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Abstract

This paper explores De Finetti’s generalized versions of Dutch Book
and Accuracy Domination theorems. Following proposals due to Jeff
Paris, we construe these as underpinning a generalized probabilism
appropriate to belief states against either a classical or a non-classical
background. Both results are straightforward corollaries of the sepa-
rating hyperplane theorem; their geometrical relationship is examined.
It is shown that each point of Accuracy Domination for » induces a
Dutch Book on b; but Dutch Books may need to be ‘scaled’ in order to
find a point of Accuracy-Domination. Finally, diachronic Dutch Book
defences of conditionalization are examined in the general setting. The
formulation and limitations of the generalized conditionalization this
delivers are examined.
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1 Generalized probabilism

Probabilism is the thesis that ideal belief states should be structured
probabilistically. Familiar arguments for probabilism presuppose a
background classical logic and semantics. Generalized probabilism is
not subject to these limitations; it claims that even in non-classical
settings ideal belief states should be structured via a non-classical
analogue of probability.

Section 1 briefly reviews relevant literature: Bruno De Finetti’s very
general Dutch Book and Domination arguments, and Jeff Paris’s in-
terpretation of the former as an argument for generalized probabilism.
In sections 2-4 De Finetti’s arguments are presented; sections 5-6 draw
out the geometrical relationships between the Dutch Books and Accu-
racy Domination. Sections 7-9 examine an extension of these results.
We give a geometrical characterization of the constraints on updating
degrees of belief provided by Lewis-style ‘diachronic Dutch Books’. In
the classical case, the non-dutchbookable update strategy is condi-
tionalization; we examine the characterization of non-dutchbookable
updates in the generalized setting.

1 Generalized probabilism

Dutch Book theorems have long been used to argue for probabilism:
the view that ideal belief states should be structured probabilistically.
More recently, Jim Joyce (1998, 2009) has argued for probabilism on
the basis of ‘Accuracy Domination’—considerations that are supposed
to turn simply on rational agents’ aspiration to have beliefs that are
close to the truth, rather than their love of money. The Dutch Book
argument for probabilism contends that having non-probabilistic de-
grees of belief commits one to regarding as fair a sure-loss book of
bets. The Accuracy Domination argument contends that if one has
non-probabilistic degrees of belief, there will be a rival probabilistic
belief-state that is guaranteed to be ‘closer to the truth’ than one’s
own.

Versions of the theorems that underpin each argument are presented

by De Finetti (1974, pp.87-90). De Finetti’s theorems are interestingly
general: they are formulated in terms of expectations (‘previsions’)
over an arbitrary set of random variables over the reals. They show
that something analogous to ‘Dutch Booking’ or ‘domination’ will oc-
cur unless the expected values of the variables meet certain formal
constraints, allowing us to derive standard constraints on expectation
values. Once we have this general result, as a special case one can con-
sider random variables that correspond to classical propositions—each
one taking value 1 if its associated proposition is true, and 0 if it is
false. We identify degrees of belief in a proposition with the expecta-
tion of the associated random variable or ‘prevision of truth value’ In
the general case, De Finetti’s theorems show that a set of ‘coherent’
(non-dutchbookable/non-dominated) expectations must be a convex
combination of the set of values taken by the random variables. In
the special case, this means that ‘coherent’ (non-dutchbookable/non-
dominated) degrees of belief must be convex combinations of classical
truth value distributions. It turns out that the convex combinations
of classical truth values are exactly the classical probabilities; so the
special case provides the resources for the arguments for (classical)
probabilism mentioned above.!

Paris (2001) argues that a more generalized probabilism is in the
offing. Paris uses De Finetti’s general Dutch Book result to study
coherent degrees of belief in non-classical settings. Rather than ex-
pectations of classical truth values (random variables taking values
1 and 0, classically distributed) he studies nonclassical truth value
distributions and the associated degrees of belief (again construed as
previsions of truth value). More specifically, on minimal assumptions
about the nature of the truth-value distributions, we will be able to
show that non-dutch-bookable belief states must satisfy the following
generalizations of the familiar axioms of probability (Choquet, 1953):

IUnlike Joyce, De Finetti does not interpret the domination results in terms
of a norm of gradational accuracy on credence, but instead uses it to construct a
second sure-loss argument for probabilism. See De Finetti op cit.
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(L1) A = bAa)=1
AE = bA)=0
(L2) AEB = b(A)<b(B)

(L3) b(AAB)+b(AVB) = b(A)+b(B)

The assumptions required to give this result are that (i) the propo-
sitions take truth values from {1,0}; (ii) the consequence relation |=
is given by ‘l-preservation’; i.e. A |=B iff on every truth value distri-
bution, if the truth value of A is 1, the truth value of B is 1; (iii) the
distribution of truth values satisfy the following:

(T2) V(A)=1AV(B)=1 <= V(AAB)=1
(T3) V(A)=0AV(B)=0 <= V(AVB)=0.

This lovely result shows that (for a large range of cases) coherent
belief states against a non-classical backdrop are subject to the same
local constraints as in the classical case, so long as these are suitably
formulated to make their dependence on the background logic explicit.

However, the results so far still fail to cover some interesting non-
classical settings. For example, there are comparatively natural exam-
ples where (7°3) fails; and in ‘fuzzy’ semantics the range of truth values
may fall within [0,1] rather than just within {0,1}. This motivates
a programme finding axiomatizations of coherent belief states/convex
combinations of truth values are available in those cases falling outside
Paris’s characterization. Here I will mention just one of the examples
given by Paris (crediting Jaffray (1989)) that will be of special interest
to us later.

The space of ‘value assignments’ on which we focus can be thought
of as ‘partial’ assignments of truth and falsity. More specifically, for
each assignment V there is some proposition B such that V(A) =1 iff
B = A; otherwise V(A) = 0. Note that when neither A nor its negation
are classically entailed by B, both get value 0. The interpretation of
these values Paris suggests is epistemic—the value 1 being read as
‘known true’ and 0 as ‘known false’: a situation in which A and —A

both taking value 0 is one where there is a gap in your evidence. An
alternative, on-epistemic interpretation of such truth-value distribu-
tions is provided by the widely-discussed supervaluational semantics
(cf. van Fraassen, 1966; Fine, 1975; Keefe, 2000; Field, 2000), where
such cases are interpreted as truth value gaps.?

Shafer (1976) and Jaffray (1989) tell us exactly what the non-
dutchbookable belief states look like against this backdrop: they are
the Dempster-Shafer belief functions, axiomatized thus:

(DS1) A = b(A) = 1,b(~A4) =0
(D52) E(A<B) = b(A)—b(B)
(DS3) b1 A) = Ts(—1)B1b(AsesA))

(where S ranges over non-empty subset of {1,...,m}).

So the project of generalized probabilism may be extended to pro-
vide a potential underpinning for a well-known rival to classical prob-
abilism itself.

In discussing generalized probabilism, we followed Paris in focus-
ing on Dutch Book arguments. But one can equally study coherent
non-classical degrees of belief using De Finetti’s general domination
result; and non-domination delivers the same set of generalized prob-
abilities as non-dutch-bookability, if one works with the same input
set of non-classical truth-value distributions.® So not only the famil-
iar pragmatic arguments for probabilism, but also the more recent
alethic arguments that Joyce has proposed can be put at the service

2This is further explored in (Author).

3This is the approach taken in (Author), where a generalized Accuracy-
Domination theorem is interpreted in the Joycean manner as a ‘de-pragmatised’
argument for generalized probabilism. (Some generality is added in that presen-
tation. There are various potential ways of measuring the key notion of ‘distance
from the truth values’, but De Finetti’s result are formulated with one particu-
lar measure—the so-called Brier score. Joyce instead argues for a set of axioms
providing constraints on what can count as an ‘accuracy measure’, and proves a
domination result for any measure satisfying the constraint; (Author) shows Joyce’s
strategy generalizes to the non-classical settings.)
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of generalized probabilism.

That Dutch Books and Accuracy Domination results both hold over
such a wide range of settings is extremely striking. The project in what
follows is to examine the nature of the connection between them, ex-
panding upon De Finetti’s brief proofs of the two results. We will
look into the details of the construction to extract information about
how specific Dutch Books and ‘dominating belief states’ relate to one
another. Finally, we push forward the project of generalized proba-
bilism by providing an additional result in the spirit of De Finetti: a
generalized diachronic Dutch Book theorem.

2 The key lemmas

We model an arbitrary belief state as a function from a set of N
propositions to real numbers—the number assigned to the proposition
0 representing the degree of belief that it is true. Belief states, so
construed, will be identified with vectors in an N-dimensional space,
equipped with the Euclidean inner product and (hence) a notion of the
‘nearness’ or ‘distance’ between two arbitrary belief states. For now,
we can think of this as a purely abstract notion—but in the arguments
below, it will receive a definite interpretation. Within this space of
belief states, we have a convex set C containing a subset W. We’ll call
C the ‘coherent belief states’ or ‘probabilities’, and W the ‘truth value
distributions’ or ‘worlds’. And indeed, on a standard interpretation
of W and C, W will be vectors that represent an exhaustive, bivalent,
truth value distribution (of 1’s and 0’s) over the propositions; and C
will be the corresponding set of classical probabilities (which, recall,
can be identified with the convex combinations of elements of W).
But the results below will not require this exact interpretation, which
allows us to apply to the theorem with W non-classical truth value
distributions and C the convex combinations thereof. Other readings
are also possible, though we will assume throughout that W is finite.

The first key result is this. Given a belief state b not in C, there

is a state ¢ € C which is at least as close to b as any other state in
C (this follows straightforwardly from the closure of C). ‘Nearness’
here is understood via the standard Euclidean inner-product on the
vectors—so what we’re saying is that Vx € C, ||b—x|| > ||b—c||. *

The second key lemma can be expressed in several ways. But the
underlying idea is this. Take the vector s that goes from ¢ to b (s =
b—c). And consider a vector ¢t that goes from ¢ to some arbitrary
belief state a in C (f =a—c). The lemma says that the angle between
s and ¢ is not acute. In vector terminology, s-¢t < 0. We can equally
express the result as: s-(a—c¢) <0 or s-a <s-c. The situation is easy
to picture geometrically: see figure 1.

Figure 1: The key lemma: the angle between s and ¢ is non-acute.

4Let X be the intersection of C with the set of vectors x such that ||b—x|| < r,
for some r large enough to make X non-empty. Note that X is closed and bounded.
The function f(x) = |jx—b|| is continuous over the closed bounded set X, so it
achieves a minimum by the extreme value theorem. This minimum is the required
c. See Border (manuscript 2009, p.5) for a proof of this result that works for
general Hilbert spaces, rather than just the Euclidean N-dimensional space we’re
working with here.
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We can prove this algebraically.® To do so, consider an arbitrary
point x = ¢+ A(a —c¢) on the line segment between a and c¢. By con-
vexity, x € C. By choice of ¢, we have ||b—x|| > ||b—c||. Hence
(b—x)2 > (b—c)%. We write:

0 > |lb—c|?—|b—x| Region 1
= [[b—c|P—|lb—c—Na—0)|]? construction of x
— (b=l ~[(b—c—Ma—c))- (b—c—Ma—c)] ¢
= fb—cll=[llb—cl — 2Ab — ) (a—c) + W¥{|a— | :
= 2Mb—c)-(a—c)—MN(a—c)? |
0 > (b—c)-(a—c)—iMa—c)? dividing by 24 |
0 > (b—c)-(a—c) letting A — 0 :
0 > s-t

For illustration, let us consider the situation in two dimensions,
to see how the geometry (at least in that special case) confirms the
algebraic derivation above (see figure 2). What regions can C occupy,
seen from b7 Well, we constructed ¢ as a maximally closest point in
C from b. So if we draw a circle around b, of a radius equal to the
distance between ¢ and b, none of C falls within that circle. Now draw
the tangent to the circle at ¢ (the dashed line in figure 2). Can any
portion of C fall into region 2, the part to the left side of the tangent?
It cannot. For if there’s any point in C in region 2—call it x—the line
from ¢ to x will intersect the circle. The convexity of C assures us
that every point on the line cx, including those within the circle, are
elements of C. But this now contradicts the earlier constraint, that no
part of C is within the circle. By reductio, every point in C must be
in region 1. Since C is confined to region 1, the angle formed between
s and the line between ¢ and any other point in C, will be at worst
right-angled, if not obtuse. Hence the result.

5The proof below follows Border (manuscript 2009, p.6). It forms the core of
the well-known ‘separating hyperplane theorem’ (due to Minkowski).

Region 2 x

Figure 2: A geometrical version of the argument, in two dimensions.
C is confined to region 1.

3 Generalized Dutch Books

With the key lemmas in hand, let’s prove the Dutch Book result. The
theorem (shorn of philosophical interpretation) is simply the following.
Let s =b—c (i.e. the difference between the belief state b and the
nearest point to b in C). Then, for allw e W, (s-w) < (s-b). To prove
this, recall that from the lemmas above, we already have that for every
ainC, (s-a) < (s-c). Since W CC, we have (s-w) < (s-c). It will suffice
to show, therefore, that (s-c¢) < (s-b). But this is straightforward:
consider the vector s = b —c once more. It has positive length (else
b = ¢, which contradicts the assumption that b is outside C). So we
know that ||s|| > 0. But this means that 0 < (s-s) = (s-(b—c)); hence
0 < (s-b)—(s-c). Rearranging, this gives us the result.

Why would this be called the ‘Dutch Book’ theorem? To see this,

we need to consider how we might represent the returns of a book of
bets, and the price of that bet, within our space. Our assumption
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will be that if we bet on a particular proposition 6; with a prize of
z; dollars/utils, then we will gain z; if the proposition is true, and 0
otherwise (take the term ‘prize’ with a pinch of salt: prizes in our sense
can be negative). Or more generally, we will obtain at world w € W
an amount equal to the prize multiplied by the truth value of w in
W (this characterization, note, covers non-classical as well as classical
truth values). A complete book of bets, one for each proposition, is
thus given by a vector z = (z;), which will live within our vector space.
The overall prize of a book of bets z at world w is given by multiplying
each z; by the truth value of 6; at w and summing. But the process
just described is simply that of taking the Euclidean inner product
between z and w. Hence, if z describes a book of bets, z-w gives its
return at w.

As well as the returns of a book, we need to consider how much we
pay to get the chance of that prize—the price of a book of bets. As is
standard in Dutch Book arguments, we assume that the fair price for
an individual bet with unit prize for an individual with belief state b
is specified by the degree of belief that b assigns to the proposition bet
upon; and that the fair price for a book of bets is given by summing the
fair prices of the individual bets. For variable prizes, there is a parallel
assumption: the fair price for an individual bet on 6; with prize z; is
given by the degree of belief in 6; multiplied by z;; and the fair price of
a book of bets with prize z is given by taking the individual fair prices
and summing. (Of course, this is an ideal point for those sceptical of
the philosophical significance of Dutch Book arguments to resist; but
since we are interested not in whether the argument works, but with
its geometrical structure, I will not pursue this further). Again, we
note that this has a geometrical expression: the fair price relative to
belief state b of a book of bets z is b - z.

A book of bets with be a ‘sure loss’ for the buyer if the price paid
exceeds the returns in every world. And a Dutch Book is one which
is a sure loss even when bought at a fair price. Let’s sum up: any
vector z can represent a book of bets, where z-w represents the prize

you receive at w. The fair price for this, at belief state b, is z-b.
A Dutch Book (for belief state p) is one that represents a sure-loss
when bought at a fair-price: that is, z-b > z-w, for all w e W. But
now we see the significance of the earlier theorem: for it showed that
whenever the belief state b is outside C, we can find a vector s (which
we will interpret as a book of bets) that meets the above conditions:
we can find, that is, a Dutch Book against b. (We can also show
quite simply that there’s no Dutch Book against credences in C, for
the special case where C is the set of (generalized) probabilities, but
that’s another story—see Paris (2001)).

4 Generalized Accuracy domination

A belief state is Accuracy-Dominated (by belief state ¢, say) if, no
matter which world is actual, ¢ is ‘closer to the truth’ or ‘more ac-
curate’ than the original belief state.® The obvious first question is:
how do we measure ‘closeness to the truth’? In the current setting,
there’s an obvious candidate: we measure the distance between the
belief state and the relevant truth values within our Euclidean space.
In the literature on accuracy measures, this Euclidean distance mea-
sure is known as the ‘Brier Score’. It is a substantive philosophical
assumption that it describes the relevant notion of ‘distance from the
truth’ that rational agents, as truth-lovers, aim to minimize.”
Accuracy domination can be represented geometrically via a slight
adaption of the picture we used for the key lemma earlier. Rather
than an arbitrary point in C, a, we now focus on an arbitrary world

6Sece Joyce (1998) and Joyce (2009) for philosophical arguments for probabilism
based on Accuracy-Domination, in a classical setting.

"See Joyce (2009) for a description of the Brier score as a measure of accuracy.
Joyce is particularly concerned, however, to prove results that are as neutral as
possible on the nature of the accuracy-measure. He provides axioms for the accu-
racy measure and shows that any measure of accuracy satisfying those axioms will
give rise to an Accuracy-Domination theorem. Author (suppressed) follows Joyce
in this respect.
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w. And we add to our diagram the ‘third side’ of the triangle chbw—the
vector u = b —w. At each such w, we need the distance between b and
w to exceed that between ¢ and w, i.e. ||u|| > ||¢||. That is to say, we
need to show that u-u >1t-t.

|

Figure 3: Accuracy domination: the length of u exceeds that of ¢.

This is elementary geometry, given the earlier lemma that the angle
between s and ¢ is non-acute. For completeness, let us run through
the proof. Note first that u =t —s, hence:

u-u = (s—t)-(s—1t)
= t-t+s-5—2t-s
> t-t+s-s
> t-t

The penultimate move here is secured by the key lemma—that 7.5 <
0. The final move is the positivity of s, which, recall, is gotten by
observing that s is the vector between b and the nearest point of C,
which must be of positive length else b would be a member of C. This
demonstrates that the square of the length of u exceeds the square of

the length of ¢, whence our result.

(Note that the above argument shows that if the angle of the vertex
of a triangle is non-acute, the opposite side is longer than the other
two. We'll be appealing to this simple result several times below).

5 Dutch Book and Accuracy Domination

What is the relation between Dutch Books and points of Accuracy-
Domination? We will see that every time you have a point ¢ that
Accuracy-Dominates b, you can use that point to construct a Dutch
Book for b. Indeed b — ¢ will be a Dutch Book for b. The converse
doesn’t hold. There are Dutch Books that can be written in the form
b— ¢’ where ¢’ doesn’t Accuracy-Dominate b. Ultimately however, we
will see that every Dutch Book for b can be scaled so that it terminates
at a point that Accuracy-Dominates b. The algebraic proof is given in
the final paragraph of this section; but in order to see why this holds,
it helps to first consider the case from an informal geometrical point
of view.

The necessary and sufficient condition for s to Dutch Book b (rela-
tive to a set of worlds W) is that s-b > s-w for all we W. Likewise,
the necessary and sufficient condition for ¢ to Accuracy-Dominate b
(relative to W) is that b—w > c—w for all w &€ W. One easy conse-
quence of the above characterization will be useful later: if s-b>s-w
then for any scalar k > 0, k(s-b) > k(s-w); and hence (ks)-b > (ks) -w.
Thus, when s is a Dutch Book, any positive scalar multiple of it is also
a Dutch Book (intuitively, you just expand or shrink your guaranteed
losses; but you can never reduce them to zero).

We first want to show that for every point ¢ that accuracy dominates
b (with respect to W), b—c is a Dutch Book. We demonstrate this by
proving the contrapositive: we start from the assumption that s=b—c
is not a Dutch Book, and show that ¢ does not accuracy dominate b.
So suppose that s is not a Dutch Book. This means that for some w,
we must have s-w > s-b, or equivalently 0 > s-(b—w).
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We can simplify the statement of the problem by setting u=5b—w
and set t = ¢ —w just as before, so that the situation is as depicted in
figure 4.

Figure 4: A situation where w witnesses that s does not Dutch Book
b,ie. s-(b—w)<0.

The assumption that s is not a Dutch Book translates as 0 > s- u.
And what we want to prove is that c¢ is just as far away from w as
b is; ie. (c—w)-(c—w) > (b—w)-(b—w). More concisely, we need:
t-t > u-u. Algebraically, we first note that

t=c—w=b-w)—(b—c)=u-s.

We then argue that t-t =(u—s)-(u—s)=wu-u+s-s—2u-s. Our
assumption tells us that the the last term is positive, and hence -t >
u-u+s-s>u-u, just as required.

This argument has intuitive geometrical content. The starting
point, u-s < 0 tells us that the angle at b is non-acute. This must
mean that the opposite side, t, is the longest in the triangle, and in

particular, longer than u (the algebraic argument in effect uses the tri-
angle equality to show this). Since the length of u is the distance from
b to w, and the length of ¢ is the distance from ¢ to w, this is exactly
what we need to demonstrate that ¢ does not Accuracy-Dominate b.8

The converse does not hold. There are Dutch Books that can be
written in the form b— ¢/, where ¢’ does not Accuracy-Dominate b.
The diagram in figure 5 below illustrates one such case.

Figure 5: 5" is a Dutch Book but ¢’ is further from w,w’ than is b.

81t is well known that no probability function admits of a Dutch Book. A
corollary of the above is that no probability function can be Accuracy-Dominated
either. For suppose that there are no Dutch Books for p. Then p cannot be
Accuracy-Dominated. For suppose it was, by ¢, say. Then p —c¢ will be a Dutch
Book for p, contrary to our assumptions. Thus, the immunity of probabilities
to Accuracy-Domination (given the Brier score for measuring accuracy) follows
immediately from the immunity of probabilities to Dutch Books.
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In order to see what kind of converse is possible to the above, it
helps to translate the algebraically specified necessary and sufficient
conditions for Dutch Books and Accuracy Domination given above
into something more geometrical. Those wanting to see the algebraic
proof immediately may skip to the final paragraphs of this section.

For dutch-books s, the relevant condition is that s-(b—w) > 0.
Geometrically, that is to say that the angle at b between these two
vectors is acute. Since this must hold for each world, all the worlds
must all lie within some ‘cone’ whose tip is b and which expands in
the opposite direction from which s points. See figure 6.

Figure 6: Dutch Book: All the worlds must lie within some cone
projected from b by s

Notice that quite generally a sufficient condition for the vertex bew
(for arbitrary world w) at b to be acute, is that its angle at ¢ is
non-acute. Now in the De Finetti/Paris Dutch Book argument, we
constructed a ¢ where the latter condition held. But the condition

while sufficient is not necessary. Geometrically, if s is long enough
relative to w — ¢, the angles at ¢ and b can both be acute, for some or
all of the w. See figure 7 for a diagram where this occurs in a simple
two-world setting.

Figure 7: A two-world case in which s is a Dutch Book and ¢ Accuracy-
Dominates b even though the angle of bew at c is acute. The points
on ww' are the coherent belief states.

We can likewise find a geometrical characterization of the sets of
points that Accuracy-Dominate b. Recall that the condition for this
was just that c—w < b—w for all we W. This has a very obvious
geometrical interpretation: all the worlds must be nearer ¢ than b. If
we take the hyperplane that contains all points equidistant from » and
¢, all worlds must be on the same side—the side that also contains
c. See figure 8. (It follows that if ¢ Accuracy-Dominates b, then any
point lying on the line between ¢ and b will Accuracy-Dominate b).”

9Suppose we have a given set of worlds W and a belief state b. What are the
Dutch Book vectors, and what are the points of Accuracy Domination, relative to
these worlds and that belief state? To find the points of Accuracy Domination,
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Figure 8: Accuracy-domination: all the worlds must lie below the line
of equidistance between b and ¢

Once more, a sufficient condition for this to hold is that the angle
at ¢ be non-acute. But it isn’t necessary—if the side cb (=s) is long
enough (relative to w —c), then the relationship between sides can
hold even if the angle at ¢ is acute. That is why we do not have a

draw spheres around each world, such that b lies on the surface. A necessary
and sufficient condition for x to be a point of Accuracy Domination is that it is
in the interior of each sphere. Now consider the tangents to each sphere at b.
These tangents partition the overall space. Consider that cell of the partition that
contains the points of Accuracy Domination. Any vector that starts at a point in
this cell and has b as its endpoint is a dutchbook.

Consider the simplest case of just two worlds, where b is equidistant from each.
If the angle at b is over 60 degrees, then both the cell of Dutch Books and the
region of Accuracy-Dominating points include every coherent point. If the angle
at b is between 60 and 90, then the coherent points are within the cell of Dutch
Books, but not every coherent point Accuracy-Dominates. If the angle at b is
greater than 90 degrees, then there are coherent points out of the space of Dutch
Books and which do not Accuracy-Dominate. Finally, when the angle is 180, the
point itself is coherent and neither Dutch Booked nor Accuracy-Dominated.

10

full converse to the result proved in the previous section. A vector
s can be a Dutch Book (i.e. the angle at b can be acute) while s’s
length is such that the condition for Domination is not met. This is
the situation illustrated in figure 5 in the previous section.

However, the geometrical characterization also suggests a way to
construct an Accuracy-Dominating point from any Dutch Book. The
informal, geometrical argument is as follows. Recall that whenever
we have a Dutch Book s for b with respect to W, ks is a Dutch Book
b relative to W, for any positive scalar k. We will be able to find a k
such that (a) ks is a Dutch Book; (b) such that ¢/ = b+ ks Accuracy-
Dominates b with respect to W; one simply chooses k small enough
that its length is smaller than the components of each w—b in the
s-direction. This ensures that the angle at ¢’ is obtuse, at which point
our earlier proof of Accuracy-Domination kicks in.

Figure 9: The horizontal line represents the closest world in the s-
direction to b. We choose k so that the length of ks is small enough
so that its endpoint is above the line. s and ks are both Dutch Books.
b+ ks Accuracy-Dominates b, since the angle from it to an arbitrary
world will be non-acute.
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Algebraically, we are given belief state b with Dutch Book s. Set
sy = ks. Paralleling our earlier notation, we let ¢; be the endpoint of
sk from b (i.e. sy =b—c) and for arbitrary w € W, we let u¥ =b—w
and # = ¢; —w. Note that ;" = u" —s; (see figure 10). That s is a
Dutch Book gives us that s-u" > 0 for each w € W.

b
Sk u”
Ck 1 w
Figure 10:
We then argue:
t]zv -t]?) = (uw — Sk) . (uw — Sk)

u u" 4SS — 285k u
u - u" + k% (s s) — 2k(s-u)
w - u” +k(k(s-s)—2(s-u))

(since s; = ks)

The condition for ¢ to accuracy dominate b is for (¢; —w) < (b—w)
for each w, which is equivalent to ;" -} <u"-u" holding for each w. We
need to pick k to ensure this holds. By the above, it holds whenever
k(k(s-s)—2(s-u")) <0. This is so for any choice of k meeting:

s-u”

0<k<?2 .

MR
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But this is satisfiable, since both s-s and s-u" are greater than zero
(the latter, recall, follows directly from s being a Dutch Book). To
ensure that c¢; Accuracy-Dominates b, we need this condition to be
met for each world w € W; since there are only finitely many w, this
can be done.

7 Diachronic Dutch Books

The above completes our survey of the relation between Accuracy-
Domination points and Dutch Books. We now turn to the question
of whether the De Finetti approach can be extended to other results
in the area. Defences of updating by conditionalization using a di-
achronic Dutch Book are well-known. This section formulates geo-
metrical constraints that are required to avoid a diachronic Dutch
Book argument in a potentially non-classical setting. Subsequent sec-
tions show this reduces to classical conditionalization and examines
the analogues in non-classical settings.

Consider the familiar setup for a Dutch Strategy, due to David
Lewis:

Suppose that at time 0, you have a coherent belief function
M. Let Eq,...,E, be mutually exclusive and jointly exhaus-
tive propositions that specify, in full detail, all the alternative
courses of experience you might undergo between time 0 and
time 1. Let M; be the belief function you would have at time
1 if you had the experience specified by E;—that is, if E; were
the true one of Eq,...,E,.

(Lewis, 1999, p.405)1°

Conditionalizers claim that in such a setting M; should be the result

10This quote is from the Lewis paper, first published in 1999. Supplemented with
a 1997 introduction, this reprints the original 1972 handout that was the source of
the version of the Diachronic Dutch Book argument in Paul Teller (1973).
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of conditionalizing M by E;. Lewis asks: why would it be irrational to
respond to experience in any other way?

Lewis’s famous response is to describe a three-step strategy for ex-
tracting money from non-conditionalizers. Supposing that M;(P) is
less than M(P|E;), he would (i) sell you a certain book of bets at time
0, at fair price; (ii) wait and see whether E; is true; (iii) If E; is true,
sell another book of bets. In Lewis’s setting, your net loss/gain is zero
if E; is not the case; and you lose money if E; obtains. Thus Lewis says:
“I can inflict on you a risk of loss uncompensated by any chance of
gain” (we shall prove a slightly stronger result, whereby a sure loss is
obtained). A dual pattern of bets can inflict similar results on anyone
whose updated credences are higher than the result of conditionaliza-
tion would be. Crucially, in implementing this strategy, the bookie
needs no information beyond that which the subject possesses.!!

The philosophical debate over what the argument shows takes off
from this point. As Lewis notes in his 1992 introduction to the pa-
per, the argument is ‘addressed to a severely idealized, superhuman
subject who runs no risks of mistaking his evidence’ If the subject
cannot respond differentially to distinct ‘course of experience’ she un-
dergoes between time 0 and 1 (perhaps they involve perceptions of
colour patches whose wavelengths differ by a single nanometer), then
we cannot legitimately put forward a strategy that relies on the bookie
discriminating between the two courses of experience—again, there’s
no prospect of an argument that the subject is irrational on the basis
that they can lose money when faced with a bookie who has strictly
more information (Lewis mentions Jeffrey-conditionalization as an up-
dating rule designed for less idealized settings). Another assumption
of the case is that the subject and bookie are both certain how the
subject reacts to the various pieces of evidence that come in—so that

1 This last constraint crucial to understanding why Lewis sets up the argument
in terms of the evidence partition in particular (if the argument went through with
cells from an arbitrary partition, then we would be able to generate inconsistent
updating advice). See his paper for detailed discussion.
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the bookie may legitimately build her strategy around exploiting this.
Even granting this internalist assumption of perfect reflective grip on
evidence and reactions to evidence, and just as with synchronic Dutch
Books, one can also query whether the technical ‘sure loss’ results jus-
tify the normative conclusion that updating by anything other than
conditionalization is irrational. But our concern here is with getting a
grip on the technical result itself, so I set these philosophical concerns
aside.

To build our geometrical picture of diachronic Dutch Books, we
shall continue to assume that Eq,Fs,...,E, represent an exhaustive,
exclusive list of possible courses of experience. We let b be the point
in belief-space that gives your current (coherent) credences; and ¢
belief-state that results from implementing your updating strategy, on
undergoing experience E = E;. Our assumption is that both subject
and bookie know the identities of b and ¢, but are uncertain whether E
will come about, though they will recognize it as and when it occurs.

Two preliminary points should be noted. The first is that b itself
must be a convex combination worlds in W. The second is that ¢ must
be a convex combination of worlds in E. We can argue for each by
pointing to independent ways of constructing a diachronic Dutch Book
if they fail. In the first case, we simply note that if b fails to meet the
stated condition, we can find a synchronic Dutch Book for it. And this
(with no further betting) will count as a limiting case of a diachronic
Dutch Book. In the second case, if ¢ fails to be a convex combination
of worlds in E, from our earlier results once more we find a ‘Dutch
Book relative to the worlds in E’ against c—i.e. a book of bets e that
guarantees a loss at all w € E. This isn’t immediately something that
gives the agent a sure loss, since if information other than E arrives
the agent suffers no change in fortune whatsoever. But with a minor
tweak we can create one. Suppose the guaranteed loss of e among E-
worlds is at least m. Then consider the following Dutch Strategy: sell
the agent a bet on E that pays out m/2 iff E obtains—for whatever its
fair price is at b; and sell her e for its fair price in the eventuality that
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E obtains. Two cases are possible: if we get information other than
E, the agent faces a net loss of whatever she paid for d. If information
other than E is received, then she’ll get some gain from the previous
bet (m/2), but is guaranteed to lose m on the new bet. The net loss
is then at least m —m/2 > 0. So we have our Dutch Strategy, and
the only way to avoid it is for the updated point ¢ to be a convex
combination of the worlds in E, as required.

How, in general, are we to build a diachronic Dutch Book? Our
strategy will be very simple: we will sell a book of bets d, and then,
if the information E is received, we’ll buy it back at the (possibly
changed) fair price. If some other information is received (i.e. some
world in the complement of E—E—is actualized) we do nothing. All
the action is in choosing the initial books carefully enough. The nec-
essary and sufficient conditions for this to be a Dutch Strategy are:

1. d-w—c-b<0 for each we E.

2. (d-w—d-b)—(d-w—d-c) <0 for each w € E.

The first condition corresponds to those cases where we receive in-
formation other than E. For sure loss, the return minus the price
paid for d must be always negative. The second condition covers the
E-cases, where the initial bet is bought back. Here, we add together
the net contribution of the bet that is sold back to the agent and the
net contribution of the original bet. Again, for Dutch Strategy we
need this always to be negative.

The second condition simplifies, since the two occurrences of d -w/
cancel. It becomes simply (d-c—d-b) < 0. Note that this doesn’t de-
pend in any way on which world is actual. So the condition for a buy-
back strategy based on d to be diachronic Dutch Book is simply that
d-x—c-b <0, for every x in Eu{c}. In effect, this reduces the problem
of finding a ‘buyback’ form diachronic Dutch Book, to the problem
of finding a synchronic Dutch Book over a certain space of ‘worlds’
(note that in the highly abstract setting we are working within, it’s
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convex combinations of E and ¢

E-worlds

)

Figure 11: Any point within the outer ellipse is a coherent belief state
(convex combination of worlds). Points within the inner ellipse are
convex combinations of —FE worlds and ¢. With a sell-back strategy in
place, b will be dutch-bookable unless it is in the latter set. ¢ is also
constrained to be a convex combination of the E worlds. So given b,
we must pick a ¢ such that both of these are met. This turns out to
determine ¢ uniquely.

quite legitimate to construe ¢ as a ‘world’ in its own right—mnothing in
the formal results rested on which points in the space were identified
with worlds). Because of this, our earlier results tell us that we can
find a suitable Dutch Book d unless b is a convex combination of the
relevant set of ‘worlds’, i.e. the worlds in {wyq,...,w,} = E together
with ¢. This is represented in general in figure 12. Holding fixed E
and b, this imposes an immediate geometrical constraint on what ¢
can be—its implication in a special case is illustrated in figures 13 and
14.

The geometrical characterization of updating is now complete. The
question is whether we can find some informative algebraic character-
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Figure 12: The geometrical constraint on updating for the special case
of three worlds, updating on E = {u,v}. The constraint is that ¢ be
chosen so that b is a convex combination of w and c¢. In the special
case illustrated, this amounts to ‘projecting’ b from w onto the convex
combinations of u and v (note that b is a convex combination of the
three worlds, and ¢ a convex combination of u and v, as per our pair
of preliminary results).

14

Figure 13: If b does not lie on the line between w and ¢, then (by
our previous results) we can find a Dutch Book for b relative to the
‘worlds’ w and c¢; which we now know will count as a diachronic Dutch
Book for updating from b to ¢. In the updating procedure sketched
above, any vector directed to b and lying between the dashed lines on
the right will be a diachronic Dutch Book.



Generalized Probabilism

J. Robert G. Williams

7 Diachronic Dutch Books

ization—and whether it coincides with conditionalization in the stan-
dard cases. It turns out that we get exactly this result, by elementary
calculation.

Our starting point for extracting an algebraic characterization of
our geometrical constraint is that the requirement that b be a convex
combination of points in {wy,...,w,,c} says that there are parameters
o,A; >0, with 1 = a+Y;A;, such that:

b=odc+Mwi+...+w,

Rewriting (assuming a # 0):

c=(1/o)(b—Mwi—...—Aywy)

This already shows the general form that updating b by E to get ¢
must take—> is diminished by taking away components that live in E,
and then the result is scaled by a. Many updating rules would satisfy
this abstract formulation, however, so we need to press on.

Since b is a convex combination of the original set of worlds, with
weights u}, uj, we write:

b= W)+ ...+ W, +wi + ...+ pwy

Write bF for the component of b that is a convex combination of
the worlds in E, i.e. bE = wyw) +...+u,w,,. Then we have:

b=0bE +diwi+ .. 4w,

Substituting this into the characterization of ¢ above, and collecting
the components of the respective w;, we have:

¢ = (1/o) (6" + (1 = A)wi + ..+ (tn — )W)

We also know that ¢ must be a convex combination of the E-worlds,
and hence the coefficient of each E world (the w;) must be zero. Hence
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A; = u; and the w; terms above disappear, leaving:
c=(1/a)bE

Note also that o =1—Y;A =1—Y;u; (by the identity we just
derived). By construction, 1 —Y ;u; = ¥,u;, and hence ot =} +...4,.
Once we’ve specified what the ‘worlds’ are, this equation allows us to
derive analogues of conditionalization.

First, suppose our worlds w;,w! are truth value distributions across
propositions. (To keep matters clear, it’s important to distinguish
between ‘propositions’ used in interpreting the formalism, and sets of
worlds like E or E.) Now consider the proposition that happens to be
true (takes value 1) at all and only the worlds in E. Call this E..

Now consider b(E,)—the entry in the vector b corresponding to the
proposition E.. We already know that b =uw) + ...+ u,w,, +uwi +
...+ uywy, which means that focusing on the relevant component we
have:

b(E.) = puwy (E) + ...+ Wiy (Ex) +pn(wi) (Ee) + ...+ ptawn (E)

But by construction wi(E,) =1 for each i, and w;(E,) =0 for each
J (this just reflects the fact that E is true at each of the w} and false
at each of the w;). Hence we obtain:

b(E.) = ph +...+ iy,

which by an earlier result is just o.

Second, consider an arbitrary proposition X, and let E,o0X be a
proposition whose truth value at any w or w' is given by multiplying
together the respective truth values of X and E, at that world. In the
classical setting, this recipe delivers the truth value of the conjunction
E NX—we’ll discuss the non-classical interpretations (a la Paris) in the
next section.
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Recall that bf = p{w) + ...+, w,,; and so bE(X) = piw| (X) +...+
w,wh(X). And recall once more than E takes truth value 1 at the w!
and 0 at the w;. Hence we can write:

bE(X) = Y i (wi(Ewi(X)) + Y i (w; (E)w;(X))

But notice that by construction, w;(E,o0X) =w;(E,)w;(X), and like-
wise for the w/, so the above becomes:

bE(X) = Zy;(w;(E* 0X)) +Zuj(w,~(E* 0X))
i J

which is simply b(E, 0X).
We noted earlier that in the classical setting, this is simply conjunc-
tion, and hence:

_ VE(X)  b(XAE,)
~ b(E.)  b(E)

This is the familiar ratio characterization of conditionalization.

c(X)

8 Non-classical conditionalization

To recap: we described a very general diachronic Dutch Book argu-
ment, which led to a geometrical constraint on permissible updates
of b by E: the updated credence ¢ must be such that b is a convex
combination of ¢ and the E worlds. This this turns out to impose a
constraint that we can most generally state as follows:

c(X) = b(X oE.) /b(E,)

If the propositions are classical o is just conjunction, and we have
the standard ratio characterization of conditionalization. But the ad-
vantage of the general setting is that the abstract characterization can
be used as a constraint on updating generalized probabilities, where
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X can be an arbitrary random variable, or ‘non-classical proposition’
taking ‘non-classical’ truth values between 1 and 0. On this inter-
pretation, X o E, is then a new random variable derived from X and
E, by multiplication. Relative to a given non-classical setting, o is a
possible truth-functional connective; and so we have the familiar ratio
formula whenever the truth value distributions V meet the following
constraint:

(Tp)

Note that (Zp) is a strengthening of Paris’s (72). It is a feature
of many of ‘glut’ and ‘gap’ semantics where propositions take truth
values in {1,0}.12

There are well-known non-classical semantics for conjuntion where
this fails, however. For example, the Lukasiewicz many-valued sys-
tems feature two kinds of conjunction: weak (where the value of the
conjunction is the minimum of the value of the conjuncts) and strong
(where the value of the conjunction is the sum of the values of the
conjuncts, minus 1, when this is positive). Neither equals the product
conjunction, which is studied in its own right in the ‘product’ t-norm
logic (cf. Hajek, 1998).

This isn’t a severe limitation for our purposes, however, due to a re-
striction that’s been built into our Dutch Strategy construction from
the beginning. Though we have a formulation of conditionalization
that could can be used to update generalized probabilities invested
in arbitrary non-classical propositions X, the argument is neverthe-
less restricted in scope. In particular, as currently formulated the
proposition updated upon must be some E, that is the characterizing
function for some cell E within the ‘evidence’ partition of the set of
non-classical worlds (i.e. E, must take value 1 or 0 at each world, de-
pending on whether that world is a member of E). Our belief states

V(A)=rAV(B)=s <= V(AAB)=rs

12potential applications include versions of Kleene and the paraconsistent logics
(with an suitable underlying ‘gap’ and ‘glut’ semantics); likewise supervaluational
and subvaluational systems. See (Author) for discussion.
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are general; but in the argument as presently formulated, updates
have to be on propositions that are ‘classical’ in this sense for our
results to kick in. Because of this restriction in the values that E, can
take, less is needed to justify representing conditionalization (for the
restricted range of propositions) by conjunction. The following will
suffice:

(Tp) V(A)=rAV(B)=
V(A)=rAV(B)

1 = V(AAB)=r
0 = V(AAB)=0

This will ensure that when the second conjunct is taking ‘classical’
values the truth value of the whole equals the product of the two
values. And this is satisfied by each of the fuzzy conjunctions we have
mentioned.

The restriction just noted raises the question of what updates on
genuinely ‘nonclassical’ propositions should be like. Of course, the
constraint

c(X) =b(X oY) /b(Y)

is well-defined for arbitrary ¥,'3 and a natural question is whether
this is the appropriate general formulation (at which point our caveats
about the relation between o and conjunction in various systems would
kick in). But there are both local and general difficulties with evalu-
ating this proposal. The local difficulty is that the very setup of the
diachronic Dutch Book is in terms of a classical partition of worlds—so
the argument would need to be rethought from the ground up. And
the conceptual difficulty we hit in doing this is that it is not at all
obvious how to conceptualize the ‘evidence’ gained by learning a non-
classical proposition that may (for example) taken intermediate truth-
value at some worlds (does learning some proposition that is 0.9 true
at world w raise or lower our credence in w, all else equal?)

There are two very different cases to consider. The first is one
where every proposition takes values from {1,0}. The second is where

13 Always supposing that b(Y) > 0.
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propositions can take a wider range of truth values. I am not sure
how one could adapt the argument for updates on ‘fuzzy’ proposi-
tions in the latter case, so set it aside. But in the former case, the
formal argument itself would not need changing. After all, the propo-
sition E, was brought in only at the end of the argument; and the
assumption was simply that it took value 1 at all worlds in the cell
E; and 0 everywhere else. This last constraint could be satisifed by
a non-classical proposition of the kind we're considering (you might
say that propositions of this kind are not intrinsically non-classical,
but only relationally so—their non-classicality is only manifest in the
behaviour of their negations, or more generally in the truth-values of
compounds in which they are part.) The trouble comes, if anywhere,
with the philosophical framing of the formal argument. Lewis started
from a partition of worlds where each cell corresponds to a possible
total course of experience. For the argument to go through, one has
to accept that the information transmitted in learning that P is con-
sistent with each world in where it takes value 1 and rules out each
world where it takes value 0. The last condition is the contentious
one: a weaker alternative is that the information transmitted is only
inconsistent with worlds where —P holds—leaving open the relation
of the information to worlds in which P and —P both take value 0.

To summarize: whenever we work with a backdrop (classical or
non-classical) where the truth values are restricted to {1,0}, then
a wholly general argument for updating-by-conditionalization may be
propounded. However, the argument may be resisted on philosophical
grounds if we can make the case that learning that P and learning that
one is in a world where P has value 1 are importantly distinct. This is
not a formal issue: it is a question of the philosophical interpretation
of the semantic values we are working with, and several interpretations
of the same formalism may be available (compare the epistemic and
non-epistemic interpretations of partial value assignments mentioned
in the first section). But even when the general argument fails, we
still have a restricted rule of updating generalized probabilities, on
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receipt of fully classical information.

Suppose that our argument is indeed restricted in scope even in the
{1,0} settings just considered. The constraint on updating then deliv-
ered cannot be assumed to point unambiguously to the generalization
to the full setting we have hitherto been discussing. To illustrate
this, we can consider a particular application of these methods—to
Dempster-Shafer belief functions. There are two extant rival accounts
of updating that are compatible with the restricted updating principle
(where E, is restricted to ‘classical’ propositions), each diverging from
the generalized update rule considered above. Given a belief state
b, define the ‘plausibility’ of a proposition A as p(A) :=1— b(—A).
The two new rules, together with the generalization we’ve just been
looking at, are:!®

MOther diachronic constraints on conditioning may find purchase in the wholly
general setting even if the above does not. Let c¢1,...,c¢, be the possible belief
states one might end up in response to some information conveying the propositions
E1,...,E, (set aside the issue of whether those propositions are classical or non-
classical, and how to think about the update strategy). Now consider a universal
sell-back strategy—that is, we sell book d, and then buy it back at a later time no
matter what information has been received in the meantime. The condition under
which this maximally simple strategy leaves the bettor with a sure loss is that the
following hold:

e (dw—d-b)—(d-w—d-c¢;) <0 for each we W
In each case, d-w cancels, so this reduces to:
o (d-ci—d-b)<O0foreachi, 1<i<n.

Again, we can treat the ¢; as ‘worlds’ for the purposes of applying our synchronic
Dutch Book theorem, with the result that the condition for such a d to exist is that
b fail to be a convex combination of the prospective belief states ¢; (compare the
‘fundamental theorem of arbitrage’ discussed in (Skyrms, 2006)). This diachronic
coherence constraint holds whether the worlds or credences are classical or non-
classical (and as Skyrms notes, once we add in resources to explicitly represent
credences in future credences, this is intimately related to ‘reflection’ principles).

15The first two are taken as well defined so long as p(Y) > 0; the last if b(Y) > 0.
If p(X A—Y) = 0, mush-conditionalization is stipulated to be equal to 1 (even if
b(Y ANX) = 0; see (Halpern, 1995, p.93) for discussion).

18

Mush-Conditioning

P = oy A)];gi/;))((; A=X)
DS-Conditioning
b(X|[Y) = b(Xv—;)Y(;/; b(—Y)
Naive-Conditioning
blxlr) = "5

In the extant literature, the first two rules are candidate updates
associated with distinct (epistemic) interpretations of DS belief func-
tions. Generally, these three update rules will diverge; an example is
given in the appendix to this paper. Furthermore, the appendix shows
that all three coincide when p(Y) = b(Y)—that is, in order for them
to recommend the same update, it is sufficient that the belief state
that is to be updated behaves ‘classically’ on the particular proposi-
tion conditioned upon. This means that the diachronic Dutch Book
result if restricted to ‘classical information’ enforces something that
is the common core of all three update rules.

Conclusion

Accuracy-domination and Dutch Books are intimately linked.
Whereever we have a point of Accuracy-Domination, there we find
a Dutch Book. And wherever we have a Dutch Book, we need only
scale it sufficiently to find a point of Accuracy Domination. The
same fundamental geometrical result—the separating hyperplane the-
orem—underpins both.
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In the final sections, we considered the conditions under which we
find Dutch Strategies or diachronic Dutch Books. The key result we
see here is that a ‘buy-back’ strategy allows us to turn the task of
finding a diachronic Dutch Book into that of finding a synchronic
one—albeit with respect to a modified range of ‘worlds’. We’ve seen
how to derive the standard characterization of conditionalization from
this results in the classical setting. We get an analogue in the non-
classical setting; though there are some subtleties with the formula-
tion. The most important is the question of whether the argument
applies to updating on genuinely ‘non-classical’ propositions. In some
settings, this unrestricted result may be argued for. But even if the ar-
gument is restricted in scope, it limits the range of admissible update
rules in interesting ways.

Given the close relationship between Dutch Books and Accuracy
Domination in the synchronic case, one would have expected to find
a parallel diachronic Accuracy-Domination argument. However, one
does not find this in the literature. The nearest are the expected accu-
racy defenses of conditionalization in (Greaves & Wallace, 2006) and
(Leitgeb & Pettigrew, 2010); but appeals to expectations (fixed by
one’s prior belief state) mean these are of a very different character
from the Joyce-style synchronic argument—why should you trust an
outdated belief state to tell you how to fix your beliefs now you have
new information? However, it is tricky to see what a true domina-
tion argument constraining update would look like. After all, a rule
that told us to jump to a belief state that matched the truth values
at w would maximize accuracy of the posterior state at at least one
world. I believe there is room for a more subtle domination argu-
ment for conditionalization, built on the geometrical characterization
of conditionalization outlined above. But exploring this would re-
quire extensive discussion of the relation between norms on belief and
update strategies, and this will not be pursued here.

Our discussion of Accuracy Domination focused on the special case
where ‘accuracy’ is measured by the Brier Score (square Euclidean dis-
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tance). This is clearly central to the results above: within our vector
space we move easily from properties of acuteness/non-acuteness of
angles that are central to the characterization of Dutch Books in par-
ticular, and which are expressed via the inner product of two vectors;
to properties of the distance between points in the space, thought of in
terms of the length of the vector joining the two (the inner product of
the vector with itself). But while the Brier score is perhaps the most
prominent candidate for measuring accuracy, much of the literature
on Accuracy-Domination aims to prove its results in a more general
setting.

Not all accuracy measures will correspond to an inner product on
the space of vectors. But some will, and in those settings, the rela-
tionship to ‘Dutch Book theorems’ will be well-defined. Two natural
projects suggest themselves: first, to investigate the relationship be-
tween Dutch Books (defined as above via the standard Euclidean inner
product) and Accuracy-Domination characterized via a different inner
product. Second, to investigate the relationship between Dutch Books
characterized via the inner product relevant to Accuracy-Domination,
and the Accuracy-Domination itself. In this setting, do the arguments
above go through? And is there a betting-interpretation of the dutch-
book theorem so produced (in particular, can we think of z-w as the
‘returns’ of a book of bets at w, and z-b as its fair price)?
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A Appendix: Updating DS belief functions

Recall we had three candidate update methods for DS belief functions:

Mush-Conditioning

PXIY) = by /\)I;ﬁ;)((; A=X)
DS-Conditioning
b(X||Y) = b(XV —|pY()Y; b(-Y)
Naive-Conditioning
pix i) = P50

The following chart shows describes the truth values of X and Y
(and compounds thereof) at three worlds (the truth distributions on
the three worlds can be thought about in a number of ways; one is
by the rule that something gets value 1 in world o iff it is a classical
consequene of X AY; gets value 1 in B iff it is a classical consequence
of X; and gets value 1 in vy iff it is classical consequence of =Y. Cf.
Paris’s characterization of ‘partially formed worlds’ (2001, p.xx).) By
Jaffray’s results, any convex combination of these will be a DS func-
tion—the rightmost columns give the belief and plausibility levels ap-
propriate to the particular weights written at the head of each column
(recall that p(A) =1—b(-A)).
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2 3 5
Proposition Valuéoat o Valuéoat B Valuleoat Y | belief | plausibility
X 1 1 0 0.5 0.5
—-X 0 0 1 0.5 0.5
Y 1 0 0 0.2 1
-Y 0 0 0 0 0.8
YAX 1 0 0 0.2 0.5
—(Y AX) 0 0 1 0.5 0.8
Y AN=X 0 0 0 0 0.5
(Y A—X) 1 1 0 0.5 1
=(-YVX)

We now calculate the belief in X under updating by Y in each of
the three forms:

Mush-Conditioning

b(X|¥) = b(Y AX) 02 2
b(YAX)+p(YA-X) 02405 7

DS-Conditioning

b(XV-Y)—b(=Y) 05-0 1
b(x]¥) = S
p(Y) 1 2
Naive-Conditioning
b(XAY) 0.2

Hence the three update rules diverge in general. A quick note on
their interpretation: the usual application of Dempster-Shafer belief
functions is epistemic, with the gap between ‘belief’ and ‘plausib-
lity’ representing the extent of uncertainty on the agent’s part over
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whether the proposition in question is true. Mush-conditioning and
DS-conditioning are taken to represent two different conceptions of
in what this uncertainty consists (see (Halpern, 1995, §3.6) for dis-
cussion). A situation where A and —A are both value 0 represents a
situation concerning which you are uncertain whether A holds. Naive
conditioning does not fit well with this application, since it effectively
takes the information A to be sufficient to eliminate possibilities where
A has value 0. A quite different application of DS belief functions is
one where we interpret the truth values by naive extension from the
classical case: A is neither true nor false in a situation in which both
it and its negation are true (this is the interpretation that may be
associated with a background supervaluational semantics—see (Au-
thor)). On that reading, eliminating possibilities where A is untrue,
given information A, does not seem unreasonable. These observations
fit neatly with the point made in the main text, that whether or
not the strong reading of the Dutch Strategy argument is successful
(showing that one must update via naive conditioning) will typically
depend on the interpretation given to the belief states. The weaker
form of the argument establishes a core form of updating that all the
interpretations mentioned agree on, as we will now show.

What we will prove is that all three update methods will coincide
if the proposition updated upon, X, is ‘classical’ by the lights of the
belief function; i.e., if b(Y) = p(¥). This will follow from the stronger
assumption that at every world, either Y has value 1 or =Y has value
1. The converse also holds if the belief function we are working with
(which we know can be represented as a convex combination of ap-
propriate truth value distributions) has a non-zero coefficient at each
world. Since we can just throw away all worlds with zero coefficients
for present purposes, we shall take it that ‘bivalence’ for Y holds of
all the worlds in W.

The characterizations of belief functions appealed to above is in
terms of ‘partial’ value assignments. There is an isomorphic represen-
tation in terms of sets of complete, classical truth value assignments.
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We let A* be the set of all classical assignments that assign A value
1, and for an arbitrary set of classical assignments S, we let S, be the
strongest proposition that is true at each element of S. One can check
that (A*), =A and (S.)* =S. Moreover A* can be characterized as
the ‘classical completions’ or ‘sharpenings’ of the partial assignment
Vis—a classical assignment is in A* iff it assigns 1 to X whenever Vj
does.

By construction, Z is true at all members of a non-null set § iff
S C Z*. Also by construction, V4(Z) =1 iff Z is true at each member
of A*. Putting these together, V4(Z) =1 iff A* C Z* Recall that b was
a convex combination of the partial value assignments. So there are
some A4 such that b(Z) =Y AyVy(Z). If we set m(U*) = Ay, then we
have b(Z) = Y m(U*)Vy(Z). But since Vy(Z) is 1 only when U* C Z
and otherwise 0, this means b(Z) = Y y«cz-m(U*). This is the ‘mass
function’ representation of a belief function over the powerset of clas-
sical truth value assignments. By similar reasoning, the plausibility
level p(A) =1— (b(—A) can be written as p(Z) = Yy.znuzsm(U). See
Halpern (1995, §2.4) for details.

For simplicity of notation, we will use roman capital A both to
stand both for a proposition (a random variable taking truth values
at worlds) and for the subset of classical truth value assignments A*.
Note that ~A =A, AVB=AUB, AAB=AnB, and so on.

We first use this representation to show that DS conditioning col-
lapses to naive conditioning, on the assumption that b(Y) = p(Y). By
the above we may write belief and plausibility values for Y in mass-
function terms as follows:

b(y)= ) m{U)

ucy

p(Y)= m(U)
U:YNU£g

Since b(Y) = p(Y), the two sums must coincide. U C Y entails that
Y nU # @, so every element in the first sum features in the second. For
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the sums to coincide, no other term in the second sum can contribute
any mass. Hence our assumption entails that when m(Z) # 0 and
YnZ#g@,then ZCY.

We want to calculate b(X V—Y), or equivalently b((X AY)uY). Take
any Z such that Z C (XnY)uY. Either Z is entirely contained in Y;
or it has non-empty intersection with XnY, and hence a non-empty
intersection with Y itself. In the latter case, we appeal to the previous
result, and conclude that unless Z has zero mass, then it is entirely
contained in X which means its intersection with X is null. So it must
be entirely contained in Y nX. Thus, any such Z with non-zero mass
is either entirely contained in Y, or entirely contained in ¥ nX.

Using the characterization of » by a mass function, we have:

bXv-y)= Y

Uc(XU-Y)

m(U) =

Uc(Ynx) ucy

The first line of the numerator for DS conditioning is b(X V—Y) —
b(—Y). What we've just seen is that so long as b(Y) = p(Y), this
becomes b(X ANY)+b(—Y) —b(XY) =b(X AY). This suffices to reduce
DS conditioning to naive conditioning.

This result also allows us to show that mush-conditioning is equiv-
alent to the other two under the same assumption. Note in particular
that by the characterization of p and De Morgan’s equivalences we
have:

pXA-Y)=1-b(-(XAY))=1-Db(XVY).

But our result above was exactly an alternative characterization of
b(X vV —Y), and substituting this in and again using the definition of
p, we get:

PXA-Y)=1—(b(Y AX)+b(=Y)) = p(Y) — b(Y AX).

Rearranging, this becomes:

pY)=pY A=X)+b(Y NX)

Y m@U)+ Y mU)=bYAX)+b(-Y)
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The right hand side here is the denominator of mush-conditioning.
The left hand side, by the classicality of Y, is just b(Y). But this is
sufficient to reduce mush-conditioning to naive conditioning, as re-
quired.
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