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Abstract

For aggregative theories of moral value, it is a challenge to rank worlds that each contain

infinitely many valuable events. And, although there are several existing proposals for doing so,

few provide a cardinal measure of each world’s value. This raises the even greater challenge of

ranking lotteries over such worlds—without a cardinal value for each world, we cannot apply

expected value theory. How then can we compare such lotteries? To date, we have just one

method for doing so (proposed separately by Arntzenius, Bostrom, and Meacham), which is to

compare the prospects for value at each individual location, and to then represent and compare

lotteries by their expected values at each of those locations. But, as I show here, this approach

violates several key principles of decision theory and generates some implausible verdicts. I

propose an alternative—one which delivers plausible rankings of lotteries, which is implied by a

plausible collection of axioms, and which can be applied alongside almost any ranking of infinite

worlds.
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1 Introduction

Consider aggregative theories of moral value: those that say that one outcome is at least as good

as another if and only if it has at least as great a total aggregate of value, impartially construed.1

These theories of value include those used by total utilitarianism, total prioritarianism (see Parfit,

1997), and critical level theories (e.g. Blackorby et al., 1995).

One powerful objection against such theories is this: in a physically realistic setting, they seem

to deliver absurd verdicts. To see why, note that our current understanding of cosmology suggests

that our universe is infinite—it will contain an infinite volume of space and time, as well as infinitely

many tokens of every physically possible small-scale phenomenon.2 But some physical phenomena

are morally valuable (or disvaluable), e.g., perhaps a human brain experiencing pleasure (or pain)

for some duration. Our universe will contain infinitely many such events, and so infinitely many

instances of value (of value at least some ε > 0 on whichever cardinal scale we use).3 If we sum

the value of such events in a given outcome, the total will be infinite. And if we include events of

negative value too, the total will be undefined. So, since our current understanding of cosmology

implies that there will occur infinitely many of every such event, valuable or disvaluable, the total

sum of value will always be undefined. And one undefined sum is no greater than another. This is

bad news for aggregative theories—in practice, they seem unable to say that any available outcome

is better than any other. But this is absurd, so perhaps we must reject aggregative theories entirely.

This might be too hasty. Instead of rejecting all aggregative theories, perhaps we can adopt one

that avoids this problem of widespread incomparability. By tweaking our method of aggregation,

and comparing worlds based on something other than a single real-valued total sum, perhaps we can

avoid the problem. Fortunately, we have various proposals for doing this. We have the basic proposal

of additivism from Lauwers and Vallentyne (2004, p. 21), described below. We have the expansionist

1This definition excludes narrow person-affecting views, as well as any theory under which value does not admit
an additively separable representation (e.g., egalitarianism, maximin, averagism). This exclusion is not because such
views escape the infinitarian worries described below—typically, they don’t—but simply for brevity.

2This is implied by the widely accepted flat-lambda model of cosmology (see Wald, 1983; de Simone et al., 2010;
Carroll, 2017, for discussion). It is also implied by the inflationary view (see Guth, 2007; Garriga and Vilenkin, 2001).
But, by the latter theory, the universe as a whole may have infinite volume but only a finite volume of it within our
causal future. If so, it may be physically impossible to cause changes in value at infinitely many different locations,
and so the problems raised below may not arise. (But they may still arise if we adopt an evidential decision theory for
moral decision-making—see MacAskill et al. (2021).)

3Specifically, we will have a countably infinite number of them. Why? Because they are each positioned in a four-
dimensional spacetime. They’ll also each occupy some (exclusive) finite region of spacetime—e.g., for a human brain
to experience some quantity of pleasure, it requires some non-zero spatial volume and some non-zero, finite duration.
So we can only fit a countably infinite number of those token events into the world.
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methods of Vallentyne and Kagan (1997, p. 17), Arntzenius (2014, p. 56), and Wilkinson (2021).

We have Bostrom’s 2011, pp. 27-30 proposal of using hyperreal numbers. And we have Jonsson &

Voorneveld’s 2018 limit-discounting method, among various others. I’ll remain mostly agnostic here

on which, if any, of these proposals is correct.

Whichever proposal we adopt, we face further problems. As mere human agents, we are uncertain

of the outcomes our choices produce, for all choices we ever make. To make decisions in practice,

comparing infinite outcomes is not enough; we need to compare lotteries over such outcomes.

The standard approach for converting moral comparisons of outcomes into comparisons of lot-

teries, at least for finitely-valued outcomes, is expected value theory : one lottery is at least as (in-

strumentally) good as another if and only if the expectation of its total value is at least as great

(see, e.g., Jackson, 1991).4 This works fine if the total value of every outcome is finite and so can

be represented on a cardinal scale. But it often won’t work when outcomes contain infinitely many

instances of value—we cannot simply take the expectation of undefined or infinite total values (at

least not while producing plausible verdicts). And none of the proposals listed above resolve this—

they don’t provide total aggregates that can be represented cardinally; they merely give conditions

for an outcome to be better than another.

How then can we compare lotteries over outcomes with infinite or undefined value? On existing

views, we cannot simply apply expected value theory. But one alternative approach has been pro-

posed, by Bostrom (2011, pp. 27-30), Arntzenius (2014, pp. 53-7), and Meacham (2020), which I

describe in Section 3 below. Unfortunately, this solution fails to satisfy several crucial desiderata for

any plausible ranking of lotteries, as I demonstrate in Section 4. So a new approach is needed.

I offer such an approach in Section 5: the expectations of differences approach. Under this ap-

proach, we can adhere to the spirit of expected value reasoning without explicitly assigning expected

values to lotteries and comparing them (the traditional, ‘differences of expectations’ approach). My

approach does so while still satisfying key desiderata (unlike the rival Arntzenius-Bostrom-Meacham

proposal), and is implied by the conjunction of some highly plausible axioms. And perhaps its

greatest advantage is that it can be applied alongside almost any aggregative method of comparing

4Note that expected value is distinct from the frequently-used notion of expected utility. And expected value theory
is distinct from expected utility theory, another widely accepted view in normative decision theory. Under expected
utility theory, utility is given by some (indeed, any) increasing function of value—perhaps a concave function, such
that additional value contributes less and less additional utility. Maximising the expectation of utility may then often
give verdicts different from expected value theory.
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outcomes—one could adopt any of the methods listed above and still use my approach to extend

one’s comparisons from outcomes to lotteries.

2 Comparing worlds

The challenge is to extend aggregative theories to compare lotteries over outcomes containing in-

finitely many instances of value. But, to start with, how should we represent such outcomes? And

what basic conditions must aggregative theories satisfy when comparing them?

Aggregative theories compare outcomes based on their total aggregates of value. A total aggre-

gate here is some impartial combination of all of the instances of value an outcome contains—its

local values. But how do we identify and demarcate local values? Following others in the literature,

I assume that each local value is fundamentally associated with a location: a token entity of some

common type that can exist (or have unique counterparts) across different worlds. These locations

might be persons, or person-time-slices, or positions in space and time, or something else. They

might have some essential and natural topological structure (as spacetime positions do), or they

might not (as persons do not). There is disagreement in the literature on the correct such type, and

whether they have such structure.5 Here I remain agnostic on those questions.

Whatever the relevant type of locations, each outcome will contain some plurality of them, given

by the set L = {la, lb, lc, ...}. And the value at each location is given on a cardinal scale by a function

V : L → R. Each outcome (or world) can then be represented by an ordered pair 〈L, V 〉. I’ll often

use the subscript of each Wi to identify it with its set of locations Li and value function Vi. And

where all outcomes available in a decision share the same locations, I denote the common location

set as L.

To compare worlds, we need an ‘at least as good as’ relation. This will be a binary relation <

on the set W of (epistemically) possible worlds. I assume that this relation is both reflexive and

transitive6 over W. (Equivalently, we could say that < is a preorder on W.) Strict betterness is

denoted by the asymmetric component �, and equality by the symmetric component ∼.

5For a defence of adopting persons as the appropriate type, see Askell (2019). For arguments in favour of adopting
spacetime positions, see Wilkinson (2021) and Wilkinson (n.d.(a)).

6Transitivity of moral betterness has its critics, e.g., Temkin (2014). It has also received compelling defences from,
e.g., Broome (2004); Huemer (2008); Nebel (2018); Dreier (2019). I find it overwhelmingly plausible so, in keeping
with the infinite aggregation literature to date, I will assume without argument that it holds.
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But when is one world at least as good as another; when does Wa <Wb hold? This depends on

exactly which of the many proposed < relations we endorse. But all of the proposals I mentioned

above agree in some cases, including the following.

Suppose you can either rescue one person from painful death or rescue five others. Suppose that

your choice has no other effects, and that exactly the same locations (persons, spacetime positions,

or what have you) exist either way. We can represent the two outcomes with Wsave 1 and Wsave 5.

la lb lc ld le lf lg lh li lj · · ·

Wsave 1 : 1 0 0 0 0 0 1 1 1 1 · · ·

Wsave 5 : 0 1 1 1 1 1 1 1 1 1 · · ·

We cannot compare the total sums of value of these worlds. But we can compare their values at

each location, and also at each finite set of locations. For instance, take the first six locations (la to

lf ); Wsave 1’s subtotal is 1, and Wsave 5’s is 5. At all other locations, the worlds have equal value,

so let us ignore those. Where they do differ, W5 has the greater subtotal of value. Thus we might

justify Wsave 5 as the better world.

This is how Additivity asks us to reason. Put precisely:

Additivity7: For any worlds Wa and Wb with the same locations L, Wa <Wb if

∑
l∈L

(
Va(l)− Vb(l)

)
≥ 0

(either by converging unconditionally, or by diverging unconditionally to +∞).

Note that Additivity is not biconditional—some worlds may be better than others even though

Additivity doesn’t hold. After all, Additivity by itself does not give us a complete betterness <

relation. Nor does it give a < relation that compares even a significant fraction of the pairs of worlds

our actions might produce in practice. It is just a minimal condition, and one that is satisfied by

almost every proposal in the literature.

It is also well-justified—a < relation that violated it would be a strange betterness relation

indeed. As Lauwers and Vallentyne (2004, p. 39) show, any transitive < that satisfies all three of

7This principle is presented and defended by Vallentyne and Kagan (1997, p. 11), Lauwers and Vallentyne (2004,
p. 21), and Basu and Mitra (2007).
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the following highly plausible principles will also satisfy Additivity.

Pareto Over Locations: For any worlds Wa and Wb with the same locations L, if for all

l ∈ L, Va(l) ≥ Vb(l), then Wa <Wb.

If, as well, some li ∈ L has Va(li) > Vb(li), then Wa �Wb.

This says that, if one world has at least as much value as another at every single location (whatever

the relevant type of locations is), then it’s at least as good. And if that world has strictly greater

value at at some locations, then it’s strictly better. This sensitivity to changes in local value seems

a minimal requirement for any comparison of worlds which stays true to the spirit of aggregation.

Separability of Value: If Wa and Wb contain the same locations and Wa < Wb then,

adding their corresponding local values, Wa + W < Wb + W for all W ∈ W with the

same locations.8

This principle, also called Translation Scale Invariance in the literature, ensures that betterness is

sensitive only to differences in local value. If between one pair of worlds there is the same pattern

of differences as between another pair of worlds, we must rank both pairs the same way. It does not

matter what local values we start with in a world; all that matters is what we add or take away;

if a certain combination of additions and removals is an improvement to a world, it would count

as an improvement to any world. This is a key distinguishing feature of aggregative theories in the

finite context (such as any which endorse totalism or total prioritarianism). And, moving to the

infinite context, Separability of Value seems a necessary condition for staying true to the spirit of

aggregation.

And the final condition we need, Finite Sum, requires only that < remains consistent with what

our judgements would be if the universe would contain only finite total value. I take this as a crucial

requirement for extensional adequacy.

Finite Sum: If there is a finite total sum of local values in both Wa and Wb, and the sum

in Wa is at least as great as that in Wb, then Wa <Wb.

8Define addition of worlds as follows. For all worlds Wa and Wb with the same locations L, the world Wv = Wa+Wb

is given by Vv(l) = Va(l) + Vb(l) for all l ∈ L.
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Each of these principles (and their conjunction) is hard to deny. So Additivity is hard to deny.

Given this, it is unsurprising that it is satisfied by every plausible stronger proposal so far proposed

(e.g. Vallentyne and Kagan, 1997; Arntzenius, 2014; Jonsson and Voorneveld, 2018; Wilkinson, 2021;

Bostrom, 2011, pp. 27-30). Given this broad agreement, I will assume that < satisfies Additivity.

But I remain agnostic about what else it says, as I want my conclusions to hold for all of those

stronger views.

3 Comparing lotteries

We don’t just want to compare worlds; we want to compare lotteries over those worlds. Formally,

a lottery L is represented as a probability measure on (the minimal Boolean algebra containing

the elements of) W—L maps all sets of possible worlds to probabilities in the interval [0, 1], while

obeying the standard probability axioms. The set of all such probability measures is denoted by P.

We can also define the domain of each lottery Li byWi = {W ∈ W|Li({W}) > 0}. For two lotteries

Li and Lj , the union of their domains Wi ∪Wj can be abbreviated to W(i,j).

I will make a few other abbreviations to keep the notation in check. L({W}) will be abbreviated

to L(W ) when the input to L is simply {W}. And Li(<W ) will be used as an abbreviation for the

probability that Li gives to the set of all worlds inWi that are at least as good as W (or, equivalently,

<W = {W ′ ∈ Wi|W ′ <W}). And, when a lottery results in just one world W with probability 1, I

denote both world and lottery by W .

To compare such lotteries, we need another ‘at least as good as’ relation: a binary relation <,

this time on P. As before, strict betterness (�) and equality (∼) are represented as the asymmetric

and symmetric components, respectively. And again, as basic desiderata, I will assume that < must

be reflexive and transitive. As well, it must be consistent with <: if Wa <Wb then Wa < Wb too.

3.1 Local expectations

But what < relation should we adopt; when should La < Lb hold? One proposal comes from

Arntzenius (2014) and Bostrom (2011, pp. 27-30) and is also endorsed by Meacham (2020).

Consider the lotteries: W101, which delivers world W101 for sure; and L1, which brings even odds

of the worlds 2 and 0 (the worlds of value 2 or 0, respectively, at every location).
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la lb lc ld le lf lg lh li lj lk · · ·

W101 : 1 0 1 0 1 0 1 0 1 0 1 · · ·

L1


L1(W )

1/2

1/2

∣∣∣∣∣∣∣∣∣
la lb lc ld le lf lg lh li lj lk · · ·

2 : 2 2 2 2 2 2 2 2 2 2 2 · · ·

0 : 0 0 0 0 0 0 0 0 0 0 0 · · ·

If Additivity holds, then 2 �W101 � 0. But it says nothing about W101 and L1 as lotteries. Nor

does Additivity alone allow us to construct expected values: the total differences in value between

these worlds are infinite, so there’s no clear way to assign real values to outcomes over which we can

calculate expectations.

Without the opportunity to apply expected value theory, Arntzenius, Bostrom, and Meacham

recommend we do the following. Consider the prospects of each individual location. In L1, each

location has probability 1
2 of 2, and probability 1

2 of 0. So we can take the expected local value for

each location li.

la lb lc ld le lf lg lh li lj lk · · ·

EL1(V (li)) : 1 1 1 1 1 1 1 1 1 1 1 · · ·

By doing so, we can define a new object with the same structure as a world—an ‘expected world’

EWL, with the same locations and with value function given by the expected local values under the

lottery. Equivalently, EWL = 〈L,EL(V )〉.

This expected world can easily be compared to W101, via Additivity (or even by Pareto alone).

And it’s strictly better. So we might conclude that L1 � W101.

This approach can be stated as Local Expecations which, to an approximation, is endorsed by
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each of Arntzenius9, Bostrom10 , and Meacham. (See notes for differences.)

Local Expectations: For any lotteries La, Lb ∈ P such that all W ∈ W(a,b) contain the

same locations, La < Lb if EWLa < EWLb
.

If both Local Expectations and Additivity hold, then we can make the comparison between the

above lotteries W101 and L1, as demonstrated. And, in general, we then have the result that La <

Lb if the following sum is (unconditionally) greater than or equal to 0 (or diverges unconditionally

to +∞).11 ∑
l∈L

(
ELa

(
V (l)

)
− ELb

(
V (l)

))

This seems promising: it appears we can sidestep the whole problem of taking expectations over

infinite totals. We just need to lower our expectations, down to the local level.

4 The problem

But Local Expectations has a problem. Consider the case of Egregious Energy.

9Arntzenius (2014, pp. 55-6) proposes the following.

Weak Location Criterion: For lotteries A and B, A � B iff
∑

l∈L
(
EA(V (l))−EB(V (l))

)
“...is absolutely

convergent and > 0, where we are summing over all (epistemically possible) [locations]...” l ∈ L.

This is almost equivalent to the conjunction of Local Expectations and Additivity. Except: 1) it defines only a strict
betterness relation �, so does not imply that L1 ∼ L2 for any lotteries; 2) it remains silent if the sum diverges
unconditionally to +∞, even in cases of certainty in which Additivity gives a verdict; and 3) it allows worlds in both
lotteries to contain different locations (e.g., the same people) summing value instead over all epistemically possible
locations, which requires that we assign some value to the non-existent lives. I don’t want to make a stand on such
cases here, and my modifications to (1) and (2) will likely be uncontroversial.

10Bostrom’s (2011: pp. 27-30) proposal is more complicated. He describes (but doesn’t explicitly endorse) an
approach by which we represent each world’s total value with a hyperreal number : a vector of (countably) infinite
length that consists of the cumulative sums of local values, summed in some common order. In the example above, if
we chose to sum in the order la, lb, lc, etc, then W101’s total would be represented by the hyperreal (1, 1, 2, 2, 3, 3, ...)
and 2’s by (2, 4, 6, 8, 10, ...). For one world to be better than another, the entries in its hyperreal total must be greater
than the those in the other at ‘sufficiently many’ positions. For instance, 2 has larger entries than W101 at all positions,
so it would be better.

The standard of ‘sufficiently many’ here can vary, but one very minimal condition is that, if the entries of one
hyperreal are greater than another in all but finitely many positions, then the world associated with the former is
better. In effect, this condition is equivalent to Additivity. (There are stronger conditions we might apply too, but
those can be chosen to make the hyperreal approach equivalent to any plausible aggregation rule we want—see Pivato
(2014).)

We can also sum hyperreals and multiply them by real numbers (just as is done with vectors), so they can give us
expected values in roughly the old-fashioned way. L1 would have expected value (1, 2, 3, 4, 5, 6, ...), which is precisely
the hyperreal total of EWL1 . Since this is larger than W1’s total, we could say that L1 � W101. In effect, this is
equivalent to applying Local Expectations.

11Combined with Additivity or any other ‘at least as good’ relation over worlds, Local Expectations gives us a
strengthened form of what is often called ex ante Pareto.
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Example: Egregious Energy

A new energy source has been discovered, and you must decide whether humanity takes

advantage of it.

If we do, we will produce enormous amounts of energy and many lives will be improved.

But there are a few downsides. One is that the fuel needed is limited—we will only reap

the benefits for only a short time. Another is that it may take some time to get working

but, the longer it takes, the longer that cornucopia of energy will last. But the greatest

problem is pollution—this energy source produces a novel form of pollution which will

badly harm human health. That pollution and its effects will decrease over time, but

we will never fully eradicate it; it will continue to harm human well-being for the entire

future of humanity (which I’ll assume will be infinitely long). In short, using this energy

source will produce some finite benefit, but cause infinite total harm. (The relevant

probabilities and values are given below.)

For simplicity, exactly the same persons (and person-time-slices, and other possible types

of locations) will exist at exactly the same physical positions whether or not we adopt

this new energy source.

Since the same persons exist at the same physical positions either way, we can treat the resulting

worlds as having the same locations. Then we can represent your options as the world 0 and the

lottery L. If you forego the energy source, you produce 0, simply representing the baseline of what

would have happened otherwise.12 And if you choose to exploit it, you produce L, a lottery over

infinitely many worlds W1,W2, ...,Wj , and so on (each with probability 1
2j

). You’re uncertain of

how long it takes the energy source to start working, during which time everyone obtains the same

value 0 as in 0. Once it’s working, some number of people obtain greater value, represented by 2.

And then, once the fuel runs out, every person obtains less value than the baseline, represented by

a negative number. Note that, in every world in L, the total value diverges unconditionally to −∞.

12Note that local values of 0 here do not imply that the lives in question are right on the boundary of not worth
living. They might be extremely valuable lives. But these local values are here represented cardinally—the numbers
only capture the relative size of the differences between them. So these same representations of 0 and L could describe
worlds in which everyone has a blissful life and suffers only a slight reduction in quality of life due to the pollution. Or
they could describe worlds in which everyone suffers terribly and that pollution makes life even worse.
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So they’re all far worse than 0.13 Note that the sequence of locations (l1, l2, l3, ...) is chronological,

but nothing hangs on this.

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

0 : 0 0 0 0 0 0 0 0 · · ·

L



L(W )

1/2

1/4

1/8

1/16
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

W1 : 2 −1/2 −1/2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W2 : 0 2 2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W3 : 0 0 0 2 2 2 2 −1/8 · · ·

W4 : 0 0 0 0 0 0 0 2 · · ·
...

...
...

...
...

...
...

...
...

We can compare L to 0 using Local Expectations. As above, take L’s expected value for each

location to obtain EWL.

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

EWL : 1 1/4 1/4 1/16 1/16 1/16 1/16 1/64 · · ·

The expected local values are all greater than 0, so Additivity (or just Pareto alone) implies that

EWL � 0. Together with Local Expectations, this implies that L � 0. It is allegedly better to adopt

the energy source.

But I would suggest that this verdict is implausible. After all, L guarantees us a worse outcome—

every one of its possible outcomes is worse than 0 (by Additivity). Yet Local Expectations still says

that it is the better choice. This clashes with my own intuitions, and is a violation of Guaranteed

Betterness.

Guaranteed Betterness: If every world in Wa (the domain of La) is better than every

world in Wb, then La � Lb.

13In each world Wi, the local value at lj is given by:

0 for i < 2i

Vi(lj) = 2 for 2i ≤ j < 2i+1

− 1
2k

for 2k ≤ j < 2k+1, ∀k > i
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This conflict can be stated more formally as Theorem 1.14

Theorem 1: For any reflexive, transitive relation < on P, if < satisfies Local Expecta-

tions then it cannot satisfy both Guaranteed Betterness and Additivity.

Is this so bad? I certainly think it is. Although Local Expectations seems plausible, Guaranteed

Betterness seems to me undeniable. Why? The first reason is raw intuition—in this case, and in

other cases where the two conflict, my own intuition tells me that it is clearly worse to make a

lottery’s outcome worse with certainty. But some might have conflicting intuitions. For some, it

may be more intuitively plausible to reject Guaranteed Betterness than it is to recommend making

every single individual’s prospects worse. Intuition may more strongly favour particular judgements

in (at least some) cases like this than it does the broad principle of Guaranteed Betterness.

For readers not immediately convinced of Guaranteed Betterness, I’ll offer two arguments beyond

mere intuition. This first is this. A crucial desideratum of any decision theory—indeed, I think,

the most crucial desideratum—is that its recommendations help us obtain what we ultimately care

about. As Schoenfield (2014, p. 268) points out, any decision theory “...that makes demands that

don’t make sense given our concern with value can’t do what [a decision theory] is meant to do...”

and so should be rejected. And when applying an aggregative theory to make decisions for a large

population, we ultimately care about bringing about outcomes that have the most value overall,

not just the most value (or best prospects) for any particular individual/s. If a decision theory

recommends lotteries that are sure not to help us bringing about better outcomes (or, even worse,

make the resulting outcome worse) then it fails on this desideratum. And Local Expectations clearly

fails here. It judges that L is better than 0 even though it is guaranteed to produce a worse outcome.

It thus clashes with our basic goal of producing better outcomes so, I claim, we must reject it.

Another argument for Guaranteed Betterness is as follows. Moral betterness is more fundamental

than instrumental moral betterness—the ranking of lotteries is grounded in the ranking of worlds

by their overall value, not the other way around. If a world is better than another it is due simply

to the good-making features of each; not due to the fact that the lottery with probability 1 of one of

those outcomes is better than the other corresponding lottery. But, if we adopt Local Expectations

and reject Guaranteed Betterness, we are committed to instrumental moral betterness being more

fundamental. To see why, note that in Egregious Energy we could replace each world in L for another

14To prove this would be straightforward. In comparing 0 to L, Guaranteed Betterness and Additivity together
imply that W0 is strictly better, while Local Expectations and Additivity together imply that L is.
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world that is equally good according to any ranking that satisfies Additivity: replace W1, which had

local values (2,−1
2 ,−

1
2 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
4 ,−

1
8 , ...) for locations listed in the same order as above, with

a world with local values (0, 0, 0, 0, 0, 0, 0,−1
8 , ...); so too, replace each other world Wi with one where

all positive value is redistributed to later locations so that all local values are either 0 or negative.

The expected local value for each location is then 0 or negative, and so Local Expectations will say

that this new lottery is worse than 0. But this cannot happen if rankings of lotteries are grounded

in rankings of worlds—any plausible ranking of worlds says that W1 and its replacement are equally

good and each compare to every other world in the same way, and likewise for each other world

and its replacement. So, by Local Expectations, the moral ranking of these worlds does not fully

determine the ranking of lotteries, and that is implausible.

In my view, even stronger requirements are placed on our decision theory here by the desideratum

that it help us to obtain what we ultimately care about. Suppose that one lottery La has at least

as great a probability of turning out at least as good as some world W as some other lottery Lb.

And suppose that this holds for all worlds W—for any world, La has as high or higher probability

of resulting in W or something even better. If our goal is to promote value, surely La must be at

least as good a lottery as Lb. So says Stochastic Dominance.

Stochastic Dominance: Let La, Lb ∈ P be such that W(a,b) is totally ordered by <. If

La(<W ) ≥ Lb(<W ) for all W ∈ W(a,b), then La < Lb.

If, as well, La(<W ) > Lb(<W ) for some W ∈ W, then La � Lb.

This is a strengthening of Guaranteed Betterness, but not a radical one. When dealing with finite

payoffs, both principles are consistent with, but weaker than, standard expected value theory—for

instance, they do not rule out risk aversion (see Buchak, 2013). Accept expected value theory and

we must accept Stochastic Dominance. But, while expected value theory is somewhat controversial

in the existing literature, Stochastic Dominance and its kin are not. Only in rare circumstances have

philosophers proposed normative decision theories that violate this form of Stochastic Dominance.15

But Local Expectations violates both Stochastic Dominance and the far weaker Guaranteed

Betterness. So, if we wish to retain either principle, we must reject Local Expectations. But if we

do so, how then can we compare lotteries over infinite worlds?

15Examples include Seidenfeld et al. (2009); Smith (2014) and Lauwers and Vallentyne (2016). Schoenfield (2014)
rejects a similar, but distinct, form of Stochastic Dominance which gives verdicts even when outcomes in the domains
aren’t totally ordered by the betterness relation. She raises no objection to weaker formulations like mine.
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5 My proposal

I will propose two methods of comparing such lotteries: one weaker and able to handle easy cases;

and one stronger and able to handle more difficult cases.

5.1 Expectations of Differences 1

I’ll start with a class of easy cases: comparing lotteries in which each pair of worlds differ by at most

a finite sum of local differences. L2 and 1 are two such lotteries.

L2


L2(W )

1/2

1/2

∣∣∣∣∣∣∣∣∣
la lb lc ld le lf · · ·

W5 : 2 2 2 1 1 1 · · ·

W0 : 0 0 1 1 1 1 · · ·

la lb lc ld le lf · · ·

1 : 1 1 1 1 1 1 · · ·

Here’s how we might proceed. First, with just Additivity, we can rank the worlds W5 � 1 �W0.

Next, we might pick a world as a baseline—say, W0—and represent each world by the sum of

differences between it and W0. For W0, that’s 0. For W5, it’s 5. And for 1, it’s 2. So we have a nice

cardinal ‘total’ for each world. And that gives us all we need to calculate expected ‘total’ values.

For example:

L2(W0) · 0 + L2(W5) · 5 =
1

2
· 0 +

1

2
· 5 = 4

1

2

Calculated this way, the expected ‘total’ of L2 is less than that of 1 (which is just 2), so we might

claim that L2 is better. Putting this approach more precisely, we have Expectations of Differences

1.

Expectations of Differences 1 (ED1): For any La, Lb ∈ P such that all worlds in W(a,b)

contain the same locations L, if there exists a world W∗ ∈ W(a,b) such that the sum

∑
Wi∈Wa

La(Wi)
(∑

l∈L

(
Vi(l)− V∗(l)

))

14



is at least as great as the corresponding sum for Lb, then La < Lb.

ED1 differs slightly from how we usually calculate finite expectations. In the finite setting, we

usually take the expectation of the total value in each world and see how they differ—effectively,

we consider the differences of expectations. But my approach is to consider the expectations of

differences. We represent the value of each world by the sum of its differences from some ‘baseline’

world W∗. And then, for each lottery, we take the expectation of that sum. If we wanted, we could

do this in finite cases and reach the same verdicts. But in infinite cases, these approaches come

apart, and the latter clearly does better.

And ED1 doesn’t just work when the sums of differences between worlds are finite. It can also

work when some of those sums diverge unconditionally to (positive or negative) infinity. As long

as the worlds with positively infinite sums all appear in one lottery and the worlds with negatively

infinite sums appear in the other, we can still say which lottery is better. For instance, recall the

lotteries from Egregious Energy.

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

0 : 0 0 0 0 0 0 0 0 · · ·

L



L(W )

1/2

1/4

1/8

1/16
...

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

l1 l2 l3 l4 l5 l6 l7 l8 · · ·

W1 : 2 −1/2 −1/2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W2 : 0 2 2 −1/4 −1/4 −1/4 −1/4 −1/8 · · ·

W3 : 0 0 0 2 2 2 2 −1/8 · · ·

W4 : 0 0 0 0 0 0 0 2 · · ·
...

...
...

...
...

...
...

...
...

ED1 implies that 0 is better than L, unlike the Arntzenius-Bostrom-Meacham approach. First,

let the ‘baseline world’ be 0. Then the sum of differences between 0 and 0 is simply 0. Meanwhile,
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each world in L has a sum of differences from 0 that diverges unconditionally to −∞.16 But since

all of these worlds with infinite sums appear in one lottery rather than the other, ED1 can say

which lottery is better. The expected sum of differences for L will diverge unconditionally to −∞,

while the expected sum for 0 will be 0 (a lot greater than −∞!). So, by ED1, 0 � L, contra the

Arntzenius-Bostrom-Meacham approach.

ED1 has other arguments in its favour too. Intuitively, it seems a plausible and natural way to

judge lotteries. It’s a rough analogue of Additivity for this new setting of comparing lotteries. In

fact, in cases of certainty, it implies Additivity. And, like Additivity, it is implied by some highly

plausible conditions. (All proofs appear in the appendix.)

Theorem 2: For any reflexive, transitive relation < on P, if < satisfies Stochastic

Dominance, Finite Expectations, and Separability of Value (for Lotteries) then it satisfies

ED1.

Stochastic Dominance will be familiar from the previous section. Recall that it is consistent not just

with standard expected value theory but also with risk aversion. To impose risk neutrality, I use

Finite Expectations. This is the analogue of Finite Sum (from Section 2) for comparing lotteries. It

requires only that < remains consistent with what our judgements would be if our lotteries contained

only finite expected total value. If < doesn’t satisfy this, then it isn’t an adequate extension of finite

expected value theory.

Finite Expectations: For any La, Lb ∈ P such that each lottery has finite expected total

sum of local values ka or kb, respectively, La < Lb if and only if ka ≥ kb.

Then there’s the highly plausible Separability of Value (for Lotteries). Much like Separability of

Value from earlier, it says that we can take any two lotteries and add whatever string of local values

we want to every world in both, and the resulting lotteries will be ranked the same way. This implies

16The calculation is: ∑
Wi∈W

L(Wi)
(∑

l∈L

(
Vi(l)− V0(l)

))
=
∑

Wi∈W

1

2i

(∑
l∈L

(
Vi(l)− 0

))
=
∑

Wi∈W

1

2i

(
0 + 0 + ... + 2 · 2i−1 +

∞∑
k=1

−1
)

→−∞
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that comparisons of lotteries are sensitive only to differences in the probabilities and local values

of the worlds in their domains, and that those local values are additively separable. This is the

direct analogue of Separability of Value for the lottery context, such that I will abbreviate it to

‘Separability of Value’ in what follows.

Separability of Value (for Lotteries): For any La, Lb ∈ P such that all worlds in W(a,b)

contain the same locations, and for any W ∈ W(a,b), let L′a denote the lottery with

L′a(W ) = La(W −W ′) for all W ∈ Wa + W ′, and similarly for L′b. If La < Lb then L′a

< L′b.
17

I find Stochastic Dominance, Finite Expectations, and Separability of Value, as well as their con-

junction, hard to deny. So ED1 is on firm ground as a minimal principle for comparing lotteries,

just as Additivity is for comparing worlds.

5.2 Expectations of Differences 2

But ED1 doesn’t get us far. Consider W101 and L3.

la lb lc ld le · · ·

W101 : 1 0 1 0 1 · · ·

L3


L3(W )

1
2

1
2

∣∣∣∣∣∣∣∣∣
la lb lc ld le · · ·

W3 : 3 3 3 3 3 · · ·

W0 : 0 0 0 0 0 · · ·

Take any pair of those worlds and sum their local differences; the result is infinite. If we apply

ED1 here, no matter which baseline-world we pick, either both expected sums are infinite or at least

one is undefined. Using ED1 alone, we cannot compare these lotteries. Yet, intuitively, we can. So

a stronger rule would be helpful.

Before I present that rule, consider how little we need to compare two lotteries over finite payoffs.

We can make judgements without knowing the probabilities in each lottery—we just need to know

the differences in probability of each outcome between one lottery and the other. And we can make

17This also implies the converse since, for all W ′, the condition also applies to −W ′.
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judgements without knowing the values of the outcomes—we just need to know the (scale of the)

differences between them. Even then, we need not know the precise differences—upper and lower

bounds can be enough.

To illustrate, here are two lotteries over finite payoffs that we can compare with incomplete

information.

L′101: value 1 with probability 1.

L′3: value v + 1 with probability 1
2 ; value 0 otherwise.

Here, v is some real number such that v > 2. We cannot assign it a precise value, perhaps because

it is vague or indeterminate. But we can still judge which lottery is better. Take their expected

values: L′101 has expected value 1; and L′3 has expected value v+1
2 , which is greater than 1. So L′3 is

better. Incomplete information is unproblematic here.

We have similar information when comparing the above lotteries W101 and L3 over infinite

worlds—they are structurally equivalent to L101′ and L′3. So we can take a similar approach.

First, take the difference between each world and the next best world in the domain of the two

lotteries. If our worlds had finite total values, we would represent those differences with finite values.

But, with infinite worlds, we must represent differences as worlds themselves—worlds given by the

differences in local values. For each world Wi which has some distinct next best world Wj in the

domain, the difference between them is given by Di = 〈L, Vi − Vj〉, with local values Vi(l)− Vj(l) at

every location. (Note that, if there is no world in W(1,2) that is strictly worse than Wi, then Di is

undefined.)

la lb lc ld le · · ·

D3 : 2 3 2 3 2 · · ·

D2 : 1 0 1 0 1 · · ·

Second, compare those differences to one another. Again, this would be straightforward with

finite differences, but less so here. But, fortunately, we can compare them. Those differences are

themselves worlds, and can be compared using the same ‘at least as good as’ relation as we would

use for any worlds. Since that relation obeys Additivity (or just Pareto), D3 � D1.

Further, we can say how much better they are than one another by taking scalar multiples of
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them.18 A scalar multiple of a world W can be defined as k ·W = 〈L, k×Vi〉 for any real k—a world

with the same locations but local values k times as great. For instance,

la lb lc ld le · · ·

2 ·D1 : 2 0 2 0 2 · · ·

Note that D3 is still greater than 2 · D2. So we can say that D3 is more than twice as great a

difference as D2. How much greater, exactly? It doesn’t matter, to compare these lotteries. The

fact that D3 � 2 ·D2 gives us all the information we need. With that fact in hand, the information

we have here is analogous to what we had for the analogous finite lotteries L′101 and L′3 above. D3

is analogous to v and D2 to the value 1. So we might compare these lotteries in an analogous way,

and say that L3 � W101.

Returning to the finite context, more generally, we do not even need to know the exact proba-

bilities involved in lotteries like L′101 and L′3. It suffices to know how much greater they are for one

lottery than another. This is because the statement that some lottery La has greater expected value

than some Lb can be rewritten as:

E(La)− E(Lb) =
∑

w∈W(a,b)

((
La(w)− Lb(w)

)
× V (w)

)
≥ 0

Further, it can be rewritten in terms of differences in probabilities and differences in value, as below.

Here, we use the probability of each lottery turning out at least as good as each outcome wi, rather

than the probability of wi alone. (Note that the outcomes w1, w2, w3, ... are ordered from worst to

best.)

E(La)− E(Lb) =
∑

wi∈W

((
La(<wi)− Lb(<wi)

)(
V (wi)− V (wi−1)

))
≥ 0

In the infinite context, I propose that we attempt to satisfy something akin to this equation—

evaluating the expectations of differences—rather than taking the standard approach of taking ex-

pectations and comparing them. I propose that we apply Expectations of Differences 2, which goes

like this.

Expectations of Differences 2 (ED2): Take any La, Lb ∈ P such that all W ∈ W(a,b) have

18Since the local values in the original worlds Wi and Wj are represented on a common interval scale, the local values
in Di can be represented on a ratio scale—they have an absolute zero, 0. So it makes sense to compare their absolute
size via scalar multiplication, and likewise for such difference-worlds at large.
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the same locations. La < Lb if, for some W∗ ∈ W(a,b) and for all Wi ∈ W(a,b), there exists

ki ∈ R such that ∑
Wi∈W(a,b)

(
La(<Wi)− Lb(<Wi)

)
ki ≥ 0

and either ki ·D∗ 4 Di if La(<Wi)− Lb(<Wi) > 0,

or ki ·D∗ < Di if La(<Wi)− Lb(<Wi) < 0.

The first equation here is an analogue of the equation above, but ki stands in as a measure of

just how great the difference is between Wi and the next best world in the domain Wj . And the

later conditions ensure that ki is such a measure. Compared to some baseline difference-world D∗,

ki is what we must multiply Di by for it to be greater (or smaller, if getting Wi or better is more

likely under Lb). But ki need only be a rough measure: if La has the higher probability of producing

Wi or better, then ki is just a lower bound on the size of Di; if Lb has the higher probability of Wi

or better, then ki serves as an upper bound on the size of Di. We don’t need ki to give exact relative

sizes.

If we apply ED2 to the comparison of W101 and L3 from earlier, the process matches the informal

reasoning given above. With only three worlds in the domain W(2,4), we have just two difference-

worlds D3 and D2 (as detailed above). We can treat D2 as the baseline D∗. Then k2 can be 1 (since

1 ·D2 ∼ D2), k3 can be 2 (since 2 ·D3 � D2), and k0 can be undefined as D0 is. These kis satisfy

the latter conditions of ED2. And when we move to the former condition, the sum on the left of the

equation becomes 1
2 × 2 + 0 × 1 + 0 × k0 = 1 > 0. So ED2 is satisfied; L3 is better than W101, as

intuition suggests.19

But should we accept ED2? I think so, and not just based on the intuitive correctness of its

verdicts or its analogy to finite decision-making. For one, it implies all of the (very plausible)

judgements of ED1, as long as Additivity holds.

Theorem 3: For any reflexive, transitive relation < on P, if < satisfies Expectations of

Differences 2 and Additivity, then it satisfies Expectations of Differences 1.

Given the compatibility of ED2 with ED1, we already know that this version of Expectations of

Differences will deal with cases like Egregious Energy better than rival views. But it’s also stronger

19Note that it is only strictly better because there exist no suitable k3, k2, and k0 that make this sum less than or
equal to 0.
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than ED1, as demonstrated by the example above.

Also in its favour, the rule is implied by the conjunction of several highly plausible principles.

Theorem 4: For any reflexive, transitive relation < on P, if < satisfies Stochastic

Dominance, Separability of Value (for Lotteries), Independence, and Extrapolated Ex-

pectations, then it satisfies Expectations of Differences 2.

Stochastic Dominance and Separability of Value will be familiar from earlier. Then we have two

newcomers.

First, Independence is the same principle that is often used to axiomatise expected utility theory.

Suppose we evaluate L1 is at least as good as L2. Independence says that we could mix each lottery

with some third lottery L3, whatever it might be, and the resulting mixed lotteries would be ranked

the same way. More formally, it can be stated as follows.

Independence: For any La, Lb, Lc ∈ P define lotteries La∨c, Lb∨c as

La∨c(W ) = p× La(W ) + (1− p)× Lc(W ) for all W ∈ W

and Lb∨c(W ) = p× Lb(W ) + (1− p)× Lc(W ) for all W ∈ W

For any La, Lb, Lc ∈ P and for any p ∈ [0, 1], La∨c < Lb∨c if and only if La < Lb.

We then have Extrapolated Expectations, which should also be uncontroversial for those who accept

expected value theory in the finite setting. It merely says that, for any world W ′ � 0, a lottery with

probability p of W ′ (and p− 1 of 0) is precisely as good as p ·W ′.

Extrapolated Expectations: For any world W ′ � 0 and any p ∈ (0, 1], let L be defined as

below. Then L ∼ p ·W ′.

L(W ) =


p for W = W ′

1− p for W = 0

0 for W /∈ {W ′,0}

If we faced a similar lottery over finite payoffs, w and 0, we’d assign it expected value p ·w without

hesitation. Extrapolated Expectations requires that we treat infinite worlds in the same way. And it’s

on firm footing of its own—if our< relation for comparing worlds obeys Additivity, then Extrapolated
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Expectations follows straightforwardly from Finite Expectations and Stochastic Dominance. It is also

worth noting that it follows from Local Expectations—if one is tempted to adopt Local Expectations

instead of ED2, Extrapolated Expectations must hold either way.

And if we accept Extrapolated Expectations, Independence, Stochastic Dominance, and Separa-

bility of Value, then we must also accept ED2, by Theorem 4.

5.3 Weaknesses of Expectations of Differences

Even ED2 does not provide judgements in every case. For one, the rule’s antecedent requires that

every world in the domain of both lotteries contains the same locations. For another, to assign a

suitable ki to each difference-world, many of these differences need to be comparable to certain scalar

multiples of one another. And these conditions sometimes are not met.

Here is one pair of lotteries where the latter condition isn’t met. They are similar to those I used

earlier to demonstrate Local Expectations in action, but with slightly different probabilities. (Here,

ε is some small positive number.)

la lb lc ld le lf lg lh li lj lk · · ·

W2 : 1 0 1 0 1 0 1 0 1 0 1 · · ·

L4


L4(W )

1/2− ε

1/2 + ε

∣∣∣∣∣∣∣∣∣
la lb lc ld le lf lg lh li lj lk · · ·

W2 : 2 2 2 2 2 2 2 2 2 2 2 · · ·

W0 : 0 0 0 0 0 0 0 0 0 0 0 · · ·

What does ED2 say? Well, here are our differences-below, and a relevant scalar multiple.

la lb lc ld le · · ·

D2 : 1 2 1 2 1 · · ·

D101 = W101 : 1 0 1 0 1 · · ·

(1 + ε′) ·D101 : 1 + ε′ 0 1 + ε′ 0 1 + ε′ · · ·

By Additivity alone, we cannot compare D2 to the scalar multiple (1+ε′) ·D101, since the former

does better at locations lb, ld, lf , ... and the latter does better at the rest. The sum of their local
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differences is undefined. And given the probabilities here, there is no way to generate kis that satisfy

both of the equations needed for ED2.

Thus, ED2 and Additivity together say nothing about how we should compare W1 to L. And this

is even though every pair of worlds at play is comparable and, on top of that, so are the differences

between each of them. Even worse, we only made the smallest of changes to a lottery that would

otherwise be comparable to W2—all we did was give L4 a mere +ε of probability mass for one

outcome, and now we cannot say a thing!

My first response to this silence is simply: tu quoque. Suppose we adopt the rival Arntzenius-

Bostrom-Meacham view, and so swap ED2 for Local Expectations. Then we still cannot compare

these two lotteries. So I am doing no worse here. But that is little comfort.

My second response is that this is not a shortcoming of Expectations of Differences, but of

Additivity. Additivity is a very weak constraint on betterness. I have used it so far because it is so

weak—this weakness makes it uncontroversial and, indeed, all of the plausible stronger principles in

the literature are consistent with it. We can treat the conjunction of ED2 and Additivity similarly:

it is just a weak and (hopefully) uncontroversial condition for comparing lotteries. So it is fitting

that it makes no judgement in this case. The correct judgement is not obvious, so it should remain

silent.

My third, closely related, response is that, actually, ED2 allows us to do better. It can be

combined with almost any betterness relation we choose—the definition above makes no reference

to Additivity, but instead to some unspecified < relation. We might adopt the < relation from

Vallentyne and Kagan (1997, p. 19), Jonsson and Voorneveld (2018), or Wilkinson (2021), each

of which is much stronger than Additivity. If in the above example the locations have the right

structure, each of these proposals can easily say that L4 is strictly better than W101.
20

And even without a betterness relation stronger than Additivity, ED2 does just fine in the

examples in the previous sections, including Egregious Energy. So this approach is not so weak after

all.

20In particular, if we combine ED2 with the proposal in Wilkinson (ibid., p. 1946), it will deliver verdicts in almost
every physically realistic decision scenario ever faced by agents like us (see Wilkinson, n.d.(a), §4).
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6 Conclusion

For those who endorse moral theories that rely on an aggregative theory of value, discovering that

the universe is infinite may be cause for dismay. Such theories seems to fall silent in all cases where

it must rely on facts of betterness. In effect, they seem to say that it is impossible to make the world

better.

There is some cause for relief: we have proposals for betterness relations that resemble finite

aggregationism but which fare better in infinite worlds (e.g. Vallentyne and Kagan, 1997; Lauwers

and Vallentyne, 2004; Arntzenius, 2014; Jonsson and Voorneveld, 2018; Wilkinson, 2021; Bostrom,

2011, pp. 27-30). But these are of little use to limited epistemic agents like us—we are uncertain of

the effects of our actions. After all, most of these betterness relations offer no clear way to compare

lotteries over infinite outcomes. And those that do so have implausible implications, as we saw in

Section 4.

This would seem to be a dismal situation for aggregative theories. But I have shown that the

situation is rather less dismal than this. No matter which of the above proposals for comparing

worlds we endorse, we now have a plausible method for extending that proposal to compare lotteries

as well. Just how wide a range of lotteries we can compare will depend on the strength of our method

for comparing worlds—a particularly strong method like that of Wilkinson (2021) will be able to

compare many of them, while a weak method will not. But even with a weak method, such as that

given by Additivity, we can begin to offer plausible verdicts in various difficult cases described above.

And so we may be able to restore the judgements of aggregative theories in practice.

7 Appendix

Theorem 2: For any reflexive, transitive relation < on P, if < satisfies Stochastic Dominance,

Finite Expectations, and Separability of Value (for Lotteries) then it satisfies ED1.

Proof : Let L1, L2 ∈ P be any lotteries for which:

∑
Wj∈W1

L1(Wj)
(∑
l∈L

Vj(l)− V∗(l)
)
≥

∑
Wj∈W2

L2(Wj)
(∑
l∈L

Vj(l)− V∗(l)
)

(i)

Either 1) both sides of the inequality converge unconditionally to some real values, with LHS ≥
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RHS, or 2) LHS diverges unconditionally to +∞, RHS diverges unconditionally to −∞, or both.

If (1): define L∗1, L
∗
2 ∈ P by L∗1(W −W∗) = L1(W ) and L∗2(W −W∗) = L2(W ) for all W ∈ W(1,2)

(and L∗1(W ), L∗2(W ) = 0 otherwise). Since both sides of (i) converge unconditionally to real values,

the expected total sums of local value in L∗1 and L∗2 will be finite, and the expected total sum for L∗1

will be greater than or equal to that for L∗2. By Finite Expectations, L∗1 < L∗2. Then, by Separability

of Value (for Lotteries), L1 < L2, as required.

If 2): LHS of (i) diverges to +∞, or the RHS diverges to −∞, or both. If both, then define L∗1

as above and L∗2(W0) = 1. If not both, then define L∗1, L
∗
2 as above. Then L∗1 < L∗2.

If LHS diverges to +∞ then, by Stochastic Dominance there is some lottery L∗∗1 with finite

expected sum such that L∗1 < L∗∗1 and L∗∗1 < L∗2 by Finite Expectations. We can obtain L∗∗1 from L∗1

by replacing any worlds in its domain that have total value greater than a given finite bound with

some other worlds with totals below that bound.

If LHS does not diverge but RHS does diverge to −∞, by Stochastic Dominance there is some

lottery L∗∗2 such that L∗2 4 L∗∗2 and L∗∗2 4 L∗1 by Finite Expectations.

Either way, L∗1 < L∗2. Separability of Value (for Lotteries) then implies that L1 < L2. �

Theorem 3: For any reflexive, transitive relation < on P, if < satisfies ED2 and Additivity, then

it satisfies ED1.

Proof :

Let L1, L2 ∈ P be any lotteries for which:

∑
Wj∈W1

L1(Wj)
(∑
l∈L

Vj(l)− V∗(l)
)
≥

∑
Wj∈W2

L2(Wj)
(∑
l∈L

Vj(l)− V∗(l)
)

(i)

In other words, these two lotteries can be any lotteries such that ED1 implies that L1 < L2. To

prove the theorem, it suffices to show that ED2 implies that L1 < L2 too.

From (i), for some W ∗ ∈ W(1,2),∑
Wj∈W1

L1(Wj)
(∑
l∈L

Vj(l)− V ′(l)
)
≥

∑
Wj∈W2

L2(Wj)
(∑
l∈L

Vj(l)− V ′(l)
)

⇒
∑

Wj∈W(1,2)

(L1(Wj)− L2(Wj))
(∑
l∈L

Vj(l)− V ′(l)
)
≥ 0 (ii)

Assume that the signs of L1(Wj)− L2(Wj) and
∑

l∈L Vj(l)− V ′(l) differ for some Wj ∈ W(1,2),
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and hence also that the signs are the same for some other Wi. (iii) (If not, then we immediately

have that ED2 implies that L1 < L2.)

Given (ii), either 1) for at least one Wj ,
∑

l∈L Vj(l) − V ′(l) diverges unconditionally to +∞, or

2) all of those sums are finite.

1) For at least one Wj ,
∑

l∈L Vj(l)− V ′(l) diverges unconditionally to +∞:

There will be at least one Di with an infinite sum of local values and ∆pi > 0, but none with

∆pi > 0. Given (ii), we also have at least one D∗ with negative ∆p∗. Given that the sum diverges

unconditionally, that D∗ must only have a finite total sum of local values. For all finite-sum Di, set

ki = 0. For all infinite-sum Di, set ki = 1. Then we have ki∆pi ·D∗ 4 ∆pi ·Di for all Di.

And
∑

Wi∈W(1,2)
ki∆pi ≥ 0, since it will simply be the sum of the (at least one) infinite-sum

Di with positive ∆pi. Thus, both conditions of ED2 are satisfied, and it implies that L1 < L2, as

required.

2) For all Wj ,
∑

l∈L Vj(l)− V ′(l) is finite:

Then each Di will also have a finite total sum of local value, Si =
∑

l∈LDi(l).

Let D∗ = D′. Then let each ki = Si
S∗

. Since all Si are finite and all Di < 0, Additivity says

that ki∆pi ·D∗ ' ∆piDi if and only if ki∆pi × S∗ = ∆piSi. Since ki = Si
S∗

, this holds for all Di, as

required.

We now seek the second condition of ED2. First, note the general observation that P (W ) · V +

(1−P (W )) ·V ′ = V ′+P (W ) ·(V −V ′). By iterating that rearrangement, we can obtain the following

from (ii). ∑
Wi∈W(1,2)

(PL1(Wi or better)− PL2(Wi or better)
(∑
l∈L

Vi(l)− Vj(l)
)
≥ 0

( where Wj = max{W ∈ W(1,2)|Wj ≺Wi})

⇔
∑

Wi∈W(1,2)

∆pi
∑
l∈L

Di(l) ≥ 0

⇔
∑

Wi∈W(1,2)

∆piSi ≥ 0

⇔ 1

S∗

∑
Wi∈W(1,2)

∆piSi ≥ 0

( since S∗ > 0)

⇔
∑

Wi∈W(1,2)

∆piki ≥ 0 �

∗ ∗ ∗
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The proof of Theorem 4 below relies on Lemma 1. This lemma implies that, if Independence

and Extrapolated Expectations hold, then we can evaluate any lottery in which every outcome is

some scalar multiple of some world W � 0. We evaluate it as the probability-weighted sum of scalar

multiples of W .

Lemma 1: Let L be any lottery in

P

with finite domain and such that, for some W ′ ∈ W, L(W ) > 0 only if W = k ·W ′ for some positive,

real kj . If < satisfies Independence and Extrapolated Expectations, then:

L ∼ (
∑

Wj∈W
L(Wj)× kj) ·W

Proof :

Let kmax be the greatest such kj (which exists, since L has finite domain).

For each kj such that L(kj · W ′) > 0, let Lj(kmax) =
kj

kmax
and Lj(0) = 1 − kj

kmax
. Since

kj ·W =
kj

kmax
· (kmax ·W ), Extrapolated Expectations implies that kj ·W ∼ Lj .

By Independence, in L we can replace each world kj ·W with lottery Lj . In other words, by (i) and

Independence, L ∼ L′, where L′(kmax ·W ′) =
∑

kj∈R L(kj ·W ′)× kj
kmax

and L′(0) = 1−L′(kmax ·W ′).

By Extrapolated Expectations, L′ ∼ (
∑

kj∈R L(kj ·W )× kj
kmax

) · (kmax ·W ).

∴ L ∼ (
∑

Wj∈W L(Wj)× kj) ·W , as required. �

Theorem 4: For any reflexive, transitive relation < on P, if < satisfies Stochastic Dominance,

Separability of Value, Independence, and Extrapolated Expectations, then it satisfies ED2.

Proof :

For any L1, L2 ∈ P and any Wi ∈ (∞,∈), define ∆pi = L1(<Wi)−L2(<Wi). And let L1, L2 ∈ P
be lotteries such that, for some W∗ and any Wi ∈ (∞,∈),

ki∆pi ·D∗ 4 ∆pi ·Di (i) and
∑

Wi∈W(1,2)

ki∆pi ≥ 0 (ii)

For some such W∗ and kis, let LD
1

(( ∑
Wj∈4Wi

kj
)
·D∗
)

= L1(Wi) for all Wi ∈ W1, and similarly for LD
2 .

By Separability of Value, D∗ � 0 (since it is the difference between some world and a worse one).
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So, by Lemma 1,

LD
1 ∼

( ∑
Wi∈W1

L1(Wi)
( ∑
{Wj∈W(1,2)

kj
))
·D∗ and similarly for LD

2 and L2.

So LD
1 < LD

2 if and only if:

∑
Wi∈W1

L1(Wi)(
∑

{Wj∈W(1,2)

kj) ≥
∑

Wi∈W2

L2(Wi)(
∑

{Wj∈W(1,2)

kj)

⇔ kmin+
∑

Wi∈W(1,2)

L1(<Wi)×ki ≥ kmin+
∑

Wi∈W(1,2)

L2(<Wi)×ki where kmin = min{ki|Wi ∈ W(1,2)}

⇔
∑

Wi∈W(1,2)

ki∆pi ≥ 0

Therefore, by (ii), LD
1 < LD

2 .

For the same W∗ and kis, define L∗1(W −W∗) = L1(W ) for all W ∈ W1, and L∗2 likewise (mutatis

mutandis). These lotteries resemble L1 and L2; each outcome just has W∗ is subtracted from it. As

a result, each outcome W −W∗ can be represented as:

W −W∗ =
∑

{Wj∈W(1,2)|W∗4Wj4W}

Dj (or, for W ≺W∗, as
∑

{Wj∈W(1,2)|W4Wj4W∗}

−Dj).

But, by (i), whenever ∆pi > 0,

Wi −W∗ =
∑

{Wj∈W(1,2)|W∗4Wj4Wi}

Dj < (
∑

{Wj∈W(1,2)|Wj4Wi}

kj) ·D∗

and, whenever ∆pi < 0, the inequality is reversed. Therefore, by Stochastic Dominance and (i), L∗1

< LD
1 and LD

2 < L∗2. Then, by transitivity of <, L∗1 < L∗2.

By Separability of Value, L1 < L2 if and only if L∗1 < L∗2. Therefore, L1 < L2, as required. �
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