
Aggregation in an infinite, relativistic universe∗

Hayden Wilkinson

Penultimate version. Please cite published version (forthcoming in Erkenntnis).

Abstract

Aggregative moral theories face a series of devastating problems when we apply them in a

physically realistic setting. According to current physics, our universe is likely infinitely large,

and will contain infinitely many morally valuable events. But standard aggregative theories

are ill-equipped to compare outcomes containing infinite total value. So, applied in a realistic

setting, they cannot compare any outcomes a real-world agent must ever choose between.

This problem has been discussed extensively, and non-standard aggregative theories proposed

to overcome it. This paper addresses a further problem of similar severity. Physics tells us

that, in our universe, how remotely in time an event occurs is relative. But our most promising

aggregative theories, designed to compare outcomes containing infinitely many valuable events,

are sensitive to how remote in time those events are. As I show, the evaluations of those theories

are then relative too. But this is absurd; evaluations of outcomes must be absolute! So we must

reject such theories. Is this objection fatal for all aggregative theories, at least in a relativistic

universe like ours? I demonstrate here that, by further modifying these theories to fit with the

physics, we can overcome it.
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1 Introduction

Determining the correct moral theory is not just a normative matter but also, in part, an empirical

one. Suppose that we have a candidate moral theory that delivers plausible verdicts in some

highly idealised cases. But once you apply that theory under realistic empirical assumptions, quite

inconveniently, it delivers absurd verdicts in almost every decision that moral agents ever face. No

matter your metaethics, you must agree that the theory should be rejected. In this manner, the

moral theories we accept or reject can depend on empirical facts about the world.

In just this manner, empirical lessons from physics appear to undermine a swathe of leading

moral theories: any and all theories that are aggregative with respect to value. These include

not only classical utilitarianism but, rather, all theories that rank outcomes according to total

aggregate of all of the value in each (no matter where in space or time that value arises).1 Such

theories appear to deliver absurd verdicts, in almost every practical case we might consider, if the

universe is infinitely populous.

Current physics predicts that our universe will span an infinite volume over space and time,

and that within this volume will occur infinitely many tokens of every physically possible discrete

event.2 Some of those events are morally valuable, e.g.: a human brain processing a sensation of

pleasure, perhaps. Our universe will contain infinitely many such pleased brains, and so infinitely

many instances of value (of value at least some ϵ > 0, on any given cardinal scale).3 Similarly, our

universe will contain infinitely many displeased brains, and so infinitely many instances of disvalue

(of value below −ϵ < 0). If we sum up the total value across any possible outcome—in effect,

summing a positively infinite value with a negatively infinite one—then the total sum is undefined.

And one undefined sum is no greater than another. With total aggregates like these for every

outcome ever available to us, it seems that aggregative moral theories cannot say that any outcome

is better than any other—they are incomparable. In many cases, this is deeply implausible. Thus
1These include all theories that endorse a total utilitarian, total prioritarian, or critical level view of value,

regardless of what other considerations those theories might recognise.
2This is implied by the widely accepted flat-λ model of cosmology (see Wald, 1983; de Simone et al., 2010; Carroll,

2020, for discussion). It is also implied by the inflationary view (see Guth, 2007; Garriga and Vilenkin, 2001). But,
by the latter theory, the universe as a whole may have infinite volume but only a finite volume of it within our causal
future. If so, it may be physically impossible to cause changes in value at infinitely many different locations, and
so the problems raised below may not arise. (But they may still arise if we adopt an evidential decision theory for
moral decision-making—see MacAskill et al. (2021).)

3Specifically, we will have a countably infinite number of them. Why? Because they are each positioned in a
four-dimensional spacetime. They’ll also each occupy some (exclusive) finite region of spacetime—e.g., for a human
brain to experience some amount of pleasure, it requires some non-zero spatial volume and some non-zero, finite
duration. So we can only fit a countably infinite number of those token events into the world.
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we seem to have reason to reject aggregative theories en masse, thanks to empirical findings.4

Fortunately for the project of aggregation, philosophers have proposed aggregative theories that

avoid this problem (one of which is demonstrated below). These proposals do not rely on sim-

ple sums of value; they aggregate value differently, and represent the resulting aggregates using

slightly more complicated mathematical objects (see, e.g., Vallentyne, 1993; Vallentyne and Ka-

gan, 1997; Bostrom, 2011; Arntzenius, 2014; Jonsson and Voorneveld, 2018; Wilkinson, 2021a,b;

Clark, n.d.). Many of those proposals do this by taking advantage of the physical structure of

our universe, whereby valuable events are positioned in time and space. Where simple aggregation

delivered incomparability in infinite worlds, these proposals are thought to deliver just the verdicts

the aggregationist wanted (see Section 3).

But physics has further surprises in store for us, much to the woe of aggregative theories. A

century of work in physics, both theoretical and experimental, tells us that time in our universe is

relative: the duration observed between one event and another varies with the velocity of whoever

does the observing (Cohn, 1904). So too, whether two events are simultaneous or not can depend

on that velocity (see Comstock, 1910, for an illustration of this phenomenon). If you were to simply

speed up, the set of events that are happening ‘now’ for you would shift; it would include events that,

for a slower observer, lie in the distant past or future. That isn’t to say that fast-moving observers

are wrong—one observer’s perspective is no less legitimate than another, since we have no scientific

experiment that distinguishes one constant velocity over any other as ‘at rest’. There simply is no

absolute perspective—no absolute time—by which we can measure the duration between any two

events, nor by which we can judge which events are simultaneous (Einstein, 1905).5

This is a further blow to aggregative moral theories, as I demonstrate in this paper. Many of

our proposals for aggregative theories that still work in an infinitely populous universe are time-

sensitive—sensitive to when in time valuable events occur. But when those events occur is, in some

sense, relative. And it turns out that so too the moral evaluations of those time-sensitive aggregative

theories are relative. As I show in Section 4 below, none of our extant time-sensitive proposals can

provide absolute moral evaluations. They all fail, in almost every decision moral agents ever face.

And, as I show in Section 5, the same goes for such proposals designed specifically to avoid this

relativistic problem.

But this problem bears not only on the plausibility of some narrow selection of views, which
4Arguments similar to this are presented by Nelson (1991), Bostrom (2011), and Askell (2019).
5For readers unfamiliar with special relativity and seeking more explanation than I give here, I recommend Resnick

(1979).
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happen to be time-sensitive. If time-sensitive theories of aggregation fail, then all aggregative

theories fail in an infinite universe. As shown elsewhere, any aggregative theory that is not time-

sensitive will, in the infinite context, fail to compare any of the outcomes between which we might

ever need to choose in practice (see Wilkinson, n.d.(a); Jonsson and Peterson, 2020). Given this, if

problems of relativity undermine time-sensitive theories, then they undermine aggregative theories

in general.

Aggregative theories thus face another problem akin to that posed by an infinitely populous

universe. Based on empirical findings, our existing versions of those theories deliver absurd verdicts

on a vast scale. Does this mean we must abandon all aggregative theories, just because our universe

has these peculiar characteristics? Thankfully, no. Despite the failure of existing proposals, I

demonstrate in this paper that a satisfactory solution does exist (see Section 6). By drawing

on tools from physics, we can concoct a method of aggregation that indeed allows absolute moral

evaluations, that avoids the flaws of previous solutions, and that even succeeds in the trickier setting

of general relativity (see Section 7). Aggregationists need not abandon their theories just yet—this

peculiar problem can be solved, and we can indeed make moral judgements based on what will

promote the good.

2 Preliminaries

In what is to come, we will need to compare outcomes, or worlds. In particular, to give moral

verdicts, we need only compare worlds that have a great deal in common—worlds that share exactly

the same events everywhere except the causal future6 of the agent who is choosing which world to

bring about. We can ignore worlds that do not share a common history. After all, we necessarily

cannot change the past.7

To compare such worlds, we want an ‘at least as good as’ relation ≽ on the set of all possible8

worlds W . This relation ≽ will be a binary relation: it compares two worlds. It will be reflexive:

each world must be at least as good as itself. It will be transitive9: if a world Wa is at least as good
6Despite the relativistic nature of spacetime, at least some points are observed as occurring in our future (or our

past) no matter our velocity: those within our future (past) lightcone. That is our causal future (past).
7This is somewhat controversial as, under evidential decision theory, we may often need to compare lotteries

containing outcomes that differ in some past events. But this controversy is avoided if we are simply comparing the
outcomes of our actions ex post, as I do here.

8Possible in what sense? This could be the set of all epistemically possible worlds, or metaphysically possible
worlds, or logically possible worlds. What follows can be read in terms of any of these.

9Transitivity of moral betterness has its critics, e.g., Temkin (2014). It has also received compelling defences
from, e.g., Broome (2004); Nebel (2018); Dreier (2019). I find it overwhelmingly plausible and, in keeping with the
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as Wb, and Wb is at least as good as Wc, then Wa is at least as good as Wc. And it will have an

asymmetric component (≻) that holds between worlds of which the first is strictly better, as well

as a symmetric component (≃) that holds between worlds that are equally good.

The goal is an aggregative theory. So whether ≽ holds between two worlds must be determined

by the total aggregate10 of value in each—some impartial11 combination of the values of every indi-

vidual valuable event. In the finite setting, this aggregate might be represented by a finite number

on some cardinal scale. In the infinite setting, it can only be represented by more complicated

mathematical objects. For instance, under the method described in the next section, the aggregate

can be represented as a set of cumulative sums.

I will focus on time-sensitive ≽ relations. Such relations take advantage of the fact that each

valuable event occupies some position in space and time (or so I will assume) so we can associate

each such event with a discrete spacetime point.12 For example, the event of a human stubbing their

toe might be associated with the time and place of the stubbing. Or we might treat an entire human

life as a single event, associated with the time and place of their birth, or perhaps the midpoint

of all positions they ever occupy. However we select that point and however fine-grained we make

each event—and nothing below hangs on how we do so—each valuable event will be associated with

some point x in spacetime.

Conversely, we can associate each point in spacetime with the value of all events associated with

it. For each world Wa, a corresponding value function Va maps each spacetime point to some real

number, a cardinal representation of the moral value at that point. Where there is no valuable

event at x, we can let Va(x) be 0 or indeed any finite value, as long as that value is consistent.

To compare worlds Wa and Wb in the ways described below, we will need to evaluate Va(x)

and Vb(x) for particular points x—to identify the value at the same point across worlds. But how

do we identify that same point (or, if you prefer, its counterpart) across worlds?13 This is fairly

infinite aggregation literature to date, will assume without argument that it holds.
10This aggregate may be the total sum of all instances of value, represented on a cardinal scale. Or it may be some

other mathematical object which represents some combination of the values of all individual events. For example,
the method described in Section 3 represents total value as a set of functions.

11Impartiality here can be interpreted in any of several senses: 1) that ≽ must be a qualitative relation; 2) that ≽
must be a qualitative internal relation, and so entirely independent of the identities of which persons obtain value; 3)
that, in addition to (1) and (2), ≽ must be invariant under any changes in some chosen class of qualitative properties
of the persons obtaining value (e.g., their positions in space and time). I take ≽ as a qualitative internal relation
but not independent of where persons are positioned in space and time. For discussion of whether this counts as
impartial, see Wilkinson (2021a,b, §3).

12Alternatively, we could associate each event with a region of points. This is compatible with what follows, so
long as we replace the value function Vi(x) with a value density function vi(x) and sum value over a region using a
(Lebesgue) integral rather than a discrete sum.

13Note that I do not rely on such points having essential properties (as under spacetime substantivalism)—points
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easy, given that the worlds we compare will be identical everywhere except the causal future of

the decision-maker. So they will always share at least some of the same events. It is then natural

to associate each of those events with the same point x in both worlds. And we can extend this

mapping of points into our causal future, simply by identifying each point x across worlds by its

position relative to those past points that the worlds have in common. For instance, the point 1

metre in front of me and at 1 second in the future in one world is the same point as that which is 1

metre in front of me and 1 second in the future in another world (provided that I am in the same

position, relative to past events, in both worlds). This will (usually)14 allow us to specify, for each

point in one world, a unique spacetime point to map it to in the other world.

3 Expansionism

To demonstrate the relativistic objection, I will focus on one plausible method of aggregation that

can compare infinite worlds: expansionism. By way of example, it goes like this.

Take two worlds, such as Wrecurring and Wonce in Figures 1 and 2, displayed on spacetime diagrams

with matching coordinates.15 Each world contains infinitely many valuable events—perhaps each

is a human living a happy life. In Wrecurring, there is such a happy life lived at every grid-point in

space and time from t = 1 onwards. In Wonce, there are happy lives lived at t = 0 but at no other

time.

may just be artefacts of the relational properties of physical events. Nor am I committed to a particular view on
whether such points are identical across worlds or merely counterparts—nothing below hangs on this.

14This relation sometimes cannot give unique counterparts when outcomes differ in their spatiotemporal structure.
More on this in Section 7.

15This example hails from Vallentyne and Kagan (1997, p. 15).
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Figure 1: Wrecurring

0 1 1 1 1 1

x

t

Figure 2: Wonce

How might we compare these worlds? If we simply summed up the value in each, we could not

say either is better—both contain infinitely many happy lives, so both sums are positively infinite.

Instead, we could sum the value in each world in a particular order, and consider their cumulative

sum as we go. For instance, start at the point p illustrated below. And sum the value of events in

order of how far they are from p on the diagram. Events that are one unit in length from p get

counted before those at two units in length, and so on. We sum value moving outwards from p,

effectively expanding the circular region around p, letting the radius approach infinity (see Figures

3 and 4).

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

p
x

t

Figure 3: Wrecurring

1 1 1 1 1
p

x

t

Figure 4: Wonce

Summing in this order, we obtain cumulative sums of the value within radius r of p, for each

real r. Those cumulative sums are shown in Figure 5..
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r′

Wrecurring

Wonce

r

∑
{x | d(x,p)≤r}

Vi(x)

Figure 5: Cumulative sums in Wrecurring and Wonce, with expansions starting from p

A clear winner emerges: Wrecurring. Even though both worlds have the same total sum of value—

both sums are positively infinite—Wrecurring’s sum approaches infinity a lot faster when we sum over

uniformly-expanding regions of space and time. In fact, for any sufficiently large circular region

centred at p, Wrecurring will have a greater cumulative sum. And, for these two worlds, we can

replace p with any point and a large enough circular region around it will contain more value in

Wrecurring than in Wonce. This is because value is far more densely packed into Wrecurring; in an

important sense, it contains more of it. So we might judge that Wrecurring is better than Wonce.

This method can be stated more precisely as Spatiotemporal Expansionism (or SE), which is

adapted from Wilkinson (2021b, p. 19-20) and Vallentyne and Kagan (1997, p. 17).16

SE : For worlds Wa and Wb with the same spacetime points, Wa ≻ Wb if, for all starting
16Wilkinson (2021b) demonstrates several problems for SE, and proposes that we instead adopt the slightly stronger

SE2.

SE2 : Let Wa and Wb be worlds with the same spacetime points. For any starting point p,
let {r1, r2, r3, ...} be the strictly increasing sequence of distances between p and each x such that
Va(x)− Vb(x) ̸= 0.
Then Wa ≻ Wb if the following sum diverges unconditionally to +∞.

lim
r→∞

r∑
i=1

(ri+1 − ri)
∑

{x | d(x,p)≤r}

(
Va(x)− Vb(x)

)
And Wa ≃ Wb if the sum is bounded both above and below.

The problems and solutions described below apply in much the same way to both SE and SE2. For simplicity, I
focus on the former.
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points p, there exists r′ ∈ R such that for all r > r′,

∑
{x | d(x,p)≤r}

(
Va(x)− Vb(x)

)
> 0

And Wa ≃ Wb if, for all p and all r > r′ the sum equals 0.

As described above, SE says the following. Take any starting point p. For each world, take the

sum of all value within distance r′ of p. Take the difference between the sums for the two worlds.

Is one greater, such that the difference between them is greater than 0? Will it still be greater if

you expand the distance to even greater distances r? And will the same hold for any p you choose?

If so, you can say that one world is strictly better. If instead the difference remains 0, for all large

r, then the worlds are equally good.

Note that here the measure of distance d(x,p) between two points x and p is distance in the

standard Euclidean sense: d2 = ∆x2 +∆y2 +∆z2 +∆t2 (where ∆x,∆y, and ∆z are differences in

spatial coordinates along three dimensions and ∆t is the difference in time)17 or, when the points

differ in just one spatial dimension x as above, d2 = ∆x2+∆t2. This matches the distance obtained

by placing a ruler on the page in the above diagrams. And this needs to be our distance metric for

us to obtain the nice, bounded, circular regions we saw above.18

With SE in hand, we seem to have a plausible method for comparing infinite worlds. It deals

neatly with Wrecurring and Wonce above, even though both worlds contain infinitely many valuable

events. And it happens to satisfy a variety of desirable conditions. For one, it delivers a ≽ relation

which is reflexive and transitive. For another, it aggregates value over different points in an impartial

manner, in that no point (and no person) is favoured over another—indeed, we could swap the value

at one point with the value at any other, and SE would confirm that the world remains equally

good.19 So, even though the positioning of value in spacetime helps to compare worlds under SE,

we need not discount nor ignore value based on its position (see Wilkinson 2020: 12-15; contra
17We use different units for spatial distance (e.g., metres) and time (e.g., seconds), so how should we weigh these

against each other when summing ∆x2 and ∆t2? We could select any weighting we like but, fortunately, all possible
weightings produce the same results in the examples below. (See the next footnote.) For simplicity of notation, I
will weigh the two quantities such that 1 metre is equivalent to 1 metre

c seconds, where c is the speed of light in a
vacuum in metres per second.

18We might instead adopt any distance metric which satisfies dp = |∆x
a |p + |∆y

a |p + |∆z
a |p + |∆t

b |p, for some real
p, a, b. But alternative values of p, a, and b would give us regions of more arbitrary shape. And they wouldn’t make
any difference to problems we encounter in the next section so, for brevity’s sake, I will ignore them (see Wilkinson,
2021b, p. 19 for further discussion).

19This is the condition of Finite Anonymity (over points in time and space) which is a common desideratum in
the literature (e.g. Lauwers, 2010).
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Koopmans 1972).

4 Problems

But SE faces a serious problems, as do other time-sensitive methods of aggregation: it depends on

an impoverished understanding of time. 20

Note that, in what follows, I demonstrate these problems for SE specifically. But analogous

problems emerge, and can be demonstrated with similar examples, for the proposals of Vallentyne

(1993), Bostrom (2011, p. 16), Arntzenius (2014, p. 56), and Jonsson and Voorneveld (2018).21

4.1 Galilean relativity

Problems emerge even without relativity in the Einsteinian sense. They arise even in the simpler

setting of Newtonian physics.

Consider a seemingly straightforward case: Erid.

Erid

A civilisation based on the planet Erid is fortunate that it will last forever. Eridians

are born at regular intervals and all have happy, identical lives. So constant amounts

of moral value arises on Erid at regular intervals of time. You can choose to visit Erid

and see the sights, or to pass by. If you do visit, your spacecraft will slightly disturb the

motion of Erid’s star and surrounding planets, setting it moving at a tiny speed relative

to where it would otherwise be, producing Wmoving. Pass by and the system remains

undisturbed, producing Wstationary. Either way, the same values will arise at the same

times; your visit would make no one better or worse off.

Figure 6 represents the difference between the two worlds, Wmoving −Wstationary.22 This world of

differences has positive values at the positions the Eridians would occupy in Wmoving and negative

values where they would have been left in place in Wstationary (since Wmoving has that much less value

at those positions than does Wstationary). This diagram contains all of the information necessary to
20The problems raised in this section have previously been noted by Cain (1995) and Arntzenius (2014).
21The same goes for time-sensitive theories of value even outside the infinite context, including theories of pure

time discounting (Arrow, 1999) and Temkin’s (2015) temporal distribution view.
22This is the world given by value function Vm−s(x) = Vmoving(x)− Vstationary(x).
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compare Wmoving and Wstationary. Since SE’s verdicts depend only on the differences between the

two worlds, Wmoving will be at least as good as Wstationary if and only if Wmoving − Wstationary is at

least as good as the world with value 0 at every point.

-1

-1

-1

-1

-1

1

1

1

1

1

p

x

t

Figure 6: Wmoving −Wstationary

Intuition suggests that Wmoving and Wstationary should be equally good. After all, they differ only

by how fast the Eridians are travelling, and in that respect only slightly. But SE says otherwise:

that Wmoving −Wstationary is worse than the zero-world; so Wmoving is worse than Wstationary. To see

why, expand from starting point p; and (naively) use the distance metric d based on the coordinate

representation used above. We obtain the cumulative sum plotted in Figure 7, which soon falls

below 0, never to return.

−6

−4

−2

2

4

r

∑
{x | d(x,p)≤r}

(
Vmoving(x)− Vstationary(x)

)

Figure 7: Cumulative sum of Wmoving −Wstationary, with expansions starting from p
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The same holds no matter which starting point we choose. So SE seems to judge Wstationary as

better than Wmoving. But this verdict is counterintuitive. Surely, setting the planet ever so slightly

in motion should not make the lives of the Eridians, in effect, worth less. Intuition suggests that it

should make no moral difference at all.

SE’s implications get all the more counterintuitive if we recognise that, under the laws of New-

tonian mechanics, it will appear to any observer travelling at a constant velocity that they are

at rest; they will be unable to detect their movement with any mechanical experiment. (This is

known as Galilean relativity.) So, in Wstationary and Wmoving, there is a symmetry between the two

outcomes—in each, the Eridians may consider themselves at rest, and that it’s the other outcome

in which they would be in motion.

In fact, if Wmoving occurred and the Eridians looked back on your decision from their own

perspective, with themselves at rest, the regions used in the comparison above would appear as in

Figure 8.

1

1

1

1

1

-1

-1

-1

-1

-1

p

x

t

Figure 8: Wmoving −Wstationary, with the regions centred on p as above, but plotted in a coordinate
system under which the velocity of the inhabitants of Wmoving is treated as at rest.

Those regions around p now look awfully peculiar—far from the most natural shape we might

choose. From the Eridians’ perspective in Wmoving they aren’t circles of fixed radius, but instead

these peculiar skewed ellipses. Were they to compare the worlds themselves, and treated their own

velocity as the one at absolute rest, they would draw those regions quite differently (as circles rather

than ellipses in Figure 8). Applying SE using those regions, they would reach the opposite verdict:

that Wmoving is the better outcome.

11



So we have a problem. The distance measure d, the regions of fixed distance around a given

p and, it seems, the verdicts of SE all depend on which velocity counts as being at absolute

rest. Earlier, I assumed it was that of the Eridians in Wstationary. But they themselves may not

know that—there’s no mechanical experiment they could perform that would distinguish their own

velocity as any more ‘at rest’ than another. Indeed, modern physics now tells us that there is no

experiment at all which would distinguish one velocity over another (Einstein, 1905; Michelson and

Morley, 1887)—there is no non-arbitrary way to specify absolute rest. So we have no reason to

think there is such a thing.

What does this mean for SE? It seems that there can be no absolute distance metric d, that we

cannot construct absolute regions of distance d around a point, and that SE cannot give absolute

judgements. It seems we must abandon SE as well as, it seems, any aggregative moral theory.

4.2 Special relativity

Although this problem arises in Newtonian physics, that isn’t the full story. Our understanding

of space and time did not stop with Newton. We now know that observers at different velocities

disagree about much more than what counts as at rest; they also disagree about measurements of

spatial distance, measurements of time, and even whether events are simultaneous. Their perspec-

tives differ far more than they would under Galilean relativity. (Surprisingly, this greater difference

will help later in developing solutions).

To see such disagreement in action, consider worlds analogous to those above: in Wstationary, Erid

stays ‘at rest’ and produces moral value at regular intervals; and, in W ′
moving, Erid is instead set in

motion. These are illustrated in Figure 9. (On this diagram, its relative speed is 4
5

of the speed of

light, but the same result arises with even minuscule speeds.)
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Figure 9: W ′
moving −Wstationary

In both outcomes, the Eridians produce the same value per unit of time, according to their own

experience of time. But, as shown in Figure 9, they would disagree with their counterparts in the

other outcome about which outcome produces value more quickly. If we treat Erid as at rest in

Wstationary, as this diagram does, the events in W ′
moving occur more slowly. But from the perspective

by which W ′
moving is at rest, we would observe the exact opposite: that events in Wstationary occur

more slowly!

This is due to time dilation, a consequence of the special theory of relativity. If one observer

watches t seconds tick by on their own wristwatch, any observer moving at speed v (as a fraction

of the speed of light) relative to them sees that ticking take t′ seconds, where t′ = t√
1−v2

.

Since no velocity is any more at rest than another, the reverse holds as well: the first observer

will also see the ‘moving’ observer’s wristwatch tick more slowly. So of course the Eridians W ′
moving

and Wstationary would disagree about which outcome produces value more quickly. So too, they

would disagree about the order of events: those in Wstationary would observe their first valuable

event occurring before the first such event would occur in W ′
moving; those in W ′

moving would observe

the reverse.

From the perspective of the Eridians in W ′
moving, the regions used in Figure 9 above would now

appear as in Figure 10—no longer based on a sequence of nice concentric circles, but instead a

sequence of ellipses skewed even more than before.
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Figure 10: W ′
moving − Wstationary, with regions centred on p as above, but plotted in a coordinate

system under which the velocity of the inhabitants of W ′
moving is treated as at rest.

As before, these regions look awfully peculiar. And again, if the Eridians in W ′
moving drew the

regions of fixed distance d from their own perspective, they would do so very differently. This is

because the measure d between any (non-identical) points x and p is not absolute; it varies with

the velocity at which it is measured.

But the deeper problem is that the definition d2 = ∆x2 +∆t2 makes no mention of perspective

or velocity; instead, it assumes that there were some such absolute quantities ∆t and ∆x. But there

aren’t—any such measurements are relative to the velocity of the observer, by special relativity. So

we have no measure d with which to construct regions of fixed distance, we have no such regions,

and we have no verdicts at all from SE. The principle is silent in all cases—all pairs of outcomes

are incomparable.

But before we abandon SE entirely, perhaps we can modify it or the definition of d ever so

slightly to still deliver some judgements. Here is one way we might do that. Define ∆t and ∆x as

those quantities that would be measured at the velocity of the agent making the evaluation. They

and d are then relative to that velocity. And let SE use this relativised version of d. Then SE’s

verdicts will be relative too—in the case above, an agent travelling at one velocity would judge

W ′
moving as the better outcome, and an agent travelling at another velocity would judge Wstationary

as better. Both would be right, since SE’s verdicts are relative to the velocity of the judge.

But this modification is implausible. Our moral judgements must be absolute—when evaluating

outcomes (rather than judging acts, where agent-relative considerations might be relevant) we are
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interested only in goodness simpliciter. And when evaluating outcomes based on their goodness

simpliciter, we usually think that there can be only one correct evaluation for any pair of outcomes.

But even for those who deny this and endorse moral relativism (such as relativism to the cultural

setting in which a judgement is made), relativism to the agent’s speed seems particularly absurd.

An otherwise worse outcome can be made better if the agent simply speeds up? This seems absurd

to me.

And it is all the more absurd given that it can result from even arbitrarily small changes in

velocity—the same disagreement arises in the case above when the civilisations in W ′
moving and

Wstationary differ by any non-zero velocity. So this modification is a non-starter.23

Here is an alternative modification. Again, let the metric d be relative to the velocity of the

agent. But, for SE to compare two outcomes, don’t just require that all starting points p agree. Also

require that agents at all velocities agree—supervaluate over all perspectives. If they disagree, let

SE remain silent: the two worlds under consideration are simply incomparable. But this approach

is implausible too. The example above was a mundane one: you can either leave be or set future

events (ever so slightly) in motion. If a method of aggregation cannot compare these outcomes, it

seems seriously inadequate. And SE cannot, if modified in this way—it falls silent, even in cases as

mundane as this. So, again, we must abandon SE.

5 Existing solutions (and their problems)

Must we abandon the expansionist approach entirely, and moral aggregation along with it? I hope

not. Here are two other proposals for salvaging it, both from Arntzenius (2014). Unfortunately,

each faces further problems, and serious ones at that.

5.1 Double lightcones

Here is one suggested solution, described by Arntzenius (ibid.: 44) and credited to Cian Dorr.

In the definition of SE, forget about any distance measure d. All we need is a sequence of

expanding regions of spacetime, each compact and containing the regions that come before it.
23This modification faces a further problem. In practice, agents are often accelerating. If we allowed the verdicts

of SE to be relative to not just the velocity but also the acceleration of an agent, the regions we obtain (such as
those in Figure 10) would no longer strictly contain one another—they would only partially overlap. Nor would they
eventually cover all of spacetime, so SE would ignore value in some parts of the world!
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And, to overcome the relativistic problem, those regions must not vary with the perspective of the

observer.

We can obtain such regions as follows. Select two points, one earlier in time than the other,

according to all observers—perhaps two points with the same spatial position, as illustrated below.

For the earlier point, draw its future lightcone: the region of points you could reach from that

point by travelling at or below the speed of light in any direction. And, for the later point, draw

its past lightcone: the region of points from which you could reach the later point by travelling

at or below light speed. The intersection of those two regions—their ‘double lightcone’—forms a

diamond-shaped region with both endpoints as vertices. Repeat this process with further pairs of

points to obtain your expanding regions. One such sequence of regions is illustrated in Figure 11,

expanding around p, applied to W ′
moving −Wstationary from above.
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Figure 11: W ′
moving −Wstationary with a sequence of double lightcones around p

We could sum value over this sequence of regions instead of SE’s expanding circles. If we did,

we would sum the −1s faster than the +1s, so our cumulative sum would approach −∞. We would

be led to the verdict that W ′
moving is worse than Wstationary. But is this verdict absolute, no matter

the observer’s velocity?

Indeed, these regions would be constructed the same way by observers moving at any velocity, as

long as they use the same pairs of endpoints to construct them. But the challenge lies in selecting

those endpoints. To get a sense of why different observers or agents might disagree about which

endpoints to use—and hence which double lightcones to use—consider that same sequence of regions
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from the perspective of the Eridians in W ′
moving, as illustrated in Figure 12.
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Figure 12: W ′
moving − Wstationary with the same sequence of double lightcones, viewed from the

perspective of the inhabitants of W ′
moving

As in the previous section, these regions now look awfully peculiar. They seem no more ap-

propriate than, say, if we constructed the regions by setting endpoints at the same spatial position

as p, but did so from the perspective of W ′
moving. We would generate very different regions which,

from this perspective, would have the same nice diamond shape we saw above. But they would

give us a different verdict: summing over such a sequence of regions we would sum the +1s much

faster than the −1s; our cumulative sum would approach +∞; so we would conclude that W ′
moving

is better than Wstationary.

In short, there is no non-arbitrary way to select the endpoints from which we construct these

double lightcones. Simply placing them at some particular position relative to your starting point

p will always result in different regions for agents travelling at different velocities. And different

selections can deliver different verdicts, as demonstrated above. So the problem remains.

5.2 The spacetime metric

Here is another proposal, also from Arntzenius (ibid.: 43).

In the definition of SE, simply replace the d with a better measure of 4-dimensional distance—

one that is invariant across changes in velocity. In the standard, flat spacetime of special relativity
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we have one such metric: the spacetime metric, s, given by

s2 = ∆x2 +∆y2 +∆z2 −∆t2

When ∆y and ∆z are 0, as in my examples below, we have s2 = ∆x2 −∆t2.

What does s represent? It actually measures ‘proper time’, or ‘proper distance’. The proper time

between two points is the duration of time we’d record on a clock travelling from one to the other

at constant velocity. (Note that this only exists if you could reach one from the other by travelling

below light speed.) Meanwhile, the proper distance is the spatial distance that you’d measure

between them if you were travelling at just the right velocity to see those points as simultaneous.

(And this only exists if there is such a velocity—if neither lies in the other’s future lightcone.)

If we replace d with s in the definition of SE, the regions we generate around p will look like

those shown in Figure 13 below.24 Each of these hyperbola-shaped regions corresponds to the set

of all points within some constant proper time (or distance) of p. Effectively, each region is the

set of points that you could reach from p within some time |s2| (from your own perspective) by

travelling at a constant speed, or that would look like they were within distance |s2| of p from some

perspective. But recall that time passes more slowly for fast-moving observers, and lengths appear

shorter. So, for two future points which seem to you to lie at the same time, the one further from

you in space would actually be the smaller proper time from your position. Likewise, for two points

which seem to you to lie at the same spatial position but at different times, the one further from

you in time would be the smaller proper distance from you.
24Unlike d, s sometimes takes on imaginary values (whenever ∆t > ∆x). So |s2| serves as the better replacement

for d.
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Figure 13: A sequence of regions each comprised of points within some fixed |s2| of p.

Crucially, the proper time/distance measured between any two points will be the same no

matter the velocity at which it is measured. So too, any two observers would draw precisely the

same regions no matter their velocity. They would draw specific points in different places on the

graph, but they would still draw them within precisely the same regions. So we have a sequence of

expanding regions on which everyone can agree, and over which we can apply SE absolutely and

without controversy.

In the problem case of W ′
moving versus Wstationary from above, we would construct the regions in

Figure 14. And as you can see, each −1 and its corresponding +1 lie on the boundary of the same

region—they lie at the same proper time/distance from p, and this would be the case from any

perspective.
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Figure 14: W ′
moving −Wstationary

If we applied SE using these regions instead of the circles from earlier, each −1 would cancel

out the corresponding +1. Our cumulative sum would be 0 at all stages (and, if we started from a

point other than p, it would be 0 beyond some stage). So we would judge W ′
moving and Wstationary

as equally good. Not only do we have a verdict, but we have the intuitively correct one: that the

world is equally good whether we set the civilisation in motion or leave it be.

But this supposed solution faces its own serious problem: any of those regions can contain

infinite value (or undefined total value). For instance, consider the worlds: Wright, which contains

a sequence of valuable events extending off towards the right; and Wleft, which contains a sequence

extending off towards the left. These events are arranged such that Wright −Wleft is as illustrated

in Figure 15.
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Figure 15: Wright −Wleft

In Wright −Wleft, all of those events with value +1 or −1 lie at s = 0 from p. Suppose we tried

to take a cumulative sum, starting from p. That cumulative sum will break down immediately: we

cannot assign a finite value to the region within proper time/distance 1 of p (or even that within

distance 0.000001); the sum of value in each such region is undefined.

So this proposal puts us in a position similar to where we started: we wanted to compare worlds

containing infinite value, but standard addition on the real numbers does not allow us to do so. For

the same reason, we cannot compare worlds like these.25 So the proposal is inadequate.

6 A better solution

Despite the problems with that last solution, there is a promising solution in its vicinity.

As Arntzenius diagnoses it, the key problem with that solution was that each of the regions it

uses has infinite 4-dimensional volume.26 Thanks to this infinite volume and their shape, we can
25Why not just accept that worlds like this are exotic enough that we need not compare them? My main reason

is that I suspect that, as argued in Wilkinson (n.d.(a)), almost every practical moral decision we face will resemble
this case—the available outcomes will differ by infinite or undefined value over any region of our future lightcone
that has infinite volume.

26There are two notions of volume we might use here. The first is standard Euclidean volume, extended to four
dimensions—a region with constant spatial volume V and duration in time t simply has 4-dimensional volume V × t.
The alternative is ‘Riemannian volume’, which is generated from the metric s. Fortunately, in flat spacetime, the
Riemannian volume of any given region will simply be −1 times its Euclidean volume. So, if one is finite, so will be
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arrange infinitely many valuable events within each of them, as we saw above.

We could avoid that problem if only we had a similar sequence of regions but each with only finite

volume. Why? I assume—quite plausibly, I think—that a (compact) region of finite volume can

only ever fit finite total value. On standard accounts of value, a collection of events with infinite

total value would require infinite volume. For instance, to produce a given quantity of pleasure

within a human brain would require some minimum spatial volume and duration of time; to scale

up this quantity ever more would require an ever greater duration (to extend the experience longer)

and/or ever greater volume (to fit additional brains). You cannot scale up the quantity of pleasure

to be infinite without scaling up the volume of spacetime involved to be infinite as well, and likewise

if value takes on some plausible form other than pleasure. So you cannot fit infinite value into a

(compact) region of finite volume.27

In fact, we can avoid the problem even more easily. The regions in our sequence need not have

finite volume. They need only have a finite portion of their volume lying within the agent’s future

lightcone—in the agent’s causal future. As noted earlier, in practice, we do not need to ever compare

worlds that differ anywhere except the agent’s causal future. So we can safely assume that, at any

point x outside the lightcone, the local values in any worlds Wa and Wb under comparison will be

such that Va(x)− Vb(x) = 0. So any region of spacetime with only finite volume within the agent’s

future lightcone will only contain a finite difference in value between outcomes.

With this knowledge in hand, we can solve the problem faced earlier when comparing Wright

and Wleft. As before (and as depicted by the dotted lines in Figure 16), we can construct sequences

of regions using proper time/distance, each containing points within some fixed |s2| from starting

point p. But we can restrict our attention to only some of those sequences: those in which each

region contains only finite value. And we know that there will always be some sequences like this:

the other. And, given that Riemannian volume is the same for all observers, so will be the Euclidean volume.
The Euclidean volume of the region of all points within |s2| = k of p is given by:

volume =

∫ +∞

−∞

4π

3
∆x3dt

= 2

∫ 1

0

4π

3

√
t2 + k

3
dt+ 2

∫ +∞

1

4π

3

(√
t2 + k

3
−

√
t2 − k

3
)
dt

27One benign exception is this. Suppose a person lives a life of infinite duration, containing infinite value. If we
treat their entire life as a single event and associate it with a single point, then any region containing that point will
contain infinite value, even if the region has only finite volume.

But this exception only arises due to the simplicity of how I have so far modelled the world. Lives need not be
treated as single events; we could instead decompose them into smaller events. Nor must we associate events with
discrete points in spacetime, rather than with the entire densely-packed regions of spacetime they occupy. (See
Footnote 12.)
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just let p be in the agent’s past; then each region will only have finite volume within the agent’s

future lightcone, and so only finite value.28 In Wright − Wleft here, starting from one such p, the

cumulative sum would be 0 at every stage (see Figure 16). Likewise for any p in the agent’s past

lightcone.29 And likewise for any p we might choose here that gives regions each containing finite

value. If we consider only such regions, then we can judge Wright and Wleft as equally good, as

intuition suggests they are!

p

agent

1

1
1

1

1

-1

-1

-1

-1

-1

x

t

Figure 16: Wright −Wleft

That is just what I propose, with Relativistic Spatiotemporal Expansionism (RSE).30

28This can be shown in general. Let p and a (the position of the agent) be any two points such that p is in a’s past
lightcone. (We can assume that both points have the same spatial position since there will always be some velocity
such that, for observers travelling at that velocity, they are at the same spatial position.) Take any value of s′ such
that a is proper time less than s′ from p. And take the region of points in p’s future lightcone that are proper time
exactly s′ from p, corresponding to the curve given by s(x,p) = s′. This region—call it R—is asymptotic to the
edge of p’s future lightcone (given by s(x,p) = 0). So we can take any ray starting at a along the edge of its future
lightcone, which will be parallel to some ray along the edge of p’s future lightcone, and the ray will intersect R within
finite time. The same goes for every ray from a along the edge of its future lightcone so, by symmetry, the edge of
a’s future lightcone will intersect R in a sphere. As a result, the region bordered by the edge of a’s future lightcone
and R will be compact and have finite Riemannian volume (see Footnote 26). I thank an anonymous reviewer for
suggesting this proof.

29Strictly speaking, for p not centred between the two sequences, each valuable event would not immediately
be cancelled out by the corresponding event in the other sequence—the cumulative sum would still deviate from 0
(though for shorter and shorter intervals). So SE would still fail to say that Wright and Wleft are equally good. But
that is no great problem—the strengthened principle SE2 (from Wilkinson, 2021b) deals neatly with situations like
this and judges the worlds as equally good. (See Footnote 16.)

30This definition of RSE generates a sometimes intransitive ≽ relation (see Footnote 31 of Wilkinson, 2021b). But
this is easily remedied, by modifying RSE in line with Wilkinson’s (ibid.: 30) later proposal (see Footnote 16). To
avoid complicating RSE even further, without much gain, I will stick with the simpler definition used here.
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RSE : Let Wa and Wb be any worlds with the same spacetime points. Then Wa ≻ Wb if

there is some starting point p and some distance r′ such that the following sum is finite

and positive for all r > r′, and for no starting point p is the sum finite and negative for

all r > r′.

∑
{x | |s(x,p)2|≤r}

(
Va(x)− Vb(x)

)
And Wa ≃ Wb if for there is some starting point p and some distance r′ such that the

sum is equal to 0, and no starting point p for which it is positive (or negative) for all

r > r′.

RSE has us follow much the same procedure as SE: sum the values in Wa and Wb in order of

their distance from p; if Wa’s sum takes the lead and keeps it beyond some distance r′, then Wa

is better; and, if instead the sums are equal and stay equal beyond r′, then the worlds are equally

good. The only differences from SE are: we use the distance given by proper time/distance (via

|s2|), to avoid problems with relativity; and, crucially, we don’t need all starting points p to agree.

To say that Wa is better, it’s enough to have just one p that gives Wa the winning sum, as long

as there is no other starting point p′ that disagrees. Similarly, to say that the worlds are equally

good, it’s enough to have just one p that says that the sums become equal, as long as there is no

p′ that disagrees.

And RSE succeeds in comparing Wleft and Wright, as illustrated above. We have some point p

that generates a sequence of expanding regions over which the differences between worlds sum to

0 no matter how far we expand. And it so happens that no other starting point says otherwise,

that the sum is strictly positive or strictly negative (and finite)31 beyond some distance r′. So RSE

judges Wleft and Wleft as equally good. And, intuitively, so they should be! One world involved

sending off some sequence of value into space in one direction; the other involved sending it off in

another, precisely mirrored direction at the same speed; so neither world should be any better than

the other.

So RSE delivers the intuitively correct verdict in this problem case. And, since it uses a distance

metric on which all observers agree, its verdicts are absolute. So we avoid the problems encountered

earlier (and, indeed, can judge W ′
moving and Wstationary as equally good). The relativistic problem is

31There are some points we might choose that give an infinite value at every single stage of the sum: those precisely
in line with either of the two sequences of value (but not both). This is why RSE specifies that starting points are
only allowable if they give finite sums.
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solved.

7 General relativity

This new aggregation method, RSE, delivers plausible and absolute verdicts in a universe governed

by the special theory of relativity. But special relativity only approximates the spacetime structure

of our universe. Does RSE succeed in an even more realistic setting—a universe governed by the

general theory of relativity?

Under special relativity alone, spacetime is flat : objects not subject to any force travel in straight

lines, which respect the properties of Euclidean geometry. But under general relativity, depending

on the matter and radiation present, spacetime may be curved. This curvature corresponds to

what we might think of as a gravitational ‘field’—massive objects appear to accelerate towards one

another. But, given the discrepancies we observe in measuring distance and time (e.g. Hafele and

Keating, 1972), we know that this is not due simply to a field of force; it is due to curvature of

spacetime itself.

In a curved spacetime, the spacetime metric s no longer applies universally. Over any large

interval, measurements of s will no longer be agreed upon by all observers, nor will it correspond

to the proper time and distance between points. So we have a problem: where spacetime is curved,

RSE as defined above will fail to deliver verdicts on which all observers agree.

But this problem is easily solved. Every curved spacetime has a near-analogue of s, often

simply called its metric, or g. This metric depends on the distribution of matter and radiation

across spacetime. So the measurements it produces between two points may depend on the absolute

position of those points. But this is fitting, since the proper times (or proper distances) between

those points depend on curvature, so on absolute position, as well.

One simple example of a curved spacetime is Schwarzschild spacetime, in which there is just

one massive object32 and nothing else. This closely approximates the shape of spacetime close to

the Earth. And it comes with a metric g, measurements of which match those of proper time

and distance, and with which we can construct expanding regions.33 We can use g to construct
32By assumption, this body has no electric charge nor angular momentum, and the cosmological constant is 0.
33The Schwarzschild metric g′ is given by the equation(Schwarzschild, 1916):

g′ =
r

r − k
dr2 + r2dθ2 + r2 sin2 θdϕ2 − (1− k

r
)dt2
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expanding regions around a point p in some agent’s past lightcone, each region containing those

points within fixed distance g of p. Those regions will be as illustrated in Figure 17.
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Figure 17: A sequence of regions each comprised of points within some fixed g of p.

These regions allow us to apply a version of RSE in curved spacetime. They regions are similar to

those generated by s, just skewed a bit by gravitational curvature—as we approach the massive body

at r = 0, they tend towards being perfectly vertical on the diagram, matching that body’s path.

And, as we see here, only a finite portion of each region lies within the agent’s future lightcone.34

So, with the right choice of p, these regions will each only contain finite value, as we need them to.

On top of that, these regions will be constructed the same way by all observers, regardless of their

velocity, since g is a distance measure independent of the observer’s velocity (as it measures proper

time and proper distance). And so, by switching our distance metric from |s2| to g, it seems that

we can easily modify RSE to work in curved spacetime.

In how broad a range of curved spacetimes does this strategy work? It is hard to say for sure

Here, spatial coordinates x, y, and z are replaced with polar spherical coordinates r, θ, and ϕ. And ∆r, ∆t, and
so on are replaced by dr and so on, because g′ only gives the rate of change of the measure at each point—since
curvature varies across spacetime, any equation in terms of ∆t will vary as well. Given this, to obtain the distance
between two points, we need to take the integral of g′ along a straight line between the points, and take the lowest
such value—call it g.

34This can be shown by a method similar to, but more complicated than, that of Footnote 28 above.
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(and far beyond the scope of a single paper), but I would speculate that RSE is likely to work in

almost all spacetimes we might face in practice. After all, every possible spacetime will come with

some distance metric g on which all observers agree. And, upon examination, a broad range of

other realistic spacetimes seem to preserve the key property that: for any point p in the agent’s

past lightcone, the regions within proper time g of p will overlap with the agent’s future lightcone

for only a finite volume. For instance, this holds if we move from a Schwarzschild spacetime, with

just one massive body, to a more realistic spacetime with many such bodies—such a spacetime

becomes warped (as on the left side of the above figure) at many positions rather than just one.

But that warping didn’t stop the overlap of the agent’s future lightcone and regions around p from

having finite volume; nor would having similar warping occur elsewhere stop it. And it seems that

other realistic spacetimes will not prevent this either—whether we face a spacetime under which the

universe is expanding or contracting (e.g., a Friedmann-Lemaître-Robertson-Walker spacetime), or

in which massive bodies are rotating (as approximated by, e.g., Kerr spacetime) or have charge (as

approximated by, e.g., a Reissner-Nordström spacetime), or even in which entropy is so great that

curvature is approximately constant (e.g., a de Sitter or anti-de Sitter spacetime, as is predicted to

characterise the far future of our universe according to versions of the flat-λ model—see Carroll,

2020).35 At least over a wide range of plausible spacetimes our future might resemble, it seems

likely that a form of RSE (with the appropriate metric g) will still be able to deliver comparisons.36

General relativity also presents a second problem. Recall the method I suggested in Section 2 for

identifying the ‘same’ (or counterpart) spacetime points across worlds: first, identify events outside

the agent’s future lightcone with the same points in each outcome, since those events are fixed;

then, for each point p within the future lightcone in some outcome, map it to whichever point q in

another outcome is the same distances in space and time from every points outside the lightcone as

p was. But it is now abundantly clear that this relation fails—distances in space and time are not

absolute but instead differ with the velocity of the observer. So we might reformulate the relation:

instead, map each such p in one outcome to the q in another outcome that is positioned at the

same distances from each point outside the future lightcone, where distance is measured with |s2|
(or, in curved spacetime, g). All observers agree on those measures, so they can agree on which

points are the same under this relation.

But this reformulation can still break down in curved spacetimes. Agents will sometimes choose
35A full discussion of each of these spacetimes is beyond the scope of this paper, but I would refer interested readers

to Carroll (2004) for detailed descriptions of each.
36I suspect that this strategy will not always work in Gödel spacetime or other spacetimes that involve closed

timelike curves. But these seem exotic enough to set aside for present purposes.
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between outcomes with different curvature if their actions affect the distribution of matter in the

universe. And it is possible that the curvature in those outcomes—and so the distances between

points—is such that the point p in one outcome maps to multiple points in the other (or none at

all). This is an odd implication for an identity (or counterpart) relation to have!

Fortunately, this problem does not affect RSE. There are two places where the identity/counterpart

relation can affect RSE’s verdicts. The first: we need to be able to expand our regions around the

same point p in each world. But we can do this even with a relation that misbehaves within our

future lightcone—simply pick a point p outside the agent’s future lightcone, which will always map

to a unique and plausible point in every world. The second: for each point x, we want to identify

the same point across worlds to take the difference in value at that point, which we will then sum

up over all such points within each region. But nothing much hangs on whether some value lies at

x or at another point in the region; we really just need the (difference in) value across the whole

region. So we can avoid any problem here by simply assigning Va(x) = 0 (on whichever cardinal

representation we are using for local values) whenever x is absent from world Wa; and, when x has

multiple counterparts in Wa, simply let Va be the sum of their values. This allows us to sum the

differences in value across each region without needing to worry whether each point has a unique

identity/counterpoint in every world. RSE works just fine despite this.

8 Conclusion

Above, we saw a potentially devastating problem for aggregative moral theories: thanks to special

relativity, many such theories either cannot compare any outcomes at all, or else they must allow

their comparisons to be dependent on the velocity of whoever is doing the comparing.

Many of our existing proposals for how to aggregate value in a physically realistic, infinitely large

universe are time-sensitive. Indeed, Jonsson and Peterson (2020) and Wilkinson (n.d.(a)) argue that

the only plausible aggregative theories in such a setting are time-sensitive. But often these time-

sensitive theories only work under unrealistic assumptions about time. For example, in Section 3,

we saw that to evaluate outcomes using the standard version of the ‘expansionist’ approach (from

Vallentyne and Kagan, 1997; Arntzenius, 2014; Wilkinson, 2021b), we need standard Euclidean

distance over four dimensions to be absolute and observer-independent. But it isn’t. So that

approach cannot make any judgements at all. Even if we let that measure depend on the velocity

of the observer, this approach leads to an absurd form of moral relativism—the correct judgement
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may differ if you change your speed enough.

Similar problems can be demonstrated for other theories—the proposals of Vallentyne (1993),

Bostrom (2011, p. 16), and Jonsson and Voorneveld (2018) all face analogous problems, arising in

analogous cases. So it seems we must reject all such proposals; it seems we must reject aggregative

moral theories entirely.

But, as I’ve demonstrated, this problem can be overcome. With careful consideration of the

geometry of spacetime, we can modify aggregative theories to still deliver judgements, and plausible

ones at that, even in a relativistic universe. We can even do so in a universe in which spacetime is

curved (depending, perhaps, on the exact nature of that curvature). We can still compare outcomes

based on their total aggregate of value, even under the demands of a universe as peculiar as ours.

References
Arntzenius, F., 2014. Utilitarianism, decision theory and eternity. Philosophical Perspectives,

28, 1 (2014), pp. 31–58. (cited on pages 2, 9, 15, and 28)

Arrow, K., 1999. Discounting, morality, and gaming. In Discounting and Intergenerational Equity,
p. 13–21. Cambridge University Press, Cambridge. (cited on page 9)

Askell, A., 2019. Pareto Principles in Infinite Ethics. PhD dissertation, New York University.
(cited on page 2)

Bostrom, N., 2011. Infinite ethics. Analysis and Metaphysics, 10 (2011), pp. 9–59. (cited on
pages 2, 9, and 29)

Broome, J., 2004. Weighing Lives. Oxford University Press, Oxford. (cited on page 3)

Cain, J., 1995. Infinite utility. Australasian Journal of Philosophy, (1995). (cited on page 9)

Carroll, S., 2004. Spacetime and Geometry: An Introduction to General Relativity. Addison
Wesley, San Francisco. (cited on page 27)

Carroll, S. M., 2020. Why Boltzmann brains are bad. In Current Controversies in Philosophy
of Science (Eds. S. Dasgupta; R. Dotan; and B. Weslake). Taylor & Francis. (cited on
pages 1 and 27)

Clark, M., n.d. Infinite ethics, intrinsic value and the Pareto principle. Unpublished manuscript.
(cited on page 2)

Cohn, E., 1904. Zur elektrodynamik bewegter systeme ii [On the electrodynamics of moving
systems ii]. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften, 43, 2
(1904), pp. 1404–16. (cited on page 2)

Comstock, D., 1910. The principle of relativity. Science, 31, 803 (1910), pp. 767–72. (cited on
page 2)

29



de Simone, A.; Guth, A.; Linde, A.; Noorbala, M.; Salem, M.; and Vilenkin, A., 2010.
Boltzmann brains and the scale-factor cutoff measure of the multiverse. Physical Review D, 82,
6 (2010), 063520. (cited on page 1)

Dreier, J., 2019. World-centered value. In Consequentialism: New Directions and Problems (Ed.
C. Seidel), p. 31–50. Oxford University Press, Oxford. (cited on page 3)

Einstein, A., 1905. Zur elektrodynamik bewegter körper [On the electrodynamics of moving
bodies]. Annalen der Physik, 322, 10 (1905), pp. 891–921. (cited on pages 2 and 12)

Garriga, J. and Vilenkin, A., 2001. Many worlds in one. Physical Review D, 64, 4 (2001),
043511. (cited on page 1)

Guth, A., 2007. Eternal inflation and its implications. Journal of Physics A: Mathematical and
Theoretical, 40, 25 (2007), pp. 6811. (cited on page 1)

Hafele, J. and Keating, R., 1972. Around-the-world atomic clocks: Observed relativistic time
gains. Science, 177, 4044 (1972), pp. 168–70. (cited on page 25)

Jonsson, A. and Peterson, M., 2020. Consequentialism in infinite worlds. Analysis, 80, 2
(2020), pp. 240–8. (cited on pages 3 and 28)

Jonsson, A. and Voorneveld, M., 2018. The limit of discounted utilitarianism. Theoretical
Economics, 13, 1 (2018), pp. 19–37. (cited on pages 2, 9, and 29)

Koopmans, T., 1972. Representation of preference orderings over time. Decision & Organization,
57 (1972). (cited on page 9)

Lauwers, L., 2010. Ordering infinite utility streams comes at the cost of a non-Ramsey set.
Journal of Mathematical Economics, 46, 1 (2010), pp. 32–7. (cited on page 8)

MacAskill, W.; Vallinder, A.; Shulman, C.; Österheld, C.; and Treutlein, J., 2021.
The evidentialist’s wager. Journal of Philosophy, 118, 6 (2021), pp. 320–42. (cited on page 1)

Michelson, A. A. and Morley, E. W., 1887. On the relative motion of the earth and of the
luminiferous ether. Sidereal Messenger, 6 (1887), pp. 306–10. (cited on page 12)

Nebel, J., 2018. The good, the bad, and the transitivity of better than. Noûs, 52, 4 (2018), pp.
874–99. (cited on page 3)

Nelson, M., 1991. Utilitarian eschatology. American Philosophical Quarterly, 28, 4 (1991), pp.
339–47. (cited on page 2)

Resnick, R., 1979. Introduction to Special Relativity. Wiley, New York. (cited on page 2)

Schwarzschild, K., 1916. Uber das gravitationsfeld eines massenpunktes nach der Einstein’schen
theorie [On the gravitational field of a mass point according to Einstein’s theory]. Sitzungsberichte
der Königlich Preussischen Akademie der Wissenschaften, (1916). (cited on page 25)

Temkin, L., 2014. Rethinking the Good. Oxford University Press, Oxford. (cited on page 3)

Temkin, L., 2015. Rationality with respect to people, places, and times. Canadian Journal of
Philosophy, 45, 5-6 (2015), pp. 576–608. (cited on page 9)

30



Vallentyne, P., 1993. Utilitarianism and infinite utility. Australasian Journal of Philosophy, 71,
2 (1993), pp. 212–7. (cited on pages 2, 9, and 29)

Vallentyne, P. and Kagan, S., 1997. Infinite value and finitely additive value theory. Journal
of Philosophy, 94, 1 (1997), pp. 5–26. (cited on pages 2, 5, 7, and 28)

Wald, R., 1983. Asymptotic behavior of homogeneous cosmological models in the presence of a
positive cosmological constant. Physical Review D, 28, 8 (1983), pp. 2118. (cited on page 1)

Wilkinson, H., 2021a. Infinite Aggregation. PhD dissertation, Australian National University.
(cited on pages 2 and 4)

Wilkinson, H., 2021b. Infinite aggregation: Expanded addition. Philosophical Studies, 178, 6
(2021), pp. 1917–49. (cited on pages 2, 4, 7, 8, 23, and 28)

Wilkinson, H., n.d.(a). Chaos, ad infinitum. Unpublished manuscript. (cited on pages 3, 21,
and 28)

31


	Introduction
	Preliminaries
	Expansionism
	Problems
	Galilean relativity
	Special relativity

	Existing solutions (and their problems)
	Double lightcones
	The spacetime metric

	A better solution
	General relativity
	Conclusion

