
surrounds us. We become aware of its weight, its oxygen content, and its
capacity to carry our voice. And although we keep living in air for most
of the time, for particular purposes, we may prefer other mixtures over air
(e.g., increasing the oxygen content to help someone breathe or decreasing
the oxygen content to avoid oxidation).

54 The failure of countable conglomerability can be seen by considering a uniform distribution
over the sample space N×N and two countable partitions: Ai = {(i, n)|n ∈ N} and
Bi = {(n, i)|n ∈ N}. For the demonstration in the case of FA probability, see de Finetti
(1972, Ch. 5).



infinitesimal probabilities 239

Like the air in our biosphere, the real numbers are equally pervasive in
our current mathematical practice. It appears to me that we are subjected
to methodological adaptation to an extent no less than we are to sensory
adaptation. The study of infinitesimal probabilities involves a departure
from the standard formalism of real-valued probability functions. By
changing our methodological environment, we may start to notice certain
assumptions in the usual approach. Dealing with a familiar problem in
an unfamiliar way thus presents a unique opportunity: it allows us to
distinguish elements that are essential to its solution from aspects that are
merely artifacts due to the method that has been applied.

Investigating a rich concept such as probability cannot be carried out
within the bounds of any single formalisation, but challenges us to combine
perspectives from an equally rich selection of frameworks. In particular, I
believe that methods involving hyperreal probability values, while detract-
ing nothing from the merits of the monometric standard approach, have
much to add to this polymetric selection.

16 appendix : historical sources concerning infinitesimal

probabilities (1870–1989)

This part does not contain an overarching story arc, but it can be used as
an annotated bibliography or to look up specific details.

Despite its length, this appendix does not pretend to be exhaustive;
some developments—especially the early ones—are merely sketched. The
subdivision into decades is indicative rather than strict. Usually, the pub-
lication date is taken as the decisive factor for the chronology, except for
Carnap’s work from 1960: this work was only published in 1980, but it is
included in an earlier section, for thematic reasons.

16.1 Before 1960: pre-Robinsonian era

The 1870s: The Real Numbers and the Standard Limit

The modern approach to standard analysis was developed by “the great
triumvirate” (Boyer, 1949, p. 298): Georg Cantor, Richard Dedekind, and
Karl Weierstrass. First, Cantor gave a construction of the real numbers via
Cauchy sequences (recall Section 8.5). Then, Dedekind gave an alternative
construction of the real numbers via Dedekind cuts (which we will not
discuss). Weierstrass introduced the modern epsilon-delta definition of the
limit (which builds on earlier work by Bernard Bolzano in the 1810s and
by Augustin-Louis Cauchy in the 1820s).
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As an example, we consider the derivative as a limit of the quotient of
differences and express this limit in terms of an epsilon-delta definition:

dy
dx

= lim
∆x→0

∆y
∆x

= lim
∆x→0

y(x + ∆x)− y(x)
∆x

,

where
lim

∆x→0

∆y
∆x

= L

if and only if

∀ε > 0 ∈ R, ∃δ > 0 ∈ R : ∀∆x ∈ R

(
0 < |∆x| < δ⇒ |∆y

∆x
− L| < ε

)
.

The 1880s: The Archimedean Axiom

In the introduction, we encountered the criterion to decide whether a
number system is Archimedean or non-Archimedean (Equation 1). In par-
ticular, hyperreal fields are non-Archimedean and those can be employed
to represent infinitesimal probabilities. Here, we investigate the origins of
this sense of the word ‘Archimedean’.

Around 225 BC, Archimedes of Syracuse published two volumes known
in English as “On the Sphere and Cylinder”. At the beginning of the
first book, Archimedes stated five assumptions. The fifth assumption is
that,55 starting from any quantity, one may exceed any larger quantity by
adding the former quantity to itself sufficiently many times.56 In a paper
on ancient Greek geometry, Otto Stolz (1883) discussed this postulate,
which he calls “das Axiom des Archimedes” for ease of reference. Although
Stolz was well aware that Archimedes himself attributed an application
of this axiom to earlier geometers, apparently he did not notice that the
axiom also appeared in Euclid’s Elements (Bair et al., 2013, p. 888). In his
textbook on arithmetic, which was very influential according to Ehrlich
(2006, p. 5), Stolz (1885) presented examples of Grössensysteme (systems of
magnitudes) that fail to satisfy this Archimedean axiom, whereas systems
that are continuous in the sense of Dedekind do satisfy it.

55 Heath (1897, p. 4) translates the assumption as follows: “Further, of unequal lines, unequal
surfaces, and unequal solids, the greater exceeds the less by such a magnitude as, when
added to itself, can be made to exceed any assigned magnitude among those which are
comparable with [it and with] one another.”

56 This formulation suggests a strong relation between Archimedean quantities and addition.
Additivity also plays an important role in intuitions concerning infinitesimal quantities,
including infinitesimal probabilities, even though these are non-Archimedean probabilities:
recall the discussion of ultra-additivity (Section 8.3 and Section 16.3).
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The 1890s: Infinitesimal Probabilities in a Geometric Context

In 1891, Giulio Vivanti and Rodolfo Bettazzi discussed infinitesimal line
segments in the context of probability (see Ehrlich, 2006). In these early
discussions, infinitesimal probabilities are considered in the context of a ge-
ometric interpretation of probability. As such, this provides an interesting
contrast to the more recent literature, in which infinitesimal probabili-
ties are usually introduced in the context of subjective interpretations of
probability (related to a criterion of open-mindedness).

Later on, in the 1910s, Federigo Enriques discussed the (impossibility of)
infinitesimal probabilities on two occasions, again in a geometric context.57

The 1900s: Measurability and Non-measurability

Building on émile Borel’s countably additive measure from the 1890s,
Henri Lebesgue introduced his translation invariant and countably addi-
tive measure in 1902. In 1905, Giuseppe Vitali gave the first example of a
non-Lebesgue measurable set. See for instance Skyrms (1983b) for some
discussion.58

The 1930s: Kolmogorov, Skolem, and de Finetti

kolmogorov’s probability measures Andrey Kolmogorov (1933)
introduced probability as a one-place function with as the domain a field
of sets over a given sample space and as the range the unit interval of the
real numbers. In the first chapter of his book, he laid out an elementary
theory of probability “in which we have to deal with only a finite number
of events.” The axioms for the elementary case stipulate non-negativity,
normalization, and the addition theorem (now called “finite additivity,”
FA). In the second chapter, dealing with the case of “an infinite number of
random events,” Kolmogorov introduced an additional axiom: the Axiom
of Continuity. Together with the axioms and theorems for the finite case
(in particular, FA), this leads to the generalized addition theorem, called
“σ-additivity” or “countable additivity” (CA) in the case where the event

57 Thanks to Philip Ehrlich for this addition. He is planning an article on the work of Enriques;
meanwhile, Ehrlich (2006) contains the relevant references.

58 Skyrms (1983b) argues that the Peano-Jordan measure (which preceded the Borel measure)
only employs ideas that were available in Plato’s time, whereas Borel measure crucially
relies on distinctions among infinite cardinalities only introduced by Cantor. Peano-Jordan
measure is finitely additive, which follows from its definition, and it lacks the stronger
property of countable additivity (CA). Borel measure is CA, but this has to be specified in
the definition by hand. Skyrms observes that this approach was contested, for instance by
Schoenflies in 1900, who objected that the matter of extending additivity into the infinite
cannot be settled by positing it. Lebesgue measure is CA, too, and it is translation invariant,
which is appealing to our intuitions.
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space is a Borel field (or σ-algebra, in modern terminology). We reviewed
his axiomatization in Section 7.

skolem’s non-standard models of peano arithmetic The
second-order axioms for arithmetic are categoric: all models are isomorphic
to the intended model 〈N, 0,+1〉, a triple consisting of the domain of
discourse (infinite set of natural numbers), a constant element (zero), and
the successor function (unary addition). Dedekind (1888) was the first to
prove this. His “rules” for arithmetic were turned into axioms by Giuseppe
Peano (1889), giving rise to what we now call “Peano Arithmetic” (PA).

The first-order axioms for arithmetic are non-categoric: there exist non-
standard models 〈∗N, ∗0, ∗+1〉 that are not isomorphic to 〈N, 0,+1〉. Tho-
ralf Skolem (1934) was the first who proved this.59 With the Löwenheim-
Skolem theorem, it can be proven that there exist models of any cardinality.
∗N contains finite numbers as well as infinite numbers. We now call ∗N a
set of hypernatural numbers.60

de finetti on non-archimedean probability rankings In
1931, Bruno de Finetti addressed the relation between qualitative and
quantitative probability. Qualitative probability deals with ordering or
ranking events by a partial order relation, �, interpreted as “at least as
likely as.” Quantitative probability deals with probability functions that
assign numerical values—usually real numbers—to events.

On pp. 313–314, de Finetti (1931, section 13) presented four postulates
for the probability ordering.61 In particular, the second postulate states
that every event that is merely possible (rather than impossible or certain)
is strictly more likely than the impossible event and strictly less likely than
the certain event. He considers the question whether such a ranking is
compatible with the usual way of measuring probabilities by real numbers.

59 See Stillwell (1977, section 3) and Kanovei, Katz, and Mormann (2013, section 3.2) for some
comments on the direct construction given by Skolem (1934). In contrast to Skolem’s result,
the proof given in modern presentations usually relies on the Compactness property of
first-order logic. First, consider a first-order language for arithmetic, LPA, which has a
name for each natural number. Call PA the set of sentences in LPA that are true about
arithmetic. Then, add a new constant, c, to the language and consider PA’, which is the
union of the PA and {c > 0, c,> 1, c > 2, . . .}. Since each finite subset of PA’ has a model
(in which c is a natural number that is larger than any of the other natural numbers that
are named in the the finite subset), it follows from the Compactness of first-order logic
that PA’ has a model (which contains a copy of the natural numbers and in which c is an
infinite hypernatural number).

60 For a discussion of the order-type of countable non-standard models of arithmetic, see e.g.
Boolos, Burgess, and Jeffrey (2007, Ch. 25, p. 302–318) and McGee (2002). More advanced
topics can be found in the book by Kossak and Schmerl (2006).

61 Thanks to Paul Pedersen for some pointers to de Finetti’s early work on non-Archimedean
probability rankings.
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De Finetti observed that such a probability ranking has a non-Archimedean
structure, whereas real-valued probability functions are Archimedean.
Related to this point, de Finetti (1931, p. 316) wrote:

However, it is anyway possible to satisfactorily measure prob-
abilities by numbers, that is by making such a structure
Archimedean by neglecting the infinitely small probabilities

Since this was written well before the development of NSA, we should
be careful not to interpret “infinitely small probabilities” as the values
of a hyperreal-valued probability function, which can subsequently be
truncated by the standard part function. On the other hand, de Finetti
was not merely referring to infinitesimal probabilities in an informal
sense, either. In the continuation of the sentence quoted above, he stated,
concerning infinitely small probabilities:

that, when multiplied [. . . ] by a number n, however large, they
never tend to certainty, that is in other words, they are always
less than the probability 1/n of one among n incompatible,
identically probable events forming a complete class.

As a result, the partial order on the probability of events (which is just the
order relation on the real numbers, ≥) does not coincide with the partial
order on events (�): taking A and B to be events, P(A) ≥ P(B) implies
A � B, but not vice versa, and A � B together with B � A implies P(A) =

P(B), but not vice versa. (Counterexamples to the inverse implications
can be obtained by considering A to be the impossible event, ∅, and B
a possible event with P(B) = 0.) The non-Archimedean partial ordering
of events can be said to be more fine-grained than the Archimedean
partial ordering of probabilities of those events, since the former leads to
more equivalence classes (sets of events {B | B � A ∧ A � B} for some
event A) than the latter (with equivalence classes of events of the form
{B | P(A) = P(B)} for some event A).

In 1936, de Finetti reflected on the meaning of possible events (i.e., events
represented by non-empty sets) that have probability zero. He agrees with
Borel and Lévy62 that these are merely theoretical constructs: they do not
represent events that are practically observable, but are merely defined
as limiting cases thereof. They would require information from infinitely
many experiments or an experiment involving an absolutely exact mea-
surement, both of which exceed what is practically achievable.63 In this

62 See also footnote 79 for the relation to Cournot’s principle.
63 This is the relevant quote in French (de Finetti, 1936, p. 577): “Il n’y a pas de doute, ainsi que

l’a remarqué M. Borel, et comme cela se trouve très clairement expliqué dans le traité de M. Lévy,
que la notion d’événement possible et de probabilite nulle est purement théorique, car il s’agit en
géneral d’événements définis comme des cas limites d’événements pratiquement observables, et leur
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context, and unlike the 1931 article, de Finetti did consider the option
of infinitesimal probability values and even an infinite hierarchy thereof
(“chacune infiniment petite par rapport á la précédente”, p. 583). Ultimately,
however, he advocated sticking to real numbers as probabilities and drop-
ping the assumption of countable additivity (p. 584), which is a position
he stood by throughout all of his later work (see Section 16.3).

The 1950s: From Weak to Strict Coherence

In the context of Bayesianism and decision theory, infinitesimal probabili-
ties have been discussed in relation to “strict coherence”64 and “regularity.”
This discussion started in the 1950s, with the Ph.D. dissertation of Abner
Shimony followed by the publication of Shimony (1955).

Earlier, both Frank P. Ramsey (1931) and de Finetti (1937) had combined
a subjective interpretation of probability with an important rationality
constraint, imposed on the set of an agent’s degrees of belief: in order to
be considered rational, a person’s set of beliefs must meet the condition of
“coherence.” This condition can be regarded as a probabilistic extension
of the consistency condition from classical logic. In particular, an agent’s
degrees of belief are coherent just in case no Dutch book can be made
against the agent: no finite combination of bets, of which the prizes are set
in accordance with the agent’s degrees of belief, should lead to a sure loss.
De Finetti (1937) showed that an agent’s degrees of belief are coherent
(and thus that no Dutch Book can be made against him) just in case his
degrees of belief are such that they respect the axioms for finitely additive
probability functions.

shimony’s strict coherence Shimony (1955) strengthened the ear-
lier notion of coherence (now called “weak coherence”) to that of coherence
“in the strong sense” (now “strict coherence”): no finite combination of
bets, of which the prizes are set according to the agent’s degrees of belief,
should lead to a sure loss (as before) or a possible net loss without the
possibility of a net profit (stronger condition). To obtain strong coherence,
Shimony had to strengthen one of the probability axioms accordingly.
The original axiom says that the degree of confirmation (or conditional
credence) of some hypothesis h given a piece of evidence e is 1 if e entails
h, whereas the stronger version reads: the degree of confirmation of h
given e is 1 if and only if e entails h.

vérification exigerait par conséquent une infinité d’expériences ou une expérience comportant une
mensuration absolument exacte.”

64 In the early literature, there circulated other names for this criterion as well: ‘strict fairness’
(Kemeny) and [strong] ‘rationality’ (Lehman, Adams). See Carnap (1971a, p. 114) for a
helpful overview of the terminology in the early literature.
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Initially, Shimony (1955) only defined (strict) coherence for finite sets of
beliefs, but in a later section he did discuss “[t]he difficulty of extending
the notion of coherence so as to apply to infinite sets” (p. 11). In this
context, he wrote (p. 20):

An appropriate betting quotient would be an ‘infinitesimal’,
which is neither 0 nor finite; but this is impossible because of
the Archimedean property of the positive real numbers.

Shimony also remarked that strong coherence on infinite sets of belief
cannot be used to justify CA (which he calls “the Principle of Complete
Additivity” on p. 18).

strict coherence without infinitesimals The work on strict
coherence initiated by Shimony was soon picked up by others. Some of
the ensuing publications were related to the notion of “regularity.” In the
context of finite sample spaces, Rudolf Carnap (1950, Ch. 5) had introduced
regularity as the condition that a function should assign positive values to
state descriptions that sum to unity. In particular, he applied this condition
to credence functions (probability functions in the sense of rational degrees
of belief) associated with a finite set of state descriptions (finite sample
space).65

Combining the earlier result of Shimony (1955) on the one hand and
that of John G. Kemeny (1981) and R. Sherman Lehman (1955) on the
other hand, we have that a probability function on a finite sample space is
strictly coherent if and only if it is “regular” (cf. Carnap, 1971b, p. 15).

Ernest W. Adams (1959, 1962–63, 1964) was interested in the case of
infinite sample spaces: he focused on the issue of additivity. Walter Ober-
schelp (1962–63) wrote on a similar topic in German: he looked for a
similar, but weaker constraint for the infinite case than Adams’.

So, none of these authors did follow up on Shimony’s remark regard-
ing infinitesimal probabilities. An important exception was Carnap: in
1960, he explicitly considered the option of non-real-valued degrees of
belief that admit infinitesimal values. (Although this work was published
posthumously, in 1980, we do discuss it already at this point.)

carnap’s quest for non-archimedean credences Inspired
by Shimony’s work on strict coherence, Carnap (1980) considered a lan-

65 For infinite sample spaces, Carnap (1950) considers limits of unconditional and conditional
probability functions; although those limit functions may assign zero to state descriptions,
Carnap calls them “regular,” too. This usage should be contrasted with that in contempo-
rary writings on infinitesimal credences, where regularity is (equivalent to) the condition
that a probability function should assign strictly positive values to singleton events, even
for infinite sample spaces.
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guage with real-valued functions, L, and a credence function with non-
Archimedean range, C. He wrote (p. 146):

we could regard these axioms as axioms of regularity for L;
and we would call C regular iff it fulfilled all these axioms.
However, to carry out this program would be a task beset with
great difficulties.

The first problem he considered is that of finding axioms for the binary
relations IS (to be read as: ‘is Infinitely Small compared to’) and SEq (to
be read as: “is Smaller or Equal in size to”), both defined on the class of
all subsets of the set of real numbers.66 Further on, Carnap considered
the problem of constructing a measure function π that is defined on all
subsets of the set of real numbers. He stated (p. 154, italics in the original):
“The values of π are not real numbers but numbers of a non-Archimedean
number system Ω to be constructed.”

16.2 The 1960s: Robinson’s NSA and Bernstein & Wattenberg’s Non-standard
Probability

The development of non-standard analysis by Abraham Robinson in the
1960s allowed for a formal and consistent treatment of infinitesimal num-
bers. Soon enough, this work was applied to measure theory in general
and to probability theory in particular. Beyond this point, some technical
notions from NSA appear: please consult Section 4 and Section 5 for the
meaning of unfamiliar terms.

Non-standard Models of Real Closed Fields and Robinson’s NSA

Robinson (1961, 1966) founded the field of NSA: he combined some ear-
lier results from mathematical logic67 in order to develop an alternative
framework for differential and integral calculus based on infinitesimals
and infinitely large numbers.

Robinson’s hyperreal numbers are a special case of a real closed field
(RCF). In general, a RCF is any field that has the same first-order properties
as R. The second-order axioms for the ordered field of real numbers are
categoric: all models are isomorphic to the intended model 〈R,+,×,≤〉,
a quadruple consisting of the set of real numbers, the binary operations

66 Upon publication of these notes, Hoover (1980) remarked that one of the axioms Carnap
had proposed for SEq was in contradiction with the others (axiom 3f on p. 147 amounted
to countable additivity, which is incompatible with a non-Archimedean range); also one of
the proposed axioms for IS was in contradiction with the others (axiom 7p on p. 148).

67 See Robinson (1966, p. 48) for some references. In particular, Hewitt (1948) had constructed
hyperreal fields using an ultrapower construction and Łoś (1955) had proven a transfer
theorem for these fields.
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of addition and multiplication, and the order relation. Skolem’s existence
proof of non-standard models of arithmetic (Section 16.1) can be applied
to RCFs, too.68 The axioms for RCFs (always in first-order logic) are non-
categoric: there exist non-standard models 〈∗R, ∗+, ∗×, ∗≤〉 that are not
isomorphic to 〈R,+,×,≤〉.

Applying the Löwenheim-Skolem theorem, it can be proven that there
exist models of any cardinality; in particular, there are countable models
(cf. the “paradox” of Skolem, 1923). In the context of hyperreal numbers,
however, only uncountable models are considered. First of all, in this
context the uncountable set of real numbers is assumed to be embedded in
the non-standard model. Moreover, in the context of NSA also functions are
transferred, which requires uncountably many symbols, thereby blocking
the construction of a countable model.

The standard real numbers are Archimedean, i.e., they contain no non-
zero infinitesimals in the sense of Equation 1:

∀a ∈ R \ {0}, ∃n ∈N :
1
n
< |a|.

In particular, 〈R,+,×,≤〉 is the only complete Archimedean field.69 In con-
trast, non-standard models do not have such a property: 〈∗R, ∗+, ∗×, ∗ ≤〉
is a non-Archimedean ordered field and it is not complete. Saying that ∗R
is non-Archimedean means that it does contain non-zero infinitesimals in
the sense of Equation 1:

∃a ∈ ∗R \ {0}, ∀n ∈N :
1
n
≥ |a|.

In other words: ∗R contains infinitesimals. As a consequence, for any such
a hyperreal infinitesimal a it holds that

∀n ∈N :
n

∑
i=1
|a| < 1.

∗R contains finite, infinite and infinitesimal numbers; we call ∗R a set of
hyperreal numbers.

Bernstein & Wattenberg’s Non-standard Probability Function

The infinitesimal numbers contained in the unit interval of a non-standard
model of a RCF can be used to represent infinitesimal probabilities. Allen

68 Applying the idea of footnote 59 to RCF instead of PA, c will represent an infinite hyperreal
number and its multiplicative inverse will represent an infinitesimal number.

69 Here, ‘complete’ can refer both to Cauchy or limit completeness (meaning that each Cauchy
sequence of real numbers is guaranteed to converge in the real numbers) and to Dedekind
or order completeness (meaning that each non-empty set of real number that has an upper
bound is guaranteed to have a least upper bound), because Cauchy completeness together
with the Archimedean property implies Dedekind completeness.
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R. Bernstein and Frank Wattenberg (1969) were the first to apply Robin-
son’s NSA in a probabilistic setting and thus to describe infinitesimal
probabilities in a mathematically rigorous framework. On p. 171, they
stated the following goal: “Suppose that a dart is thrown, using the unit
interval as a target; then what is the probability of hitting a point?” They
followed up this question with an informal answer:

Clearly this probability cannot be a positive real number, yet
to say that it is zero violates the intuitive feeling that, after all,
there is some chance of hitting the point.

In their paper, Bernstein and Wattenberg formalised this intuitive answer
using positive infinitesimals from Robinson’s NSA.70 Their measure is
based on a hyperfinite counting measure of a hyperfinite subset of the
hyperextension of the sample space.71 The non-standard result for any
Lebesgue-measurable set is infinitely close to its Lebesgue measure:72 “In
particular, nonempty sets of Lebesgue measure zero will have positive
infinitesimal measure.” They stated that:

Thus, for example, it is now possible to say that ‘the probability
of hitting a rational number in the interval [0, 1

4 ) is exactly half
that of hitting a rational number in the interval [0, 1

2 ),’ despite
the fact that both sets in question have Lebesgue measure zero.

Of course, the former probability being half that of the latter also applies
if both probabilities are zero, rather than infinitesimals.73 This observation
is only relevant if an additional assumption is made, for instance that the
probabilities are non-zero or that the former should be smaller than the
latter.

16.3 After 1969: Further Developments and Philosophical Discussions

The 1970s: Further mathematical developments

parikh & parnes’ conditional probability functions Start-
ing from a standard absolute probability function, the ratio formula does

70 Observe that, in order to assign non-zero infinitesimals to point events, they have to depart
from the usual application of NSA. Moreover, the function that they obtain is an external
object, which means (roughly) that it does not have a counterpart within standard analysis
(cf. Section 4). On the other hand, it is possible to take the standard part of the function’s
output, which yields the unique real value that is closest to the hyperreal value.

71 Recall Section 4 for the meaning of ‘hyperfinite’ and ‘hyperextension.’
72 One may object against the use of measure theory to represent probability, since measures

are motivated by a desire to idealize the notions of physical length, area, and volume,
and not probability per se. Hence, the usual reservations of representing probability by
measure functions, be they standard or non-standard, may apply here.

73 This observation is due to Alan Hájek, whose copy of the article I was allowed to copy.
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not always suffice to define a conditional probability function. This may fail
in two ways: the probabilities may be undefined (non-measurable events)
or the conditioning event may have probability zero. The non-standard
absolute probability function obtained by Bernstein and Wattenberg (1969)
does allow us to define a non-standard absolute probability function for all
pairs of subsets of the real numbers by the usual ratio formula, provided
that the conditioning event is non-empty. By taking the standard part, we
obtain a real-valued function defined for all pairs of subsets of the real
numbers (as long as the conditioning event is non-empty). However, Rohit
Parikh and Milton Parnes (1974) remarked that the conditional probability
function so obtained does not necessarily exhibit translation invariance in
the following sense:

∀A, B ⊆ R such that B 6= ∅, ∀x ∈ R, P(A + x, B + x) = P(A, B),

where A+ x is the set obtained by adding x to all elements of A and P is the
standard conditional probability function obtained by applying the ratio
formula to a non-standard absolute probability function as constructed by
Bernstein and Wattenberg (1969) and then taking the standard part.

Parikh and Parnes did not consider non-standard conditional probability
functions. Instead, they merely used NSA as a means of obtaining standard
functions. Using techniques from NSA (in particular, hyperfinite sets),
Parikh and Parnes constructed standard conditional probability functions,
each fulfilling a number of algebraic conditions that correspond with
our intuitions. Apart from a condition that entails the above criterion of
translation invariance, they also obtained: (i) P(B, B) = 1 for all B, (ii) if
B = [0, 1]Q (the unit interval of Q with endpoints included) and 0 ≤ a <

b ≤ 1, then P([a, b], B) = b− a, and (iii) P(A, B) = 0 whenever A is finite
and B is not.74 It requires a bit more effort (choosing a suitable ideal on R,
cf. Section 5) to obtain a function P such that the following stronger version
of (iii) also holds: P(A, B) = 0 whenever A is countable and B is not. After
proving the relevant existence theorems, they showed that the cardinality
of the set of standard conditional probability functions satisfying the
various combinations of properties is 2c, with c the cardinality of the
continuum.

henson’s representation theorem Meanwhile, C. Ward Hen-
son (1972) showed that for every standard, finitely additive probability
measure that assigns zero to finite sets there exists a non-standard repre-
sentation. Once again, the proof relies on a hyperfinite counting measure
on a hyperfinite subset of the hyperextension of the sample space of the

74 Observe that these conditional probability functions violate regularity, but this should not
be surprising since they are real-valued.
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standard function. He also considered the special case in which the stan-
dard measure is countably additive. As is typical in the context of NSA,
Henson showed how to apply his result in order to obtain a shorter proof
of a standard result (in section 2 of his paper).75

loeb measure Seminal contributions to non-standard measure theory
were obtained by Peter A. Loeb (1975). A good overview of this topic (up
to the early 1980s) can be found in Cutland (1983). Loeb measures require
more advanced technical knowledge than any of the other approaches
covered in this chapter. In particular, they require non-standard models
with a saturation beyond countable saturation.76

de finetti’s response As indicated in Section 16.1, de Finetti wrote
on the topic of non-Archimedean probability rankings well before the
development of NSA. Although he lived long enough and was aware of
the development of NSA, he never showed much interest in applying it
to his own work on probability. This can be seen by inspecting his work
from the 1970s.

In the second volume of his 1974 book, de Finetti famously returned to
the discussion of possible events with zero probability—a topic already on
his mind (and in his publications) in the 1930s. In particular, he wondered
whether it is “possible to compare the zero probabilities of possible events”
and whether “a union of events with zero probabilities [can] have a positive
probability” (de Finetti, 1974, Vol. II, p. 117). On p. 118, he remarks that the
latter question can be rephrased in terms of additivity and he distinguishes
three cases: finite additivity, countable additivity, and perfect additivity
“if the additivity always holds.”77 On p. 119, he discusses weak and strong
coherence; of the latter he writes “This means that ‘zero probability’ is
equivalent to ‘impossibility’.” However, he warns us that besides “these
serious authors” who have written on this topic, there are others “who refer
to zero probability as impossibility, either to simplify matters in elementary
treatments, or because of confusion, or because of metaphysical prejudices.”
So, according to de Finetti, if we are careful enough not to interpret zero
probability as impossibility, we do not need infinitesimal probabilities at
this point—in fact, he does not mention them on these pages.

75 See also Hofweber and Schindler (2016) for “a new and completely elementary proof of
this fact.”

76 In the construction of ∗R, we used a free ultrafilter on N (see Part II). This is sufficient to
obtain a model with countable saturation. It is possible to fix a free ultrafilter on an infinite
index set of higher cardinality. In particular, by choosing “good” ultrafilters, it is possible
to arrive at the desired level of saturation in a single step (Keisler, 2010, section 10). See
Hurd and Loeb (1985, pp. 104–108) for more on saturation.

77 Cf. ultra-additivity in the terminology of Skyrms (1983b).
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Elsewhere in his book, however, de Finetti does consider non-zero
infinitesimal probabilities in relation to additivity. De Finetti (1974, p. 347)
writes:

Let us just mention that the consideration of probability as
a non-Archimedean quantity would permit us to say, if we
wished, that ‘zero probabilities’ are in fact ‘infinitely small’
(actual infinitesimals), and only that of the impossible event is
zero. Nothing is really altered by this change in terminology,
but it might sometimes be useful as a way of overcoming
preconceived ideas. It has been said that to assume that 0 + 0 +
0 + . . . + 0 + . . . = 1 is absurd, whereas, if at all, this would be
true if ‘actual infinitesimal’ were substituted in place of zero.
There is nothing to prevent one from expressing things in this
way

This seems to be a welcoming invitation to adopt techniques from NSA
in order to deal with infinitesimal probabilities and associated puzzles
concerning their additivity. However, de Finetti continues his sentence less
enthusiastically: “apart from the fact that it is a useless complication of
language, and leads one to puzzle over ‘les infiniment petits’.”78

Moreover, in 1979 (as transcribed in de Finetti, 2008, Ch. 12, p. 122), a
graduate student asked de Finetti about his thoughts concerning NSA. The
student (referred to as ‘Alpha’ in the transcript) asked: “do you consider
it plausible that this hierarchy of zero probabilities could be replaced by a
hierarchy of actual infinitesimals in the sense of non-standard analysis?”
To which de Finetti responded:

I only attended a few talks on non-standard analysis and I
have to say that I am not sure about its usefulness. On the
face of it, it does not persuade me, but I think I have not
delved enough into this topic in order to be able [to] give [a]
well thought-out judgment. [. . . ] I made those speculations
on infinitely small probabilities to see the extent to which the
idea of a comparison between zero probabilities is plausible.
However, I did not attach much importance to it and I am

78 The French expression ‘les infiniment petits’ was in use since the development and popular-
ization of the calculus; consider, for instance, the title of de l’Hôpital’s 1696 book, Analyse
des Infiniment Petits pour l’Intelligence des Lignes Courbes. The use of infinitesimals in calculus
was discredited in subsequent years (in favour of epsilon-delta constructions developed in
the work of Weierstrass, cf. Section 16.1). Although NSA did much to reinstate them, this
process of rehabilitation of infinitesimals was neither immediate nor uniform (and remains
incomplete, even today). So, it seems that de Finetti held on to the post-Weierstrassian
and pre-Robinsonian viewpoint of infinitesimals as a suspect concept, to be avoided when
possible.
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not sure whether one needs sophisticated theories, such as
non-standard analysis, for that goal.

The 1980s: Skyrms, Lewis, and Nelson

skyrms on infinitesimal chances Skyrms (1980) argued that
propensity (for instance, the bias parameter in a binomial distribution)
does not equal the limiting relative frequency (for instance, of an infinite
Bernoulli process). He did so by appealing to infinitesimal probabilities
(pp. 30–31):

If we extend our language so that we can talk in it about
limiting relative frequencies in an infinite sequence of trials
and make a few assumptions about limiting probabilities, we
can state what appears to be a more powerful version of the
law of large numbers: the probability that, in a given sequence
of independent and identically distributed trials, the limiting
relative frequency will either fail to exist or diverge by some
positive real number from the probability of the outcome is
infinitesimal. Then, if our coin is flipped an infinite number of
times, the probability that the limiting relative frequency fails
to be one-half is infinitesimal.

He then went on to show that this viewpoint is not compatible with the
idea “that infinitesimal propensity implies impossibility.” The stance that
Skyrms is refuting here is sometimes called the “principle of Cournot.”79

[T]he assumptions that get the striking version of the strong
law of large numbers give us infinitesimal probability not only
for the outcome sequence All Heads, but for each other definite
sequence of outcomes as well. But the coin has to do something!
There is nothing more probable than that something improba-
ble will happen, but it is impossible that something impossible
should happen. Small probability, even infinitesimally small
probability, does not mean impossibility. Then even if, for each
process, the propensity for a divergence between propensity
and relative frequency is infinitesimal, it hardly follows that
the propensity for a divergence for some process, somewhere
in the world, is infinitesimal. But this is just what those who

79 The principle of Cournot is named after Augustin Cournot, because of his writings on the
notion of “physical impossibility” (of events corresponding to infinitesimal probabilities
in a geometric context). The roots of the concept go back to that of “moral certainty”
(practical certainty) in the work of Jacob Bernoulli. Similar ideas also arose in the work
of Paul Lévy and émile Borel (which inspired de Finetti’s speculations on hierarchies of
infinitesimals). The name for the principle was introduced by Maurice Fréchet. For more
details, see, e.g., Shafer (2008).
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wish to turn the law of large numbers into a philosophical
analysis of propensity must assume.

Here, Skyrms used infinitesimal probabilities to illustrate the qualitative
difference between possible events and the impossible event. In particular,
in cases of equiprobability it may be certain that a highly unlikely event
will occur. This seems to be diametrically opposed to Cournot’s principle
and similar ideas such as the Lockean thesis (but see also Section 13).

lewis on infinitesimal chances and credences David Lewis
(1980) introduced his “Principal Principle” as a way to connect subjec-
tive credences to objective chances. In this context, he discussed how
infinitesimal chances lead to the introduction of infinitesimal credences
(p. 269):

The Principal Principle may be applied as follows: you are
sure that some spinner is fair, hence that it has infinitesimal
chance of coming to rest at any particular point; therefore (if
your total evidence is admissible) you should believe only to an
infinitesimal degree that it will come to rest at any particular
point.

On pp. 267–268, Lewis (1980) discussed infinitesimal credences in the
context of regularity (cf. Section 16.1) and a “condition of reasonableness”:

I should like to assume that it makes sense to conditionalize on
any but the empty proposition. Therefore I require that [any
reasonable initial credence function] C is regular: C(B) is zero,
and C(A/B) is undefined, only if B is the empty proposition,
true at no worlds. You may protest that there are too many
alternative possible worlds to permit regularity. But that is so
only if we suppose, as I do not, that the values of the func-
tion C are restricted to the standard reals. Many propositions
must have infinitesimal C-values, and C(A | B) often will be
defined as a quotient of infinitesimals, each infinitely close but
not equal to zero. (See Bernstein and Wattenberg [1969].) The
assumption that C is regular will prove convenient, but it is
not justified only as a convenience. Also it is required as a
condition of reasonableness: one who started out with an irreg-
ular credence function (and who then learned from experience
by conditionalizing) would stubbornly refuse to believe some
propositions no matter what the evidence in their favor.

skyrms on regularity and ultra-additivity Skyrms (1983b)
gave an intriguing analysis of the Zenonian intuition of regularity. His
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text focused on length measurement, but the argument carries over to
probability measures; hence, we present it in some detail. Zeno’s paradox
of measure is a scholarly reconstruction of an argument against plurality
emerging from Zeno’s four paradoxes of motion. The conclusion of this
argument is that something of non-zero, finite length cannot be composed
of infinitely many parts. The Zenonian argument starts by assuming
the opposite: if the whole is composed of infinitely many parts, then
either those parts all have no magnitude or they all have a non-zero
magnitude, but then the whole would either have no magnitude or an
infinite magnitude, respectively, both of which are in contradiction with the
whole having a non-zero, finite length. Skyrms argued that this argument
crucially relies on some implicit assumptions: that the parts all have equal
size (invariance), that they are not infinitesimal (Archimedean axiom), and
that we can make sense of an infinite sum of the individual magnitudes
(ultra-additivity). As such, Zeno’s paradox of measure has a very similar
structure to the proof that shows that there is no real-valued, countably
additive probability function that assigns equal probabilities to single
tickets in a lottery on the natural numbers (cf. Section 8.3): it shows that
either assigning zero probability or non-zero probability to individual
tickets both fail to yield a normalizable measure, because either the sum
over all tickets is zero or it diverges. Analogous assumptions are in place
in both arguments: an invariant partition such that the parts have equal
magnitudes versus equiprobability; no infinitesimal magnitudes versus
real-valued probability; and a way to make sense of infinite sums of
magnitudes versus countable additivity.

Skyrms named the additivity assumption in the Zenonian argument the
principle of ultra-additivity, which he specified as follows (p. 227):

the principle that the magnitude of the whole is the sum of the
magnitudes of its parts continues to hold good when we have
a partition of the whole into an infinite number of parts.

This way of phrasing it—as a property known for finite quantities that is
assumed to hold for infinite quantities, too—resembles Leibniz’s souverain
principe (see Katz & Sherry, 2012, section 4.3), which in turn can be for-
malised by the Transfer principle of NSA (as was explained in Section 4). In
this light, it is curious to observe that the term for the Zenonian principle
chosen by Skyrms, ultra-additivity, resonates well within the context of
NSA, which is replete with ultrafilters. (This resonance may be curious,
but it need not be coincidental—given Skyrms’ familiarity with NSA.)

Skyrms also argued that the step in the Zenonian argument that im-
plicitly assumes the principle of ultra-additivity was not contested by the
school of Plato, the school of Aristotle, or the atomists. So, it appears that
the principle of ultra-additivity was—possibly without reflection—widely
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accepted, which suggests that it represents a deeply anchored intuition
about magnitudes: if finite magnitudes are to be infinitely divisible (which
of course the Zenonian argument tries to refute), then it is hard to imagine
for the magnitudes of the parts in the partition not to sum to the magnitude
of the whole. Skyrms wrote (p. 235): “It is ironic that it is just here that the
standard modern theory of measure finds the fallacy.”

In the context of measure theory, and thus of standard probability,
the principle of ultra-additivity is formalised—and thereby restricted to
countable collections—in terms of CA. However, as the failure of the
existence of a countably additive fair probability measure on the natural
numbers demonstrates, it does not do justice to the underlying intuition
of universal summability.

lewis on infinitesimal chances In a postscript to “Causation”
(an article that appeared in 1973) and in a passage that appears between
brackets, Lewis (1986b, pp. 175–176) discussed infinitesimal chances and
presented real-valued probabilities as a rounding off of the true hyperreal
chances (with original italics):80

They say that things with no chance at all of occurring, that
is with probability zero, do nevertheless happen; for instance
when a fair spinner stops at one angle instead of another, yet
any precise angle has probability zero. I think these people
are making a rounding error: they fail to distinguish zero
chance from infinitesimal chance. Zero chance is no chance,
and nothing with zero chance ever happens. The spinner’s
chance of stopping exactly where it did was not zero; it was
infinitesimal, and infinitesimal chance is still some chance.

Although they are not mentioned here, Lewis’ wording is very reminiscent
of Bernstein and Wattenberg (1969), who wrote “there is still some chance
of hitting the point.” Also observe that according to the definition that we
gave in the introduction, zero is an infinitesimal. Hence, what Lewis is
arguing for must be called “non-zero infinitesimals” in our terminology.

nelson’s radically elementary probability theory Previ-
ously, Edward Nelson (1977) had provided the first axiomatic approach to
NSA, which he called “Internal Set Theory” (IST),81 but he also provided
an important alternative approach to infinitesimal probabilities. Nelson

80 Hájek (2012a) cites this passage and calls Lewis work on this topic “[t]he most important
philosophical defence of regularity” of which he is aware (p. 414).

81 According to Luxemburg (2007, p. xi):

[F]rom the beginning Robinson was very interested in the formulation of an
axiom system catching his non-standard methodology. Unfortunately he did
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(1987) developed a “Radically elementary probability theory,” which relies
on internal probability functions: these functions can be obtained by ap-
plying the Transfer principle (recall Section 4) to sequences of standard
Kolmogorovian probability functions on finite domains. Internal probabil-
ity functions do not assign probability values to any infinite standard sets,
but only to hyperfinite sets. The resulting additivity property is hyperfi-
nite additivity. Nelson’s probability functions are regular and they admit
infinitesimal values. Unlike much previous work on non-standard prob-
ability functions, this approach does not aim at providing a real-valued
probability measure (by the standard part function, cf. Section 4). Precisely
by leaving out this step, this framework has the benefit of making proba-
bility theory on infinite sample spaces equally simple and straightforward
as the corresponding theory on finite sample spaces.
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