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Abstract

Can it be rational to be risk-averse? It seems plausible that the answer is yes—that normative

decision theory should accommodate risk aversion. But there is a seemingly compelling class of argu-

ments against our most promising methods of doing so. These long-run arguments point out that, in

practice, each decision an agent makes is just one in a very long sequence of such decisions. Given this

form of dynamic choice situation, and the (Strong) Law of Large Numbers, they conclude that those

theories which accommodate risk aversion end up delivering the same verdicts as risk-neutral theories

in nearly all practical cases. If so, why not just accept a simpler, risk-neutral theory? The resulting

practical verdicts seem to be much the same. In this paper, I show that these arguments do not in fact

condemn those risk-aversion-accommodating theories. Risk aversion can indeed survive the long run.
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1 Introduction

Consider two options for how to spend $50. You could donate it to a charity that performs surgeries to treat

trachoma, an infection of the eye which causes blindness, and which is common among the world’s poorest.

Donate to that charity and one additional person will be cured of blindness and, we can suppose, is sure to

have a better life. Alternatively, you could donate your $50 to a charity that lobbies wealthy governments

to slightly increase their funding of clean water and sanitation programmes in low-income countries. Do

so and you have some probability1, perhaps one in 100, of making the difference in persuading such a

government, causing an influx of funding, improving sanitation in poor countries, and thereby preventing

far more cases of trachoma (for which poor sanitation is a key risk factor). But, more likely, it will make no

difference at all to those who suffer from trachoma. In a useful simplification of reality, we might suppose

that your options are as follows.

A : 1 person cured of blindness with probability 1.

B: 101 people cured of blindness with probability 1/100; 0 people cured otherwise

Which of these options is better, instrumentally, given your uncertainty? (I will focus on moral bet-

terness here and throughout, but analogous cases and arguments arise for prudential and other forms of

betterness.)2 One common approach is expected value theory, which says that an option L is at least as

good (instrumentally) as another option M if and only if L brings about at least as great an expectation

of (moral) value as M . This expected value (or EV) is the sum of the value of the option’s possible

outcomes, each weighted by its probability of eventuating. In the comparison above, the (moral) value of

each outcome can be treated as directly proportional to the number of people cured of blindness, because

this is the only difference between outcomes, because the ordering will be determined entirely by those

differences, and because, morally, it seems overwhelmingly plausible that it is equally valuable to cure each

additional person of blindness regardless of how many others have been cured—the good of curing people

of blindness does not have diminishing marginal value (assuming that those people do not interact). So,

the expected value of A will be 1, and the expected value of B will be 101× 1/100 = 1.001, which is greater.

Expected value theory says that it is better to take the gamble to cure 101 people at once.

But you might find it more intuitive that A is better. After all, it will almost certainly turn out better

than B—your donation to trachoma surgery is guaranteed to benefit someone, while your donation towards

lobbying wealthy governments will almost certainly go to waste. You might think that risky options like

this are not as good as their expected value suggests—that rational decision-making should accommodate

a greater degree of risk aversion. But should it?

According to long-run arguments, risk aversion should not be accommodated.3 Why not? In practice,

agents face similar decisions many times throughout their lives. So, how we rationally ought to compare
1This probability, and those used throughout, may be subjective degrees of belief or evidential probabilities, whichever

kind you think relevant for normative decision theory. For the purposes of this paper I will remain agnostic on which kind
that is. I will also assume, for simplicity, that outcomes can always be assigned precise probabilities, contra Knight (1921)
and others.

2To translate the discussion into prudential (or any given form of) betterness, we need a privileged cardinal measure of
how good each outcome is: an objective value function. If no such value function exists, expected value theory makes little
sense. Risk aversion may not make sense either if it is modelled only using expected utility theory (see below).

3Such arguments are presented, sometimes against particular theories of risk aversion and sometimes against accommo-
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our options depends not on what our theory says about how to compare options in single decisions in

isolation, but on what it says about how to compare options in dynamic decision situations. By plausible

dynamic choice rules4, over the long run of an agent’s life, theories that accommodate risk aversion are

alleged to give surprising verdicts: precisely the same verdicts as expected value theory, in nearly all

practical cases. Such theories “...[fail] to offer a true alternative to expected [value] theory" (Thoma, 2019,

p. 230).5 If those theories simply parrot the verdicts of expected value theory in practice, or at least do

so in almost all of the cases we most care about, we seem to have little reason to adopt them at all.

Such arguments have problems. For one, even the most compelling such arguments seem to depend on

a somewhat controversial principle of dynamic decision-making: resolute choice.

For another, more troubling problem, there turn out to be many exceptions (including many exceptions

in practice) to the claim that those theories merely parrot expected value theory. When long-run arguments

are stated informally, it may indeed seem plausible that those theories must come to always agree. But,

when we attempt to rigorously prove the necessary results, there emerge unavoidable exceptions. As I

will demonstrate, particular risk-aversion-accommodating theories often fail to agree with expected value

theory—namely, when our options have equal expected value, when we face decisions with particularly

high stakes, when we adopt certain risk-averse attitudes, and when we make decisions near the ends of

our lives. So these theories do not always agree with expected value theory; not even close. These are

sufficiently broad and important classes of cases that disagreement therein is enough to distinguish those

theories from expected value theory.

So, contrary to the conclusions drawn by others, risk-aversion-accommodating theories can offer a

genuine alternative to expected value theory. We need not banish risk aversion from decision-making just

yet.

2 Models of risk aversion

How, exactly, can a theory of instrumental betterness accommodate risk aversion? Throughout this paper,

I will consider the two most common (and, to me, most plausible) proposals.

The first such proposal is expected utility theory. It says that an option L is at least as good as another

option M , if and only if L brings about at least great an expectation of utility as M . This may sound a

lot like expected value theory from earlier. But here I mean utility in a decision-theoretic sense, meaning

something quite different from (moral) value—it also represents the agent’s attitude to risk.6 Depending

on how strongly the agent prefers obtaining good outcomes with high probability, the utility of an outcome

dating risk aversion in general, by, e.g. Thoma (2019), Stefánsson (2020), Zhao (2021), Briggs (2019), Hájek (2021, §.2), and
Baron (2000, p. 244).

4See Thoma (2019, p. 241) and Zhao (2021, p. 17).
5Thoma’s criticism is aimed at Lara Buchak’s risk-weighted expected utility theory but, as I’ll show, an analogous argument

can be made against versions of expected utility theory that allow risk aversion.
6I will assume throughout, as Buchak (2013) does, that the normatively relevant risk attitude is one held by the agent

making the decision. But we might adopt a version of expected utility theory, or risk-weighted expected utility theory
below, that isn’t agent-relative—there might be some objectively correct risk attitude that happens to be a risk-averse one,
and/or evaluations might need to be agreed upon by a range of risk attitudes. The discussion throughout will apply to these
alternative versions too.
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can be any increasing function of its value—one outcome will still have greater value than another if and

only if it has greater utility, but how much greater its value is can vary.

Expected utility theory allows us to accommodate general risk aversion with respect to (moral) value by

allowing the agent’s utility function to be concave: the greater the value of an outcome, the less difference

to its utility is made by some additional value. Such a utility function looks like this:

;

v

u(v)

Figure 1: A utility function u(v) that is concave with respect to (moral) value.

If the agent making the decision has such a utility function (with sufficient concavity), expected utility

theory can deliver the risk-averse verdict in the case from earlier. Recall that A is the option of curing one

person’s blindness with certainty, and B the option of curing the blindness of 101 people with a probability

of one in 100. In terms of utility, the options might be represented as follows.

A : (an outcome of) utility 1 with probability 1.

B: utility 50 with probability 1/100; utility 0 otherwise

We would then assign an expected utility 1 to the safe option, A, and expected utility 0.5 to B. So,

it is indeed better to save one person for sure than to gamble on saving 101 lives, at least on this risk

attitude. Thus, expected utility theory can vindicate the risk-averse verdict we might want here.

An alternative and widely-discussed proposal for accommodating risk aversion is Lara Buchak’s risk-

weighted expected utility theory.7 According to this theory, an option L is at least as good as another

option M if and only if the risk-weighted expected utility (REU) of L is at least as great as that of M .

This REU is calculated as follows.

REU(L, r) = u1 +

n∑
j=2

(
uj − uj−1

)
r
(
P (L ≥ uj)

)

Here, u1, u2, u3, ..., un are the utilities of the possible outcomes of L, ordered from lowest to highest. (I

will assume that these utilities are given by a utility function that is linear with respect to value, both for

simplicity and to highlight the differences between the two theories.)8 The REU formula asks us to start
7Its promise comes in large part from its ability to accommodate the intuitively rational preferences described by Allais,

which expected utility theory cannot accommodate—see Buchak (2013, pp. 31-4).
8The results below concerning REU theory—Theorems 2 and 4—apply also for REU theory with non-linear utility func-

tions.
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with the utility of the worst possible outcome, given by u1, and sum the amounts by which L could exceed

u1 (and u2, and so on). But we weight those amounts, not by the probability that we exceed the previous

uj−1 by that amount, but by some function of that probability.

This risk function, r, represents the agent’s risk attitude. By definition, r must be real-valued, non-

decreasing, and satisfy r(0) = 0 and r(1) = 1 (?, p. 49). And it allows us to accommodate general risk

aversion with respect to (moral) value by allowing the agent’s r function to be convex, and to take values

of r(p) less than p for all probabilities between 0 and 1. Such an r function looks like this:

1

1

;;

p

r(p)

Figure 2: A risk function r(p) that is convex with respect to probability and returns values less than p for
all 0 < p < 1.

If the agent has a risk function like this (if it is sufficiently convex), REU theory can deliver the risk-

averse verdict in the above case as well. Using a linear utility function, A delivers utility 1 for sure, and

B delivers utility 101 with probability one in 100. So, the REU of each option will be:

REU(A, r) = 1 REU(B, r) = 0 + 101r(1/100)

With a sufficient aversion to risk—with a sufficiently convex r function—we will obtain r(1/100) < 1
101 ,

so that B will have strictly lower REU than A. Thus, REU theory too seems able to say, for sufficiently

risk-averse agents, that it is better to save one person for sure.

3 A long-run argument against EU and REU theory

In practice, each of these proposals may fail to uphold risk-averse verdicts at all. So argue various decision

theorists (Thoma, 2019; Zhao, 2021, e.g.), in the form of long-run arguments. A general version of those

arguments runs as follows. (This version is adapted from Thoma, 2019, but, while Thoma’s argument is

targeted only at REU theory, it can be applied to EU theory to similar effect.)

First, take any decision between two risky options: say, L and M , of which L’s expected value is at least

as great as M ’s. And imagine that the decision will be repeated some n times, with the value resulting

from L (or M) generated independently each time.
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How should we compare our options in a decision that features in such a sequence of repetitions?

One rule for doing so—the most plausible rule, according to Thoma9—is resolute choice: that the best

option in each decision in the sequence is whichever option appears in the sequence of choices that is best

overall.10 One such sequence of choices is L every time, for which the overall payoff is the sum of value

of n independent trials of L. If L represented as a random variable over possible values, that sequence of

choices is given by the variable L+ L+ L+ ...+ L (repeated n times), or L×n for short.

Which is better, the sequence of choices associated with L×n or with M×n?11 Expected value theory

would match what it says about L and M : that the repeated version of L is at least as good as the

repeated version of M ; repeating the options makes no difference to the verdict. But what do risk-

aversion-accommodating theories say?

There is reason to expect that any such theory will say the same as expected value theory, so long as

the number n of repetitions is large enough. According to the (Strong) Law of Large Numbers12, as the

number of repetitions n approaches infinity, with probability 1, the average actual value obtained from

each trial in L×n approaches the average expected value of the individual options in the sequence, E(v(L)).

And the possibility that the average actual value is much less than E(v(L)) has probability approaching 0

as n gets large. In this sense, as n becomes large enough, the option L×n can be approximated more and

more closely by an option that delivers value n × E(v(L)) for sure (and similarly for M×n). You might

think that, therefore, L×n and M×n should be evaluated the same way as such options that deliver those

expected values for sure. If so, we will be led to endorsing the same verdict as expected value theory,

whether or not we instead endorse a theory that is thought to accommodate risk aversion.

Consider the case from earlier, of the two charities one might donate to in order to combat trachoma.

(Merely for simplicity, I assume that there are no other sources of value in the world.)

A : (an outcome of) value 1 with probability 1.

B: value 101 with probability 1/100; value 0 otherwise

Suppose that you make the same decision 10,000 times over (perhaps with the donation in B to

different charities each time). What do the above risk-aversion-accommodating theories say of A×10,000

and B×10,000?

Take expected utility theory, and a risk-averse agent with utility function, say, u(v) = ln (v + 1) (the

natural logarithm of v+1). When evaluating the expected utility of A×10,000, since A×10,000 delivers value

10,000 for sure, the agent need only convert value 10,000 into utility: approximately 9.21. And while

evaluating the expected utility of B×10,000, they have a much more complicated calculation to do, but the
9One key advantage of resolute choice is precisely that allows risk-averse verdicts to change when we know the decision will

be repeated. If an agent faces the decision from above between A and B thousands of times over, with independent payoffs
each time, they will almost certainly obtain far more value if they choose B×n than A×n. It seems that, at least sometimes,
this knowledge should justify making riskier choices rather than just choosing A every time. For related discussion, see
Stefánsson (2020).

10This definition differs from those used elsewhere McClennan (e.g. in 1990), in that it concerns betterness rather than
permissibility.

11As it turns out, there are no other contenders for best overall plan. This is not just a matter of intuition; it follows from
Theorems 3 and 4 below. That result allows us to simplify the discussion, considering only the plans associated with L×n

and M×n in cases like this.
12See Feller (1968, p. 258).
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expected utility becomes 9.22—greater than for A×10,000. So, for agents with this utility function, EU

theory says that B×10,000 is better than A×10,000.

Alternatively, take REU theory, and a risk-averse agent with risk function r(p) = p2, as Buchak (2013,

p. 50) suggests would be reasonable (and, as throughout, a linear utility function). Their REU for

A×10,000 will simply be 10,000. But their REU for B×10,000 becomes approximately 10,100—greater than

for A×10,000. In fact, the analogous result holds even when A and B are repeated just 11 times. For any

n ≥ 11, B×n will have higher REU than A×n.

You might expect this to hold in general. Take any option L, and repeat it n times; it seems that its

average EU (the EU of L×n, divided by n) will approach the utility of L’s expected value as n gets large.

Likewise, it seems that its average REU will approach its average EU. If so then, for large enough n, both

EU theory and REU theory will agree with expected value theory about whether L×n is at least as good

as any given M×n. And, if we endorse resolute choice, EU theory and REU theory then imply in each

decision in the sequence that L is at least as good a choice as M . These theories say just the same as

expected value theory!

You might think that all of our practical decisions are taken within such sequences. Many of our

decisions are repeated many times. We decide many times in our lives how to travel to work—whether

to take the environmentally friendly method or the environmentally damaging one. Or you may decide

many times in your life whether to donate $50 to one charity or another. (Donate a large amount at once,

with the option of splitting it between two charities, and you effectively make this decision many times

at once!) Or, at least, we will face other decisions with similar options, probabilities, and values. From

this we might infer that REU theory and EU theory will agree with expected value theory in nearly all

practical cases.

Crucially, even if a decision is not repeated so many times, it still seems likely that those theories

will agree on the best option (Thoma, 2019, p. 248). That decision still features in a long sequence of

decisions, and the best plan for that sequence will likely be to always choose the option with the highest

expected value. So it seems that EU theory or REU theory (combined with resolute choice) will nearly

always agree with expected value theory even in decisions that are never repeated.

Given this confluence of our best risk-aversion-accommodating theories and risk-neutral theories, why

not simply accept the latter? Expected value theory is the simpler theory, after all. And deviations from

it are typically justified by intuitions that it is permissible to choose in a risk-averse manner in particular

cases. But, by the above argument, accommodating risk aversion within our theories in either of the above

ways will not vindicate such intuitions. So, we might as well banish risk aversion. At least, so goes the

argument.

4 Evaluating the argument

This argument as presented above has problems, four of which I will address below. Some of these problems

can be patched over—for instance, where the argument appears to rely on speculative inferences, we can
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make it more rigorous. Others cannot—there remain many practical decision scenarios where EU theory

and REU theory simply need not agree with expected value theory.

4.1 The law of large numbers and EU/REU

It is true that the Law of Large Numbers implies that the average value resulting from a repeated option

approaches its expected value. As n approaches infinity, the probability that L×n’s average value is far

from Ev(L) approaches 0. So, for large enough n, the average payoff is all but guaranteed to be close

to the average EU. This holds for any option L. And from this we might infer that the average EU and

average REU of L×n approaches the utility of Ev(L).

But this inference is much too quick. The inferred result may hold in some specific cases, such as that

described above. But why think that, in all cases, the average EU, average REU, and average expected

value of a repeated lottery all behave in the same way? After all, the Law of Large Numbers says nothing

about the EU or REU of an option. And, if we cannot make this inference, the argument seems to fall at

the first hurdle.

Fortunately, something like the Law of Large Numbers can be proven for both EU and REU, so

(something like) that inference can be defended. First, for the EU of repeated options, I prove the

following. (See the appendix for all proofs.)

Theorem 1: For any real-valued random variables over value, L and M , and any increasing

utility function u(v) with strictly increasing or strictly decreasing absolute risk aversion, there

is some n′ > 0 such that, for all greater n > n′, if Ev(L) > Ev(M) then Eu(L×n) > Eu(M×n).

Take any options L and M , of which L has greater expected value. Theorem 1 states that, for any

large enough n, EU and expected value theory will agree about how to compare L×n and M×n.13 If you

faced a long enough sequence of repeated decisions between L and M , and if resolute choice holds, then

the two theories would agree that L is the better option every time.

But the theorem is limited. For one, it only holds for pairs of options where one has strictly greater

expected value. We often cannot say the same for L and M with equal expected value. Yes, the average

EU of L×n will still approach the EU of L, and likewise for M . But the verdicts of EU and expected value

theory may always give opposite verdicts. For instance, consider the safe option A and the coin flip C:

A: value 1 with probability 1.

C: value 2 with probability 1/2; value 0 otherwise

Both options have the same expected value: 1. But C is a riskier option and, accordingly, risk averse
13Note that this result is contrary to claims by Samuelson (1963) and Stefánsson (2020). Each claims something to the

effect that, if EU theory disagrees with expected value theory about how to compare L and M , then they must also disagree
about how to compare L×n and M×n. But this is because they each assume that a risk-averse EU maximiser’s willingness
to take an additional risky bet must not depend on the value they have already secured—they assume constant absolute risk
aversion, and so a linear or exponential utility function. But these represent only a small slice of the possible utility functions
on offer!
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agents will give it lower EU than A. What happens if we repeat A and C arbitrarily many times? It turns

out that an agent with a concave utility function, such as u(v) = ln v, will assign a greater EU to A×n

than to C×n, no matter how many times n the options are repeated. So, EU theory and expected value

theory will always disagree in such cases.

For another limitation, note that Theorem 1 only holds for utility functions u(v) with strictly increasing

or decreasing absolute risk aversion. Absolute risk aversion is a technical notion from economics, describing

the agent’s attitude to risk at each level of value.14 For our purposes, all that matters is that there are utility

functions where this measure is neither increasing nor decreasing. For instance, linear utility functions

such as u(v) = v have absolute risk aversion of 0. And exponential utility functions—those of the form

u(v) = 1 − a−v (for some positive a)—have constant absolute risk aversion too. With an exponential

utility function, an agent would be no more nor less willing to take a bet if they had already won or lost an

arbitrary number of previous bets. Because of this, it turns out that an agent with such a utility function

will rank L×n as better than M×n only if L has greater EU than M , no matter how many times n each

option is repeated.15 So again, with a utility function such as this, EU theory and expected value theory

will disagree, no matter how many times a decision is to be repeated.

I prove a similar result for the REU of repeated options.16

Theorem 2: For any real-valued random variables L and M over value and any continuous17

risk function r, there is some n′ > 0 such that, for all greater n > n′, if Ev(L) > Ev(M) then

REU(L×n, r) > REU(M×n, r).

As above, this theorem is limited. Again, it only holds for L and M where one has strictly greater

expected value. When L and M have equal expected value, the average REU of each of L×n and L×n

may approach the average value of L and M , respectively. But REU theory may still never agree with

expected value theory about the ranking.

For example, consider again the case of A versus C from above. Both options have equal expected

value. But a generally risk-averse agent will give C a lower REU than A. But they will also give C×n a

lower REU than A×n, no matter how many times n each option is repeated. Although the average REU

of C×n may approach C’s expected value, with a convex r, it will never quite get there. The same goes

for any pair of options with equal expected value and unequal REU, no matter how low their stakes. The

same also goes for any number n of repetitions and for any generally risk-averse agent, no matter how

mild their risk aversion. For any such agent, in any such cases, the verdict of REU theory will remain

different from expected value theory.

Where does this leave long-run arguments against risk aversion? In one sense, they are strengthened—

we have proof that, for at least some wide class of cases and utility functions, and sufficiently many

14It is measured by the expression u′′(v)
u′(v) , where u′ and u′′ are, respectively, u’s first and second derivatives with respect

to v.
15This is shown by Samuelson (1963, p. 53).
16Both this result and Theorem 1 above are roughly equivalent to the repetition theorem sketched by Buchak (2013, pp.

214 & 218) and appealed to by Thoma (2019, p. 238).
17To streamline the discussion, I will assume from here on that REU theory requires continuous risk functions. But note

that Buchak (2013, p. 49) Buchak herself does not rule out discontinuous risk function. If discontinuous risk functions are
valid, then there are many more cases in which REU and EU theory can disagree.
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repetitions of each case, these risk-aversion-accommodating theories do come to agree with expected value

theory. But in a more important sense, they are weakened. There are mundane decision scenarios—any

in which options have the same expected value but different EU or REU—in which those theories never

come to agree with expected value theory. And there are utility functions—any with constant relative

risk aversion, such as exponential utility functions—that never change their mind about how to compare

options, no matter how many times they are repeated. These theories can still deliver verdicts entirely

different from expected value theory.

4.2 Limits of limit results

The exceptions don’t end there. Cases of equal expected value are not the only ones where EU and REU

theory consistently disagree with expected value theory.

The Law of Large Numbers and the two theorems above are limit results. They may say that one

quantity approaches another—that the average utility of L×n approaches the utility of L’s expected value,

or that the average REU of L×n does so—but this need only occur as n approaches infinity. By themselves,

limit results like these say nothing about the behaviour of the average utility or the average REU for any

given finite n.18 But the argument against risk-aversion-accommodating theories requires saying something

about a given finite n. After all, mortal agents like us face the same decision only finitely many times

in our lives—far fewer than infinitely many times—and the argument requires that this finite number is

sufficiently large. So, for mortal agents like us, those risk-aversion-accommodating theories might still give

verdicts entirely different from expected value theory.

To determine whether the two theories agree in particular decisions, we must look to specific examples.

For instance, consider again A and B.

A: value 1 with probability 1.

B: value 101 with probability 1/100; value 0 otherwise

Suppose we make this comparison using REU theory. For an agent who is sufficiently risk averse, A has

the higher REU. For instance, if an agent’s risk attitude is such that r(p) = p2 (and their utility function

is linear), then REU(B, p2) = 0.0101, which is a lot less than REU(A, p2) = 1.

Suppose that we also use REU theory to compare repetitions of each option. It turns out to take very

few repetitions for an agent with that same risk attitude to say that B×n is better than A×n. With just

11 repetitions, the repeated risky option will have higher REU than the safe one. So, for an agents who

must decide between similar options at least 11 times in their life, and whose risk attitudes are such that

r(p) = p2, REU theory will agree with expected value theory that it is better to choose B than A here.

But 11 repetitions will not be enough for agents with more extreme risk attitudes. For instance, take

an agent so risk averse that r(p) = p4. For them, the decision would need to be repeated 55 times for REU
18I am grateful to Alan Hájek for pointing this out.

9



theory to agree with expected value theory that it is better to choose B each time. And, for r(p) = p5 (or

p to a higher power), it would take well over 1,000 repetitions.19

Indeed, we can take any pair of options that can have unequal REU and expected value, and take any

finite n, and there will be some risk function such that n is not high enough. So, for any such decision,

there is a possible agent for whom REU theory and expected value theory will disagree.

What about EU theory? If the agent’s risk attitude is such that u(v) =
√
v, for instance, A will have

higher EU than B. And this ranking carries over to comparisons of A×n and B×n, for n up to 2,540. Only

for n higher than that do EU theory and expected value theory come to agree.

As above, for even more extreme risk attitudes, it requires even greater n for the theories to agree. For

u(v) = ln (v + 1), n must be at least 5,060 for B×n to have greater EU than A×n. (And, as noted above,

exponential utility functions, no finite n gives B×n the greater EU.) In general, for any pair of options

on which EU theory and expected value theory can disagree, and any finite n, there will be some utility

function such that n is not high enough for them to agree. So, for any such decision, there are possible

agents for whom EU theory and expected value theory will give different verdicts.

4.3 Rare decisions

The range of possible exceptions becomes even greater if consider decisions that are repeated few times or

not at all.

Many of our most important decisions are like this; some arise only once. For instance, you might think

that one’s initial decision of which career path to pursue is sufficiently high in its stakes that they will never

repeat it. Likewise, many decisions with high moral stakes are not decisions that most of us make more

than once in our lives. For paradigmatic examples, consider Harry Truman’s decision of whether or not

to detonate nuclear weapons over Hiroshima and Nagasaki; or the philanthropist Katharine McCormick’s

decision of whether or not to fund the (eventually successful) combined oral contraceptive pill (Eig, 2015,

see); or Norman Borlaug’s decision of whether to research new breeds of wheat that could (and eventually

did) dramatically increase the world’s food supply. In these high-stakes risky decisions, perhaps risk-

aversion-accommodating theories still have something to say different from expected value theory, even

if we restrict our attention to agents with only moderate aversion to risk. And, if those theories have

something different to say even just in these cases, where it is all the more important to apply the correct

theory of instrumental betterness, they clearly do represent a distinct alternative to expected value theory.

The worry that some decisions go unrepeated is briefly addressed by Thoma: “we can speculate that

in the case of large numbers of different small-stakes gambles, too, resolute REU maximizers will behave

approximately like expected [value] maximizers” (Thoma, 2019, p. 248; emphasis mine). It seems plausible

that it need not be the case that each exact decision is repeated. Having very many different decisions

in one’s future will likely be enough to steer our verdicts towards risk neutrality, even if many of those

decisions have low stakes.
19As Buchak (2013, p. 214) notes, “...in general, the more risk-avoidant an agent is, the higher n will have to be for her to

prefer the [Bs]".
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Looking at particular sequences of lotteries, Thoma’s speculation does seem correct. For instance,

consider again the options A, B, and C.

A : utility 1 with probability 1.

B: utility 101 with probability 0.01; utility 0 otherwise

C: utility 2 with probability 1
2 ; utility 0 otherwise

Suppose an agent must choose between A and B, but knows they will face n other decisions in their life

in which C is unambiguously the best option. How do A+C×n and B+C×n compare? It turns out that,

as n increases, the EU of B+C×n comes to be greater than that of A+C×n (at least for utility functions

with strictly increasing or strictly decreasing absolute risk aversion). Likewise, the REU of B+C×n comes

to be greater than that of A + C×n (at least for continuous risk functions). So, even if an agent faces

the decision between A and B just once, both theories will still recommend B if both options would be

followed by sufficiently many other decisions in which those theories recommend C. In this case at least,

both theories will agree with expected value theory.

It turns out that something similar occurs for many pairs of options and for many sequences of decisions

that might follow them. We can prove the following.

Theorem 3: For any real-valued random variables L and M , any ordered sequence of infinitely

many lotteries {N1, N2, N3, ...} with var(Ni) > 0 and bounded above20, and any increasing

utility function u : R → R with strictly increasing or strictly decreasing absolute risk aversion,

there is some n′ > 0 such that, for all n > n′, if Ev(L) > Ev(M) then Eu(L+N1 +N2 + ...+

Nn, r) > Eu(M +N1 +N2 + ...+Nn, r).

Theorem 4: For any real-valued random variables L and M , any ordered sequence of infinitely

many lotteries {N1, N2, N3, ...} with var(Ni) > 0 and bounded above, and any continuous

risk function r, there is some n′ > 0 such that, for all n > n′, if Ev(L) > Ev(M) then

REU(L+N1 +N2 + ...+Nn, r) > REU(M +N1 +N2 + ...+Nn, r).21

These results are similar to Theorems 1 and 2. They state that, if both options L and M are followed by a

sufficiently long sequence of the same choices in other decisions, REU theory and EU theory will typically

agree with expected value theory that L followed by that sequence is better than M followed by the

same sequence. There are exceptions to this—where L and M have equal EU, where the EU-maximising

agent’s utility function exhibits constant absolute risk aversion, and where the REU-maximising agent’s

risk function is discontinuous near 0 or 1—but these are the same as for Theorems 1 and 2. So, in practice,

if you ever need to decide between some options L and M with unequal expected value, and you don’t
20This is quite a tame requirement. It will be satisfied when the sequence of options {N1, N2, N3, ...} is something like C

repeated over and over. Where it fails to hold is if the agent’s life is devoid of other risky decisions, or if the payoffs in those
decisions are unbounded such as in the St Petersburg and Pasadena games.

21Theorems 3 and 4 reflect a more general phenomenon: that, as some ‘background uncertainty’ B increases in variance
and in stakes, L+B eventually comes to stochastically dominate M +B (see Tarsney, 2020; Wilkinson, 2022, §6), such that
any plausible decision theory will eventually favour L+B.
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have certain problematic risk attitudes, then EU theory and REU theory will give you the same verdict

as expected value theory so long as you have sufficiently many other decisions remaining in your life.

But how large must n be to be sufficiently many? This will depend on just how risky those later options

N1, N2, ..., Nn are, as well as on the stakes involved in the initial options L and M , and on the agent’s risk

attitude. Crucially, we can take any n, any N1, N2, ..., Nn, and any continuous r function, and there will

be some options L and M such that the result does not hold. For instance, consider a decision between

options D and E, where you know each will be followed by n = 10, 000 more decisions in which you will

choose C (from above) each time.

Take EU theory, and take a fairly moderate risk attitude such that u(v) =
√
v. Even when C is

repeated 10 thousand times, E + C×10,000 will still not have as great an EU as D + C×10,000. Likewise,

we could repeat C one million, one billion, or any number of times; there will be some ever-higher-stakes

options D′ and E′ such that EU theory still recommends the safe option.

Or take REU theory, and the fairly moderate risk attitude such that r(p) = p2. Even when C is

repeated 10 thousand times, D + C×10,000 will still not have as great an REU as E + C×10,000. Likewise,

we could repeat C one million, one billion, or any number of times; there would be some ever-higher-stakes

options E′ and F ′ such that REU theory still recommends the safe option. So we have another exception

to the argument that risk-aversion-accommodating theories can say nothing different to expected value

theory: decisions that are sufficiently high in their stakes. If an agent faces few extremely consequential

decisions in their life—such as, perhaps, a political leader deciding whether to start a war, or deciding

how to direct foreign aid—both EU theory and REU theory will often offer advice different from expected

value theory.

So EU theory and REU theory (combined with resolute choice) agree with expected value theory in

fewer cases still. Not only do they disagree in cases where options have equal expected value and cases

where the agent’s risk attitudes are extreme enough; they also disagree in cases where the stakes are high

enough. Indeed, they disagree in high-stakes cases (like that above) even if the agent is only moderately

risk-averse (and so does not have too convex a risk function under REU theory, or too concave a utility

function under EU theory).

You might think that this further observation about high-stakes cases bears little on the case for or

against these theories—that disagreeing with expected value theory in rare, high-stakes cases does little to

distinguish them. (Thoma, 2019, p. 252), for instance, takes this view: that, if a “...theory ends up making

approximately the same recommendations regarding small-stakes gambles as expected [value] theory [then

it] offers no real alternative to expected [value] theory..." (emphasis mine). But this conditional does not

seem plausible, especially when we apply said theory in the context of moral decision-making. In moral

decisions, where the stakes may be enormous, it is especially important for our theory to give the correct

verdicts in the cases with the highest stakes. Even if two theories agree in almost all practical cases, that

matters little if they disagree in exactly those cases which are the most important for our theories to get

right. (Imagine rejecting utilitarianism or Kantianism because they agree in most everyday decisions!) So,

it seems that EU theory and REU theory could offer a genuine alternative to expected value theory, even

if they only disagreed with it in high-stakes cases. And, as demonstrated above, they disagree in many
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more cases than that.

4.4 Abandoning resolute choice

So far I have assumed that resolute choice holds—that if L×n is better than M×n then, in a decision

between L and M that is repeated n times, L should be considered a better option than M every time.

But what if we rejected it?

We would be left with strictly less plausible rules of dynamic choice, according to both Thoma’s and

Zhao’s versions of the argument. Each argues that there are compelling reasons to think that resolute

choice is more plausible than its rivals (see Thoma 2019, pp. 242-4 and Zhao 2021, §3.1). But if you

find risk aversion independently plausible, this likely won’t convince you. After all, you are not deciding

between resolute choice and its rivals in a vacuum. You must decide between them when accepting resolute

choice means that we must deny risk-aversion-accommodating theories, or so the argument goes. If you

find arguments for EU theory or REU theory more compelling than those for resolute choice, those rival

dynamic choice rules are still worth considering.

But what are those rules?22 One is sophisticated choice: the best option in a decision is whichever is

best conditional on the agent choosing the best option in each of their future decisions.23 To illustrate this

rule, suppose you face a sequence of n repeated decisions between A′ and B.

A′: value 1 with probability 0.9; value 0 otherwise.

B: value 101 with probability 0.01; value 0 otherwise

Working backwards, in the nth decision, we can suppose that A′ is the best option—that it has the greater

EU or REU, according to the agent’s risk attitude. Then, in the (n − 1)th decision, you must evaluate

your two options as A′ + A′ and B + A′. Both options feature spreads of risk different to those of A′

and B. (E.g. each has a much lower probability of 0 than they do without A′ added. ) Indeed, on some

risk functions, the REU of A′ + A′ ends up being lower than that of B + A′. Likewise, on some utility

functions, the EU of A′ + A′ ends up being lower too. In fact, on any utility function with increasing or

decreasing absolute risk aversion, EU theory will say that B +A′
×n becomes better than A′ +A′

×n once n

gets large enough (by Theorem 3). Likewise, on any continuous risk function, REU theory will say that

B + A′
×n becomes better once n gets large enough (by Theorem 4). So, both theories will say that B

is the better option in the (n − 1)th decision, as expected value theory does, if we accept sophisticated

choice. And this agreement with expected value theory also holds for any options L and M (with unequal

expected value) each followed by any sufficiently long sequence of options N1, N2, ..., Nn. So, at least for

the first few decisions in any such sequence, risk-aversion-accommodating theories will agree with expected

value theory, at least in some cases. The argument against those theories suddenly seems more powerful:
22One option I won’t cover in any depth is permissive resolute (or sophisticated) choice: the best option in a decision is

whichever would be best according to resolute (or sophisticated) choice if all of the agent’s future decisions beyond some
time horizon t were excluded, with t set by the agent’s own characteristics. (Alternatively, we might consider a similar choice
rule by which all settings of t are valid, and an option must be better than another on all such settings of t to be better
simpliciter.) For compelling arguments against this option, see Thoma (2019, pp. 250-2).

23For an argument that we should not endorse sophisticated choice and REU theory simultaneously, see Buchak (2015,
§4)).
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accept resolute choice or sophisticated choice, and the two theories will often agree; we need not assume

the former.24

A different choice rule you might adopt is self-predictive choice, which says: the best option in the

decision before you is whichever is best in light of your uncertainty about what you will choose in each

of those future decisions.25 This is the rule you would use if you thought that your past choices were

irrelevant to present evaluations, and that future choices relevant only insofar as your predictions of what

you’ll choose change your present options. To illustrate, suppose that you must decide between the original

A and B options, with that decision repeated again just once. And suppose that, when facing that first

decision, you are uncertain of how you will choose next time, with probability 0.5 that you will choose each

option. (If you choose B, you will also be uncertain of how the option turns out; your overall uncertainty

of how the second decision turns out can be denoted by L.) By self-predictive choice, you must evaluate

your options in the first decision as though they are the following standalone options:

A+L: value 102 with probability 0.005; value 2 with probability 0.5; value 1 with probability

0.405.

B + L: value 202 with probability 0.00005; value 102 with probability 0.005; value 101 with

probability ∼ 0.05; value 1 with probability 0.495; value 0 with probability ∼ 0.49

These options feature spreads of risk different from A and B. And, on some risk attitudes, EU theory and

REU theory will judge B + L as better than A + L, even though they judge A as better than B. Add

sufficiently many gambles L of future payoffs and, on any utility function with increasing or decreasing

absolute risk aversion and on any continuous risk function, B+L×n will have greater EU and greater REU

than A + L×n. So, EU theory and REU theory will then agree with expected value theory. And, thanks

to Theorems 3 and 4 above, this generalises. The same result will hold if we replace A and B with any

options with unequal expected value. Likewise, it holds if we substitute L for lots of different lotteries,

even if they are far less risky (as they might be if you are almost certain of what your future self will

choose).

We might adopt either sophisticated choice or self-predictive choice Either way, we can deny resolute

choice and our theories can still obtain verdicts in a principled manner. And, as demonstrated here, these

choice rules will often lead EU theory and REU theory to deliver the same verdicts as expected value

theory. It seems that the argument against risk-aversion-accommodating theories is stronger than we

might have thought.

But these dynamic choice rules still leave the exceptions described above. In addition, they introduce

new exceptions. In particular, both sophisticated and self-predictive choice lead EU theory and REU

theory to disagree with expected value theory in the later decisions of an agent’s life. By either rule, if

an agent’s final decision is between L and M , they must compare them in isolation—they must judge

as better whichever of those options has greater EU or REU, considered alone.26 So either theory will
24Thoma (2019, p. 244) makes a similar, weaker claim: that sophisticated choice results in REU and expected value theory

coming to agree in some cases, specifically when there is no known end to a sequence of decisions. But, in fact, the theories
come to agree in a much broader class of repeated decisions, as shown here.

25This is the dynamic choice rule of subjective actualism, as advocated by Jackson (2014), among others.
26Note that this matches conventional investment wisdom: that it is rational to transition to a less risky portfolio as one
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disagree with expected value theory about how to compare any end-of-life options that, taken alone,

the risk-aversion-accommodating theory would rank differently. Likewise, by either sophisticated or self-

predictive choice, we can rewind to a few decisions before the agent’s final decision, and REU theory and

EU theory will often disagree with expected value theory there as well—on some risk attitudes, for some

small n, and/or for some high-stakes options L and M (such as, perhaps, how to allocate one’s will),

risk-aversion-accommodating theories will judge L+N1 + ...+Nn as better than M +N1 + ...+Nn even

though expected value theory says the reverse. So, as an agent’s life comes to an end, the two theories will

begin to sometimes give very different verdicts, by either of these choice rules.

5 Conclusion

Where does this leave our most promising risk-aversion-accommodating theories? Do they fail to offer a

true alternative to expected value theory, as long-run arguments have suggested?

Such theories do offer an alternative. As shown here, they disagree with expected value theory in

various classes of cases: whenever agents compare options with equal expected value, and of which one

is riskier; when any given pair of options are compared by agents who are simply risk-averse enough;

when even agents who are only moderately risk-averse face decisions with particularly high stakes; and,

if we reject resolute choice, then also when an agent compares options available to them near the end

of their life. And these will include moral decisions on which it is especially important for our theory

to get right: high-stakes decisions such as, perhaps, a political leader deciding whether to start a war,

or an elderly philanthropist deciding where to bequeath their riches. It will not do to simply follow the

verdicts of expected value theory in these cases if instead some risk-aversion-accommodating theory is

true—disagreement even just in these cases is enough to warrant retaining such theories.

Admittedly, it is true that these theories agree with expected value theory in many cases. We now have

formal proof of that. Take any decision between two options (with unequal expected value). If an agent

has a suitable risk attitude and faces sufficiently many other decisions in their life, REU theory and EU

theory will agree with expected value theory on the verdict.

You might think that this occasional agreement is itself reason enough to abandon those theories.

Those theories are often justified by intuitions in practical cases where a particular risk-averse verdict

seems plausible (see, e.g. Buchak, 2013, §1.1). For instance, suppose an agent must decide which charity

to donate to, of the two charities described in the Introduction. Intuition may suggest that a typical agent,

averse to risk, ought to donate to the sure thing. So we may want decision theory to accommodate this.

But it appears that EU theory and REU theory cannot do so, based on the discussion above, at least not

for agents with only a moderate aversion to risk, and who will donate to charity many more times in their

life.

But even this weaker objection to those risk-aversion-accommodating theories does not succeed. EU

theory and REU theory can still justify any such risk-averse verdict in basic motivating cases such as

approaches retirement. It turns out that such behaviour is justified even if an agent values money linearly.
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that of the two charities, even when that decision will be followed by many others. Those theories just

require more extreme risk attitudes to do so (see §4.2). And, in practice, the required risk attitudes are

not so extreme at all. When we recognise that real-world agents are engaged in long sequences of repeated

decisions, those are simply the attitudes required to reach mildly risk-averse verdicts in each individual

decision. So, risk-aversion-accommodating theories can still affirm risk-averse verdicts in the basic cases

intended to motivate them.

And, with that, the argument that these theories offer no true alternative to expected value theory (as

well as even the argument that they offer only unmotivated alternatives to it) fails. The mere fact that

a risk-averse agent’s verdicts become more risk-neutral overall in the long run is not, by itself, sufficient

reason to reject risk aversion altogether. Risk aversion can indeed survive the long run.

6 Appendix: Proofs

Theorem 1: For any real-valued random variables L and M , and any increasing utility function u : R → R

with strictly increasing or strictly decreasing absolute risk aversion, there is some n′ > 0 such that, for all

greater n > n′, if E(L) > E(M) then Eu(L×n) > Eu(M×n).

Proof : Chebysev’s Inequality27 states that, for any random variable X with defined variance var(X)

P
(
|X − E(X)| ≥ k

)
<

var(X)

k2
for all k > 0

It follows that P
(
|L×n − nE(L)| ≥ nϵ

)
<

nvar(L)
n2ϵ2

for any ϵ > 0

⇒ P
( |L×n − nE(L)|

n
> ϵ

)
<

E(L2)

nϵ2

Note that, for any E(L), E(L2), and ϵ, the right hand side converges to 0 as n → ∞. And for any tiny

δ1 > 0 we choose, there is some n′ > 0 such that, for any n > n′,

P
( |L×n − nE(L)|

n
> ϵ

)
< δ1 (i)

Similarly, for any tiny δ2, there is some n′ > 0 such that, for n > n′,

P
( |M×n − nE(M)|

n
> ϵ

)
< δ2 (ii)

For the greater of the two n′s, and for any n > n′, both (i) and (ii) hold.

To show that if E(L) > E(M) then Eu(L×n) > Eu(M×n), it suffices to show that, for some random

variables L′ and M ′, Eu(L×n) ≥ Eu(L′) > Eu(M ′) ≥ Eu(M×n) (for all increasing u(v) with strictly

increasing or strictly decreasing absolute risk aversion). We can obtain such L′ (and M ′) by taking the worst

(best) possible variables that satisfy (i) (or (ii)) and that still have the same minimum (maximum) values

as L×n (M×n). Note that min(im(L)) is the lowest value that results from L with non-zero probability,
27See Feller (1968, p. 233).
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and max(im(M)) the highest value that results from M with non-zero probability.

Let L′ be a random variable such that P (L′ = x) =

 δ1 for x = nmin(im(L))

1− δ1 for x = n(E(L)− ϵ)

Similarly, let M ′ be such that P (M ′ = x) =

 1− δ2 for x = n(E(M) + ϵ)

δ2 for x = nmax(im(M))

Since u(v) must be strictly increasing, Eu(L×n) ≥ Eu(L′) and Eu(M ′) ≥ Eu(M×n). But how do

Eu(L′) and Eu(M ′) compare?

Eu(L′)−Eu(M ′) = δ1u
(
nmin

(
im(L)

))
+(1−δ1)u

(
n
(
E(L)−ϵ

))
−(1−δ2)u

(
n
(
E(M)+ϵ

))
+(δ2)u

(
nmax

(
im(M)

))
We can choose arbitrarily small δ1, δ2, and ϵ, which makes this difference arbitrarily close to u

(
nE(L)

)
−

u
(
nE(M)

)
. And, since u′′(v)

u′(v) is strictly increasing or strictly decreasing, u
(
nE(L)

)
−u

(
nE(M)

)
will not be

arbitrarily small. Then, since u(v) is strictly increasing and E(L) > E(M), that difference will be positive.

Therefore, Eu(L′) > Eu(M ′) and, given the above, Eu(L×n) > Eu(M×n).□

Theorem 2: For any real-valued random variables L and M and any continuous risk function r : [0, 1] →
[0, 1] (and any increasing utility function u : R → R with strictly increasing or strictly decreasing absolute

risk aversion), there is some n′ > 0 such that, for all n > n′, if E(L) > E(M) then REU(L×n, r) >

REU(M×n, r).

Proof : As above, Chebysev’s Inequality implies that, for any ϵ > 0,

⇒ P
( |L×n − nE(L)|

n
> ϵ

)
<

E(L2)

nϵ2

Again, the right hand side converges to 0 as n → ∞. And for any tiny δ1, δ2 > 0 we choose, there is some

n′ > 0 such that, for any n > n′, both (i) and (ii) from above hold.

Define L′ and M ′ as above. Since r must be non-decreasing and u must be increasing, for any r(p)

and u(v), REU(L×n, r) ≥ REU(L′, r) and REU(M ′, r) ≥ REU(M×n, r). But how do REU(L′, r) and

REU(M ′, r) compare?

REU(L′, r)− REU(M ′, r) = u
(
nmin

(
im(L)

))
+ r(1− δ1)u

(
n
(
E(L)− ϵ−min

(
im(L)

))
−u

(
n
(
E(M) + ϵ

)
−r(δ2)u

(
n
(
max

(
im(M)

)
− E(M)− ϵ

)
Again, we can choose arbitrarily small δ1, δ2, and ϵ, which makes the above difference arbitrarily close

to u
(
nE(L)

)
− u

(
nE(M)

)
, which is positive since E(L) > E(M), u(v) is strictly increasing, and u′′(v)

u′(v) is

strictly increasing or strictly decreasing. So, REU(L′, r) >REU(M ′, r). Given the above, this implies that

REU(L×n) >REU(M×n) for sufficiently large n.□

Theorem 3: For any real-valued random variables L and M , any ordered sequence of infinitely many

lotteries {N1, N2, N3, ...} with var(Ni) > 0 and bounded above, and any increasing utility function u : R →
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R, there is some n′ > 0 such that, for all n > n′, if E(L) > E(M) then Eu(L +N1 +N2 + ... +Nn, r) >

Eu(M +N1 +N2 + ...+Nn, r).

Proof : The Kolmogorov Criterion28 states that, for an ordered sequence of infinitely many random

variables {X1, X2, ...}, if the sum
∑∞

i=1
var(Xi)

i2 converges, then the Strong Law of Large Numbers applies

to that sequence. So, for any ϵ, δ > 0, there is some n′ > 0 such that, for all n > n′,

P
( |X1 +X2 + ...+Xn −

∑n
i=1 E(Xi)|

n
> ϵ

)
< δ

Consider the ordered sequence {L,N1, N2, ..., Nn, ...}. Since var(Ni) is bounded above, var(L)
1 +

∑∞
i=1

var(Ni)
(i+1)2

converges to some finite sum. Kolmogorov’s Criterion then implies that, for any ϵ, δ1 > 0, there is some

n′ > 0 such that, for all n > n′,

P
( |L+N1 + ...+Nn − E(L)−

∑n
i=1 E(Ni)|

n
> ϵ

)
< δ1 (iii)

Similarly, for any ϵ, δ1 > 0, there is some n′ > 0 such that the analogous result holds for M + N1 +

N2 + ...+Nn for all n > n′.

To show that E(L) > E(M) implies that Eu(L+N1+N2+ ...+Nn, r) > Eu(M +N1+N2+ ...+Nn, r),

the method is similar to the proof of Theorem 1.

Let L′′ be a random variable such that P (L′′ = x) =

 δ1 for x = min
(
im(L)

)
+

∑n
i=1 min

(
im(Ni)

)
1− δ1 for x = E(L) +

∑n
i=1 E(Ni)− ϵ

Similarly, let M ′′ be a random variable such that P (M ′′ = x) =

 1− δ2 for x = E(M) +
∑n

i=1 E(Ni) + ϵ

δ2 for x = max
(
im(M)

)
+

∑n
i=1 max

(
im(Ni)

)
Since every utility function u(v) is non-decreasing, Eu(L+N1+...+Nn, r) ≥ Eu(L′′, r) and Eu(M ′′, r) ≥

Eu(M + N1 + ... + Nn, r). And by the same procedure as for Theorem 1, it can easily be shown that

Eu(L′′, r) > Eu(M ′′, r) for all n′ greater than some n, as required. □

Theorem 4: For any real-valued random variables L and M , any ordered sequence of infinitely many

lotteries {N1, N2, N3, ...} with var(Ni) > 0 and bounded above, and any continuous risk function r :

[0, 1] → [0, 1] (and any increasing utility function u : R → R with strictly increasing or strictly decreasing

absolute risk aversion), there is some n′ > 0 such that, for all n > n′, if E(L) > E(M) then REU(L+N1+

N2 + ...+Nn, r) > REU(M +N1 +N2 + ...+Nn, r).

Proof : As above, the Kolmogorov Criterion implies that, for any ϵ, δ1 > 0, there is some n′ > 0 such

that, for all n > n′,

P
( |L+N1 + ...+Nn − E(L)−

∑n
i=1 E(Ni)|

n
> ϵ

)
< δ1 (iii)

Similarly, for any ϵ, δ1 > 0, there is some n′ > 0 such that the analogous result holds for M + N1 +

28See Feller (1968, p. 259).
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N2 + ...+Nn for all n > n′.

Define L′′ and M ′′ as above. Since every risk function r is non-decreasing and every utility function u(v)

is strictly increasing, REU(L+N1+...+Nn, r) ≥ REU(L′′, r) and REU(M ′′, r) ≥ REU(M+N1+...+Nn, r).

And similarly to above, REU(L′′, r) > REU(M ′′, r) for all n′ greater than some n, as required. □
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