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Abstract
This paper proposes that existing computational modeling research programs may be combined into platforms for the infor-
mation of public policy. The main idea is that computational models at select levels of organization may be integrated in 
natural terms describing biological cognition, thereby normalizing a platform for predictive simulations able to account for 
both human and environmental costs associated with different action plans and institutional arrangements over short and 
long time spans while minimizing computational requirements. Building from established research programs, the proposal 
aims to take advantage of current momentum in the direction of the integration of the cognitive with social and natural sci-
ences, reduce start-up costs and increase speed of development. These are all important upshots given rising unease over 
the potential for AI and related technologies to shape the world going forward.

Keywords  Cognitive social science · Computational model · Social simulation · Free energy principle · Directed evolution · 
AI arms race

1  Introduction

The potential for AI and related technologies to shape the 
future is increasingly an object of public and political con-
cern. For instance, while addressing an audience of over 1 
million on Knowledge Day, September 1, 2017, the Presi-
dent of the Russian Federation Vladimir Putin had this to say 
about AI and the future of humanity:

Artificial intelligence is the future, not only for Rus-
sia, but for all humankind. It comes with colossal 
opportunities, but also threats that are difficult to pre-
dict. Whoever becomes the leader in this sphere will 
become the ruler of the world (as translated by Russia 
Today in RT 2017).

Whoever leads AI will rule the world. In the current 
political context, the tendency for many readers in English 
may be to interpret such a statement as a threat, or at least as 
a horsewhip in an arms race pitting state actor against state 

actor in a zero-sum effort to optimize artificial intelligence 
in the industries of war (cf. Armstrong et al. 2016).

However, there are other ways to see the future and the 
role of AI and robotics in shaping it (cf. White 2016). The 
purpose of this paper is to show that we need not anticipate 
an arms race eventuating in conflict, and rather that there is 
significant work ongoing in AI that points in the opposite 
direction. By recruiting and repurposing existing resources 
and established research programs, mutually beneficial ends 
may be identified, peaceful paths forward may be made 
explicit, and with these, rising anxieties due to currently 
resurgent geo-political polarization that might otherwise 
motivate a decision to initiate machine mediated conflict in 
resolution thereof may be quelled. Far from inviting mutual 
destruction, AI and related technologies may predicate open 
cooperation through thoroughly informed and mutually ben-
eficial public policy, instead.

The next section introduces Sun et al.’s innovative inte-
gration of the social with the cognitive sciences, beginning 
with his proposal that cognitive social models may be essen-
tial for understanding cognition, generally, and then turning 
to his suggestion that the study of such models should be 
part of the curriculum of policy studies given their unique 
potential to make explicit to policy makers the indirect con-
sequences of policy changes. Section 3 briefly introduces the 
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terms for translation between the cognitive, social and natu-
ral sciences required for the integration of models in a way 
that is informative to policy makers about policy impacts 
on individuals, communities and supporting ecologies, in 
the form of Friston et al.’s broad research program into the 
organizing principles of biological cognition. Section 4 
briefly reviews three research programs in cognitive mod-
eling, each at a selected level of organization complimenting 
the others in ways that, with results from one level inform-
ing the next, may provide for the testing of policy changes 
over short and long time spans. Section 5 briefly sketches 
how these three programs may be integrated in informing 
transitions through critical periods, and the paper ends by 
indicating research required for such predictive simulations 
to inform public policy.

2 � The call to integration

In redress of prior schema offered by Newell and Simon 
(1976) and Marr (1982), Sun et al. (2005) proposed that 
integration across different levels of cognitive model may 
be necessary for an adequate understanding of cognition 
and attendant phenomena. Whereas predecessors focused on 
activity at different levels within individual cognitive agents, 
Sun et al. (2005) argued that any adequate account of intel-
ligence must consider factors in terms of which intelligence 
emerges and in terms of which intelligent agents act, set out 
across four different levels of organization spanning (top to 
bottom): that accessible to sociological and anthropologi-
cal inquiry including relationships between individuals and 
their environments, individual behavior as accessible to psy-
chological inquiry, specialized modules and their assembly 
into functional whole brains accessible to cognitive science 
(as traditionally understood), and self-organizing physi-
ochemical systems, i.e., living systems as accessible to fun-
damental biochemical inquiry (Sun et al. 2005, discussion 
pp. 619–621).

One reason given for Sun et al. (2005) development of 
this expanded schema is that, regardless of field, it is imprac-
tical for a single science to yield complete information at 
every level of organization at once. Rather, scientists work-
ing at one level of organization routinely rely on those at 
others to account for phenomena in terms outside of focal 
areas; and, in their discourse, understanding at one level 
is refined as it is checked against results from other lev-
els, thereby improving the accuracy and predictive power 
of all. Sun et al. (2005) contend that we should expect the 
same dynamics to play out in the cognitive sciences, with 
models ultimately enriched to represent dynamics at increas-
ingly higher and lower levels of organization in increasingly 
realistic terms. To increase the psychological realism of 
social simulations for example, Sun (2012) explicitly calls 

for the grounding of the social in the cognitive sciences. 
Most recently, Sun (2018b) calls for the “blending” (p. 245) 
of cognitive with social models as well, in order that their 
“integration” results in “tools for more precisely understand-
ing policy implications at both individual and social levels” 
(p. 240) at the same time.

Specifically on the issue of the purposeful development 
of integrative models for the information of public policy, 
Sun (2018b) argues that computational models may ben-
efit policy makers who instead of “relying on speculations” 
need a more “reliable means for understanding” policy 
implications (p. 240). Psychologically realistic models of 
social systems “may be used to predict human performance 
in organizational settings and to prescribe optimal or near-
optimal cognitive abilities for individuals for specific tasks 
and organizational structures” (p. 243). Their development 
“for improved policy making” may take advantage of the 
“prior validation” of established work from which they are 
assembled, as demonstrated successes of component mod-
els “may be leveraged in validating the overall simulation 
results” (p. 244). Importantly, this transfer of validity should 
also extend to policy decisions made on the basis of given 
results, with the first step being the development of simula-
tions tailored from established and ongoing research to this 
end.

In short, the selective integration of computational mod-
els may afford a privileged window on policy implications, 
and leveraging established programs do so in a reliable and 
timely manner. The practical issue for the cognitive social 
scientist becomes, then, understanding how programs at dif-
ferent levels of inquiry might fit together and in what terms 
their integration may take place so as to best inform this 
process. This is the subject of the next section.

3 � Possible terms of integration

To weigh options, we need to account for both human as 
well as ecological costs due to a given policy or change and 
compare how they differ over time. To “blend” cognitive 
with social models to provide a means for this comparison, 
so that we may more precisely understand the implications 
of certain practices at individual, social and environmental 
levels all at once, terms of integration must be identified that 
facilitate their account in common.

One possibility exists in Karl Friston et al.’s recent work 
in Markov blankets (cf. Friston 2013; Cockshott and Renaud 
2016; Ramstead et al. 2018) providing a framework for the 
translation between levels of description of human cogni-
tion in terms of Friston’s “free energy principle” (FEP) (cf. 
Friston 2010, 2012). What is especially promising about this 
approach is that it accounts for cognition in terms of and as 
constrained by natural energetics beginning with Friston’s 
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FEP, which for our purposes provides a conceptual bridge 
between changes in human costs due to policies supporting 
given institutional arrangements over relatively short time 
spans (typically intended to reduce costs to some human 
beings at the expense of their environments, including very 
often other human beings) and demands on supporting natu-
ral environments due those same policies and institutional 
arrangements over longer time spans.

Friston’s free energy principle (FEP) formalizes cogni-
tion in terms of the maximization of expected utility, reward 
or value, through the minimization of prediction error, sur-
prise, or cost, by way of “active inference” which involves 
maximizing evidence for internal models of the world as 
informed through ongoing sensory input. Generally, Fris-
ton et al. understand that neural structures within an organ-
ism work to minimize differences between anticipated ends 
and perceived results, with future intentions to act modi-
fied accordingly, and with the aim of this process being to 
secure the organism’s present and future integrity against 
disintegrative change. The FEP expresses the key relation-
ship between the cognitive agent’s perceived and anticipated 
possible ends in terms of uncertainty, with the agent essen-
tially motivated to avoid surprise. When anticipated ends 
match perceived results, the surprise is zero. When they do 
not, surprise demands attention and resources are expended. 
This is important given a scarcity of resources, and moti-
vates agent psychology generally. Complicated internal 
models, political philosophies and economic systems are 
all expressions of cognitive systems operating according to 
this organizational principle, developing according to the 
implicit aim of minimizing uncertainty through the proactive 
organization of self, other and environment at the expense 
of energies collected and distributed through increasingly 
complex social arrangements.

Due to the explanatory scope of this program, it presents 
itself as providing possible terms for the integration of cog-
nitive models required should policy informing simulations 
of the sort proposed by White (2016) and by Sun (2018b) be 
realized. Noteworthy in the present context is that Friston’s 
FEP has already been employed in inquiries into cognition 
at different levels of organization.

•	 Ramstead et al. (2018) use the FEP to characterize cogni-
tion in terms of a general theory of dynamic systems con-
sistent with evolutionary systems theory (EST). On this 
account, cognition is an aspect of living systems which 
maintain themselves in a limited number of stable states 
far from thermodynamic equilibrium with their environ-
ments by organizing themselves and their environments 
in such a way as to minimize disorder and surprise at the 
failure to deliver anticipated results, in effect securing 
preferred modes of “coupling” with their environments. 
“Consistent with EST, this propensity to minimize sur-

prise is the result of natural selection …self-organizing 
systems that are able to avoid entropic, internal phase-
transitions have been selected over those that could not” 
(Ramstead et al. 2018, p. 3).

•	 At the level of social organization in the context of 
economics, the free energy principle has proven more 
successful in understanding choice behavior as the 
minimization of surprise coupled with utility maximiza-
tion than have other approaches which try to model the 
same phenomena in terms of utility maximization alone 
(Schwartenbeck et al. 2015).

•	 At the level of situated cognition, the FEP has recently 
been deployed in understanding how stress contributes to 
disease in organisms. Peters et al. (2017) interpret stress 
according to the free energy principle as “uncertainty” or 
“surprise” that frustrates the fundamental motivation to 
minimize entropy. In response, the brain taxes the body 
system by demanding more energy to rectify the condi-
tion and thereby diverting attention away from immediate 
tasks, with this “allostatic load” resulting in impaired 
memory, increased markers for cardiovascular disease, 
and diabetes.

•	 And in neuropsychology for example, Friston’s FEP has 
been employed in the study of mirror neuron activity 
in the motor cortex in order to understand how brains 
switch between perception and action (cf. Shipp et al. 
2013), as well as in accounting for reward learning as 
driven by dopamine excitation or depletion (Fitzgerald 
et al. 2015; see also Friston et al. 2016).

The next section introduces three different research pro-
grams that fall roughly into the evolutionary, social and neu-
rodynamic levels of organization, before briefly sketching 
how they may all work together to advise public policy in 
Sect. 5.

4 � Levels of model

This section reviews three active research programs in cog-
nitive modeling, each at a different level of organization. The 
first is Peirera et al.’s evolutionary psychological approach 
employing logic programming to investigate the effects of 
different expressions of moral agency (apology, forgiveness, 
preconditions to cooperation, and so on) on group perfor-
mance over evolutionary time. The second is Sun et al.’s 
cognitive social science approach focusing on psychologi-
cally realistic computational models of social intelligence. 
The third is Tani et al.’s neurodynamic approach grounded 
on predictive coding and directly demonstrative of Fris-
ton’s FEP in learning neurorobots. The fifth section then 
sketches in general terms how these three may be integrated 
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to assess human and natural resource costs of competing 
policy proposals.

4.1 � Pereira’s evolutionary game theory

L. M. Pereira et al. use logic programming and evolution-
ary game theory to model the capacity for individual agents 
to make moral decisions through abduction, either in reac-
tion to contextual cues or through purposeful deliberation 
over points of interest, and from this basis have worked on 
understanding the roles of intention recognition, commit-
ment, apology, forgiveness, revenge, ostracism, and guilt in 
cooperative collectives of similarly endowed individuals. 
The aim of this research is to better understand the emer-
gence of cooperation as supported by cognitive mechanisms 
which thereby stabilize social orders over evolutionary time 
scales, so that this understanding may both inform human 
practice today, and so that such capacities may be interred 
in future robotic agents free to act within future human com-
munities tomorrow. Thus, one strong theme running through 
Pereira et al.’s work has been the need to bridge individual 
with collective “realms” toward the goal of understanding 
just how individual agents act from the basis of one in the 
furtherance of the other (cf. Pereira and Saptawijaya 2015, 
2016; Saptawijaya and Pereira 2018; also Han and Pereira 
2018).

Pereira et al. account for native agent motivation to best 
available ends in terms of abduction. Historically, abduc-
tion has been variably given, depending on researcher and 
context. For Peirce—the inventor of the concept—abduc-
tion was variably characterized as well, depending on at 
which stage of his life one were to have asked him about it. 
According to a mature view, abduction is a natural tendency 
to discovery of truth, a “guessing instinct” through which 
(typically more successful than not) hypotheses are created 
and provisionally adopted as they are then tested through 
induction and clarified through deduction before contribut-
ing to further creative abduction (cf. Paavola 2006, discus-
sion Chap. 4; also Aliseda 2006; Gabbay and Woods 2005; 
and Magnani 2017; see also Simon 1977, for an early view 
on abduction encoded as a computer program). In Pereira 
et al.’s models, abduction is a matter of determining a set 
of actions that satisfy goal conditions while maintaining 
personal integrity. These are iterated as “abducibles” and 
are evaluated by agents using doctrines of double and triple 
effect, utility functions, and counterfactuals for example (cf. 
Han and Pereira 2013; Han et al. 2015; Pereira and Saptawi-
jaya 2017). The ethical norms of a group evolve as agents 
organize around increasingly ideal solutions afforded by 
increased agent-level capacities to cooperate, pursuing strat-
egies for higher group-level payoffs of which agents share.

On Pereira et al.’s model, an agent’s prior deliberate deci-
sions to act in given situations are retained, and these can 

be employed reactively in similar future situations without 
the need to compute them again (cf. Saptawijaya and Pereira 
2013; also Saptawijaya and Pereira 2018). Moreover, this 
“tabling” technique opens prior decisions to comparison 
between agents and allows for different agents to inform each 
other about differently determined optimal actions in differ-
ent ways (cf. Pereira et al. 2013). Agents are also able to rec-
ognize intentions, to assess relative commitments to goals, to 
cooperate with each other where projected payoffs are better, 
and learn to coordinate actions only with those also prone 
to cooperation. With other prosocial capacities, such as the 
abilities to issue and to accept apologies, along with capaci-
ties to adjust internal commitments to future cooperation, 
agents otherwise marginalized by past mistakes or bad infor-
mation are able to again contribute to cooperative endeavors. 
As a result, these agents learn to share in the mutual benefits 
of goals unassailable to the isolated individual and realizable 
only through more complex social interaction, confirming 
the precedence of prosocial capacities in the evolution of 
ethics (cf. Han et al. 2011, 2012, 2013; Han 2013).

Pereira et al.’s research pursues a bottom-up explana-
tion for the emergence of morality over evolutionary time. 
Their work confirms that agents with native capacities to 
better cooperate outperform those without, both in pairwise 
situations and in common good settings (Han et al. 2017; 
Martinez-Vaquero et al. 2015, 2017). It leads Pereira et al. 
to conclude that evolved cognitive capacities facilitating 
cooperation induce the emergence of what we recognize as 
morality in human populations (as opposed to stable cul-
tural practices as systems of ethics understood as rules and 
institutions coming first, inducing cooperation instead, cf. 
Pereira and Saptawijaya 2015; Han and Pereira 2018). This 
result has important implications for moral education in 
youth for example, illustrating at once how research at this 
high level of organization can inform research at lower levels 
of organization in constructive ways. Moreover, it confirms 
that lower-level dynamics are critical to understanding social 
norms and commensurate public policies.

4.2 � Sun’s cognitive social sciences

The upshot of cognitive modeling or computational mod-
els “in the broad sense of the term” according to Sun et al. 
(2005) is that these models serve as operational frame-
works—“broad, generic theories of cognition” (Sun et al. 
2005, p. 616)—for the structured interpretation of “a vast 
amount of data” generated by the cognitive and social sci-
ences (Sun et al. 2005, p. 615). Where Pereira et al. focus 
on the consequences of routine action over generations of 
psychologically simple moral agents, Sun et al. focus on an 
equally vast area, the psychological processes that render 
such actions, rules expressing them and further their revi-
sion through the interplay of different specialized modules 
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of information processing constitutive of more psychologi-
cally realistic learning agents. Bridging the second and third 
of four levels of cognitive model as iterated at the beginning 
of the second section of this paper, much of Sun’s research 
focuses on multi-agent systems, social interaction, and 
prosocial motivation including aspects overlapping Pereira 
et al.’s work at higher levels of organization such as social 
stabilizing capacities involving intention recognition. With 
a resolution on cognitive mechanisms beneath the lower 
bounds of their evolutionary framework, however, Sun’s 
trademark Clarion computational architecture also resolves 
cognition at levels of organization overlapping in part with 
Tani et al.’s focus on fundamental neurodynamics, for exam-
ple attending to social autonomy and emotion among other 
psychological constructs (cf. Sun 2002, 2009, 2013, 2016, 
2017, 2018a, b; Sun and Naveh 2004; Sun et al. 2016).

Consider, for example, the relationship between Sun’s 
research program and Pereira’s in greater detail. Clarion 
is motivated by 11 primary drives, of which many corre-
spond to native capacities to cooperate on Pereria et al.’s 
model. For example, “similance”—the drive for one to iden-
tify with, and to emulate others—along with other primary 
drives including those to affiliate with others and to belong 
to groups, to avoid harmful situations, to resist control 
and to ensure that one’s self and others are treated fairly, 
all work together to demonstrate a more detailed model of 
moral agent psychology unnecessary at Pereira et al.’s scale 
of evolutionary game theory (see Sun 2017, Table 1, p. 6, 
for a most recent summary of drives in Clarion). Clarion’s 
psychological realism sets it apart from Pereira et  al.’s 
model agents in other ways as well. For example, Clarion 
has been assessed for consciousness alongside competing 
architectures, and found to represent aspects of conscious-
ness including qualia (Gok and Sayan 2012). However, like 
Pereira et al.’s model agents, Clarion does not aim to repli-
cate human biological cognition or to capture the principles 
of its self-organization, and rather works at the level above 
physiological processes on Sun et al.’s four-tier scheme, at 
the level of psychological processes instead.

At the center of Sun’s study of psychological processes 
is a “causal nexus” of activity between the implicit and 
explicit modes of information processing characteristic of 
hybrid systems of which Clarion is an example. Hybrid 
systems represent higher and lower cognitive functions in 
different ways, and these can interact with each other in up- 
and downstream processes. Clarion consists of a number 
of hybrid subsystems (cf. Sun 2002) whose bottom levels 
mediate routine action and encode regularities from which 
top-level rules are extracted and which are then applied top-
down in the direction of future action (Sun et al. 2001; Sun 
2016). As the model agent learns (bottom-up) to autono-
mously specify and modulate goals (which can also be 
learned top-down), relatively stable constructs within the 

cognitive architecture amount to what we recognize as “per-
sonality” in human beings (cf. Sun and Wilson 2014). Stable 
personalities make for predictable intentions, which Sun and 
Pereira capture in ways that complement one another. Sun 
et al.’s view complements that established by Pereira et al. 
by extending insight into those cognitive capacities which 
contribute to conventions and institutions grounding last-
ing social–political systems (and so mechanisms of artifi-
cial selection influencing human evolution at the same time) 
as these, at a finer grain of analysis, are strengthened into 
agent-specific personalities in a context-dependent manner. 
Moreover, occupying this middle space between biological 
constitution and cultural realization, Sun’s program affords 
an inroad into larger systems for the influence of cognitive 
processes resolved by models at lower levels of organization 
designed to capture the dynamics of such personality forma-
tion internal to the individual agent, itself.

4.3 � Tani’s fundamental neurodynamics

Predictive coding along with active inference and the FEP 
constitute an important approach to understanding how 
cognition works at different levels of organization, serving 
as a broad framework according to which vast amounts of 
data from cognitive and social sciences can be interpreted. 
At the level of neurodynamics, its efficacy is confirmed by 
how well Tani et al.’s computational models demonstrat-
ing these principles articulate biological cognition in neu-
rorobots. This section reviews Tani et al.’s program, and 
the next section sketches how the principles underwriting 
this research may be extended to cognitive models at higher 
levels of organization in their integration toward platforms 
designed to inform public policy.

Recalling the brush with dynamic systems theory and 
predictive coding in Sect. 3, on Tani et al.’s program a learn-
ing agent develops an “internal model” of the world as a set 
of self-organized dynamic attractors (Tani 1996; Tani and 
Nolfi 1999) toward which future actions aim. These aims are 
then challenged in the conflictive interaction between top-
down and bottom-up processing streams (note the parallel 
with Sun’s “causal nexus”) as the perceived world deviates 
from model projections, resulting in an unstable “critical” 
state followed by the effortful return to stable coherency 
with the perceived reality as this internal model is recom-
posed (cf. Tani 2007). This process is repeated over time in 
various environments as the agent learns to achieve different 
goals, and the result is an artificial embodiment of the prin-
ciples that account for similar processes in biological cog-
nition (White and Tani 2016, 2017; Tani and White 2017).

For example, employing a relatively simple architecture 
using RNNs tuned to different timescales, with the lower 
level at a shorter timescale sensitive to rapid changes in 
the environment, and the higher level at a slower timescale 
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able to extract longer-standing patterns from the same input 
(reflecting its predictive coding framework), Nishimoto 
and Tani (2009) demonstrated the development of a sta-
ble functional hierarchy whereby primitive behaviors that 
develop early on in the lower levels are composed into more 
complicated action routines in the higher level as the agent 
learns to achieve increasingly challenging goals during later 
stages, corresponding to Piaget’s constructivist developmen-
tal psychology (cf. Piaget 1954). Namikawa et al. (2011) 
further relate these results to the developmental process of 
the dynamical hierarchy involving the prefrontal cortex, sup-
plementary motor area and primary motor cortex in human 
beings during spontaneous composition of complex actions 
from primitives, as in both computational and biological sys-
tems the prefrontal areas develop similarly and—depending 
on the conditions of this development—deliver similar pat-
terns of behavior.

Noteworthy is that Tani’s models are not “hybrid” like 
Sun’s, as higher and lower levels share the same metric 
space, i.e., they do not represent information in different 
ways, but rather find different patterns in different aspects 
of ongoing information processing in the same ways. In this 
way, Tani et al.’s approach to cognitive modeling is able 
to complement investigations undertaken on Sun et al.’s 
psychological approach in terms of biologically plausi-
ble—rather than psychologically plausible—dynamics. For 
instance, complementing Sun’s (2013) account of creativ-
ity due to subsymbolic dynamics in hybrid models, Tani 
et al. have also investigated how actions are learned and why 
novel actions are composed. In a social situation, Ito and 
Tani (2004) employed a mirror neuron model to investigate 
how a complex action routine can be encoded as a single 
“chunk” when agent/environment dynamics are predictable, 
and how the resulting single seamless operation can then be 
resegmented into constitutive primitives through backpropa-
gated prediction error when input proves unpredictable, with 
these pieces then autonomously recomposed into new pat-
terns as the system attempts to restore up- and downstream 
coherency with perceived reality through novel action in 
response. With a robot motivated by this model to coordinate 
with a human subject, and with the human simultaneously 
attempting the same, Tani et al. learned that even small per-
turbations in the robot’s actions could cause confusion in 
human subjects while the subjects were becoming accus-
tomed to the robot’s repertoire of learned action sequences 
(and vice versa). As a result, turn taking (with either robot or 
human subject leading action sequences) became prevalent 
during this mutual learning period, a fact that Tani and Ito 
interpreted as mutually initiated in response to the break-
down of higher-level intentional constructs (or “criticality”) 
in both human and robot partners.

Murata et al. (2014) further investigated the proactive 
coordination of one’s own actions with another’s predictable 

action sequences as opposed to the reactive dynamics which 
come into play as a predicted action sequence is in error, with 
interacting agents each aiming to restore coherency between 
up- and downstream processes, echoing again Sun’s focus on 
this nexus of activity. Murata et al. (2017) extends these results 
by developing a robot that integrates external with internal 
sources of information in the continuous performance of 
sensory-dependent and sensory-independent tasks, thereby 
operating both online (open to influence from the outside) 
and off-line (operating according to internal determinations) as 
task processing demands. Together, we can begin to see how 
cooperative interaction is motivated by shared neurodynam-
ics, on this portrait as agents variably integrate self and other 
information online during coordinated interaction, pursuing 
best prediction from the top-down given bottom-up cues also 
recalling Pereira et al.’s intention recognition and abducible 
ends at a much finer grain of analysis.

In summary, Tani et al.’s research affords insight into 
aspects of the human condition that cannot be realistically 
represented at higher levels of organization, for example 
into the dynamic origins of agent autonomy. Tani et al.’s 
model agents learn action primitives during entrainment 
with their object environments. These learned primitives 
are then recomposed in response to changing conditions to 
align information processing streams and maintain a stable 
internal world model (Tani 2016, see Chap. 8, Sect. 4). The 
point here is twofold. For one thing, the primitives employed 
in novel action composition are not freely chosen, but are 
limited to those already learned. For another, impetus to 
recompose complex action routines emerges also not as a 
matter of choice, but rather in response to changes as the 
project model deviates from perceived reality. On Tani’s 
account of these dynamics, an agent may feel as if he or 
she, or it, is radically free to compose novel intentions ex 
nihilo, as if free to do anything, but this is only due to the 
lack of access to the processes underlying the composition of 
actions (see Tani 2016, Chap. 10 for extensive discussion). 
Given this access, computational models of higher levels 
of organization may demonstrate how free action may be 
directed by public policy designed to optimize social condi-
tions for maximal human creativity, cognizant of stressors 
which, when nearing certain thresholds, may increase rather 
than decrease adaptability to changing environmental condi-
tions, perhaps by expanding the bounds of social cohesion 
by encouraging the development of capacities for coordina-
tion, for example.

5 � Discussion

Briefly consider how a coordinated development of the 
three programs reviewed above into a single platform for 
the information of public policy might play out. Through the 
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extension of fundamental insights from the free energy prin-
ciple and predictive coding into Sun et al.’s models of social 
cognition, simulations should prescribe that agents entertain 
relationships only with those others intent on actions con-
tributing to the minimization of uncertainty. As we extend 
the results of these models into Pereira et al.’s research, we 
should find stable arrangements potentiated, arrived at and 
maintained through the institutions of apology and forgive-
ness, as well as through promise keeping and transparency 
of intention. In holding social systems together, we may 
identify such routine cognitive agency as virtuous, and their 
contraries vicious. Through simulation of critical periods at 
this level, systematic reconciliation of the vicious with the 
virtuous might be recommended, and global agreement pro-
tocols permitting a systematic transition toward more stable, 
more cooperative, less exploitive arrangements may result 
without the violence that had punctuated historical transi-
tions through similarly critical periods.

These guidelines may then be passed down through Sun 
et al.’s level of social agency at the level of rules, for example 
that agents should act to stabilize expectations within param-
eters conducive to cooperation and should not engage in 
deceit, withholding or manipulating information for selfish 
gain. Simulations at this level should deliver advice on how 
individuals might best reconcile prior understandings with 
that understanding necessary to motivate personal changes, 
facilitating social transitions to institutional arrangements 
through which goal conditions are realized. Selected cases 
may then be passed down to the level of internal dynamics as 
revealed through Tani et al.’s research, and here we may gain 
some insight into the context-dependent stress that an agent 
may experience during a given transition along with possible 
strategies for creatively turning this stress forward into con-
structive social contributions. With this information, people 
may be able to take steps to not only minimize the stress of 
change, but also to maximize the potential to develop healthy 
responses to it, responses that minimize uncertainty going 
forward and that at the same time maximize their own free 
agency, to determine for themselves how they may contrib-
ute to pro-social transitions in the interests of justice and 
the good life in general. These possible solutions may then 
be passed upward to Sun’s and then to Pereira’s levels of 
analysis, therein tested to see how they contribute to the 
overall stability of the systems that they aim to affect, and 
then to see if they should inform general principles over 
the generations that may be necessary to see these affects 
optimally realized.

From here, simulations may continue, be refined, or 
restarted using different parameters for evaluation of pos-
sible ends given different starting points, for example those 
representing possible crisis, and a science of suites of simu-
lations such as the one sketched above may establish itself. 
With AI technology developed in this way, people may 

eventually be able to choose the world in terms of which 
they would like to live, and use these simulations to help 
to plot how to get there, openly, responsibly, at the level of 
the individual agent in real time and in constant view of the 
implications of one’s actions for broader society, as well as 
for civilization as a whole.

Again, one upshot of this approach is that it takes advan-
tage of increasing momentum in the integration of the cog-
nitive with the social sciences. By beginning with ongoing 
research programs, the present proposal avoids some costs 
of development, at the same time leveraging validation of 
established models to facilitate acceptance of the use of 
such tools in the information of public policy going forward. 
Some further upshots of the current approach to integrate 
across select levels of organization are that computational 
costs may be lowered relative to more complex simulations 
intended for other purposes, and that platforms may be more 
rapidly developed beginning with existing research programs 
than by developing such predictive simulations ab initio. All 
together, these advantages go a long way to putting inform-
ative simulations within reach, such that, reinforcing Sun 
(2018b) on this point, psychologically realistic computa-
tional modeling should become a core component of future 
public policy education.

All of this aside, the most important upshot of the present 
proposal is that, at every level of analysis, there should be 
an accounting of energetic requirements and return into the 
ecology. This accounting should translate stress as under-
stood on Tani’s framework into social dynamics as repre-
sented in Sun’s and Pereira’s models, and we may compare 
the efficiencies of social arrangements operating under dif-
ferent types and rates of stress. In short, as stressors mount, 
performance becomes erratic. Some stressors even result in 
pathologies (as in Yamashita and Tani 2012, for example). 
Systems may run less efficiently or break down altogether. 
Policies must be adjusted, yet change must be accommo-
dated. There are costs every step of the way. Modeling at 
select levels may inform policy makers on how to proac-
tively mitigate these costs over near and long terms in such 
a way that implications may be made explicit, affording an 
opportunity for anticipatory response. For instance, impacts 
on the environment of a given policy initiative may be char-
acterized at near and long terms, with more rapidly realized 
benefits evaluated against stress on affected populations, 
such that actions may be adjusted in coordination with other 
aspects of the larger system in terms of which the given pol-
icy is embedded. Simulations may confirm for instance that 
as industry slows, pollution declines, yet that standards of 
living eventually rise as, through a balance of high technol-
ogy and traditional methods, people become wiser, health-
ier, live longer with greater leisure and with more time to 
reflect on the beauties of flourishing natural systems such as 
their own, and, without the chemical pollution and radiation 
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threatening the natural world as is the case today, they flour-
ish as well. However, moves must be made in the interim to 
pave the way to such a possible future. Simulations such as 
those subject of the present proposal may afford a survey of 
the landscape ahead, such that transitions through difficult 
passages may be most assured in getting there.

6 � Conclusion

With the present proposal in mind, we may read Putin’s 
introductory prediction another way. Instead of increased 
capacities for violence and coercion, the mastery of AI and 
robotics may present us with opportunities to stabilize rather 
than to destabilize relations between seemingly disparate 
interests. This interpretation makes sense. For one thing, it 
accords with what cognitive science tells us about the nature 
of cognition. As seen in the brief review of Friston et al.’s 
research, and as confirmed in Tani et al.’s neurorobots, the 
human brain should not optimize to the existential uncer-
tainty that results from a “race to the precipice” with wheels 
greased by headline garnering intelligent machine-mediated 
warfare (cf. Armstrong et al. 2016). Such a condition repre-
sents a diseased state, stressed to the breaking point. Rather, 
healthy cognition involves the minimization of this uncer-
tainty. In this, we may find an indication as to what should 
be done.

The emphasis of the preceding paper has not been on an 
AI arms race as competition, but rather on AI as affording 
avenues for peaceful cooperation toward ideal ends over the 
generations of human life and action that may be required 
to get us there. AI, to borrow from Ramstead et al. (2018), 
may help us to coordinate large-scale and long-term “phase-
transitions” from unsustainable to sustainable, from unjust 
to just institutional arrangements proactively, openly, and 
in a non-coercive manner. Through the mastery of artificial 
intelligence thus, reason may yet rule the world after all.
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