
GIS provides a context, an information resource, and an environment for geo-
graphical thinking and research .  .  . [GIS] is open rather than closed [and] can 
accommodate pluralistic research styles.1

All theory . . . is gray. In mapmaking, good results are more important than theo-
retical knowledge. A useful map can only be produced by a meticulously careful 
process of design and the most precise reproduction.2

[O]ur most recent examples show that paradigms provide scientists not only with a 
map but also with some of the directions essential for map-making.3

0.  Introduction
Geographic Information Science (GIS) is a scientific inter-discipline aiming to 
discover patterns in, and produce visual displays of, spatial data. Businesses use 
GIS to determine where to open new stores, and GIS helps conservation biologists 
identify field study locations with relatively little anthropogenic influence.4 GIS 
products include topographic and thematic maps of the Earth’s surface, climate 
maps, and spatially referenced demographic graphs and charts. The annual global 
GIS market (approximately $10 billion5) is of the same order of magnitude as 
CERN’s total budget to date (approximately $13  billion6), which it is only an 
order of magnitude less than the annual biotechnology global market. In addition to 
its social, political, and economic importance, GIS is worthwhile to explore in its 
own right due to its methodological richness, and because it is an instructive ana-
logue to other sciences. The lack of attention to the sciences of GIS and cartography 
by the history and philosophy of science (HPS), science and technology studies 
(STS), and related fields – though not geography or sociology – clearly merits rem-
edy. This chapter works towards a philosophy of GIS and cartography, or PGISC.

PGISC fits well in this volume on rethinking natural kinds in light of scientific 
practices. Collecting and collating geographical data, building geographical data-
bases, and engaging in spatial analysis, visualization, and map-making all require 
organizing, typologizing, and classifying geographic space, objects, relations, and 
processes. I focus on the use of natural kinds in data modeling and map generali-
zation practices, showing how practices of making and using kinds are contextual, 
fallible, plural, and purposive. The rich family of kinds involved in these activities 
are here baptized mapping kinds.
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198  Rasmus Grønfeldt Winther

Mapping kinds are only one aspect of PGISC. Philosophical concerns of real-
ism, representation, explanation, reduction, and theory structure can also be 
expanded and reconstructed through an analysis of GIS. For instance, attention 
to GIS practices helps enrich and clarify ongoing philosophical debates about, 
for example, (i) metrology and the nature of data; (ii) modeling, abstraction, and 
idealization in science; and (iii) the role of visualization in science. Moreover, 
products of these fields of inquiry, such as maps, are analogues to other scientific 
products, such as theories (e.g., “a scientific theory is a map of the world”). In 
short, PGISC can inform philosophy of science as well as GIS and cartography.

The epigraphs capture this chapter’s argumentative spread. The first makes 
explicit the functionality and promise of GIS as a science. Oppenshaw’s hope can 
be generalized to philosophical analysis, for which GIS can become an analyti-
cal exemplar. Imhof defends a practice-based and pragmatic view – rather than 
a theory-centric semantic or syntactic one – on cartography and science. Indeed, 
substituting “model” for “map” shows that results rather than knowledge are con-
sidered crucial; design and reproduction balance. Finally, the map analogy is used 
in perhaps the most influential philosophy of science book of the twentieth cen-
tury, Kuhn’s The Structure of Scientific Revolutions. This serves as one example 
of the map analogy’s ubiquity in philosophical analyses of science.7

The chapter is organized as follows. The first section reviews GIS, while the 
second turns to practices of data modeling and map generalization and to the 
plurality of mapping kinds. Other important practices and kinds involved in GIS 
and cartography are set aside. That is, surveying and census practices, visuali-
zation and spatial analysis, and so forth, must await future exploration from a 
PGISC perspective. Consonant with the themes of this anthology, the third sec-
tion explores philosophical antecedents of natural kinds, consistent with mapping 
kinds: “plural” kinds (e.g., John Dupré, Nelson Goodman, and Muhammad Kha-
lidi), “inferential” kinds (e.g., W.V.O. Quine, Ingo Brigandt, and Alan Love), and 
“reconstructing” kinds (e.g., John Dewey and Ian Hacking).

1.0.  Central issues of GIS
In order to explain the content and methodology of GIS, an analysis of the 
central issues, a highly abbreviated history, a plurality of definitions, and the 
epistemic-technological structure of GIS are reviewed. GIS might be to HPS and 
STS what fruit flies were to the Morgan laboratory at Columbia University in 
the early twentieth century. According to Ronald Abler’s report of the National 
Science Foundation’s National Center for Geographic Information and Analysis 
(NCGIA), the five “priority issues” of GIS are:

1	 New modes and methods of spatial analysis.
2	 A general theory of spatial relationships.
3	 Artificial intelligence and expert systems in GIS.
4	 Visualization.
5	 Social, economic, and institutional issues.8
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Mapping kinds in GIS  199

A few years later, influential GIS researcher Michael F. Goodchild presented 
another list of “key issues” for GIS:

1	 Data collection and measurement.
2	 Data capture.
3	 Spatial statistics.
4	 Data modeling and theories of spatial data.
5	 Data structures, algorithms, and processes.
6	 Display.
7	 Analytical tools.
8	 Institutional, managerial, and ethical issues.9

These lists present snapshots of the empirical, computational, visual, cognitive, 
social, and ethical concerns of GIS researchers. The territory for PGISC is a rug-
ged landscape, with a broad range of interdisciplinary issues.

1.1.  An abbreviated history

As Nicholas Chrisman observes, GIS is an outcome of WWII operations research 
that “helped bring the computer into nearly every part of modern life.” Chris-
man takes the “systems concept” as a natural source for conceiving GIS “as a  
series of procedures . . . lead[ing] from input to output.” GIS was typically pre-
sented as a scientific process moving “from data sources through processing to 
displays”.10 As an inter-discipline or trading zone,11 GIS combines computer 
science with geography, cartography, cognitive science, statistics, and sociol-
ogy. Thus, other historical influences must be tracked. For instance, Chrisman’s 
analysis can be complemented in several ways: by the concept of “information”, 
pertinent to computer science and Shannon’s information theory, as well as to car-
tography;12 by recalling the quantitative revolution in geography during the 1960s 
and 1970s;13 and by not ignoring the cartographic communication paradigm, 
dominant particularly in the 1970s and 1980s.14 Undoubtedly, the quantitative 
revolution in geography and the communication paradigm of cartography – while 
today critiqued by Critical GIS15 and by semiotic and cognitive analyses of map 
symbolization and design16 – remain vital sources of GIS.

The 1991 publication of Maguire, Goodchild, and Rhind17 marked the appear-
ance of “the first solid support for the claim that GIS is entering into a new phase 
and approaching the possibility of creating a separate discipline”.18 Whereas Open-
shaw19 defends GIS (see epigraph), Pickles20 critiques GIS’s role in the “surveillant 
society”. The GIS wars were afoot, with “empiricist”, “positivist”, and “technicist” 
GIS defenders on one side, and “critical theory”, “post-structuralist”, and “relativist” 
critics of GIS on the other.21 By the turn of the millennium, a reconstructed “critical 
GIS” emerged, aware of the benefits and wary of the risks of GIS. Even so, tensions 
between technoscientific and critical social theory perspectives remain alive.22

The histories found in the work of Crampton, Chrisman, Goodchild, Pickles, 
Schuurman, and D. R. Fraser Taylor have tended to be linear historiographies.23 
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200  Rasmus Grønfeldt Winther

Alternative narratives and pieces contributing to a fuller history of GIS may still 
be found. This is a promising avenue for younger historians interested in being 
among the first to detail the story of a socially, ethically, and economically rel-
evant science. Given that many major players remain alive, an interview-based 
history is still possible.

1.2.  Definitions

Definitions involve background assumptions and a point of view. Chrisman24 
identifies three approaches in which definitions of GIS are embedded: (i) 
the systems flow approach of operations research and of information theory 
(e.g.,  senders and encoders, receivers and decoders), (ii) a content approach 
emphasizing maps, and (iii) a toolkit approach focusing on the specific technol-
ogies available (e.g., GIS versus CAD versus DBMS)25. First, a paradigmatic 
systems flow definition mirrors the linearity of the information communication 
process:

GIS [is] a system for capturing, storing, checking, manipulating, analysing 
and displaying data which are spatially referenced to the Earth.26

This definition emphasizes the flow of information. The data of GIS are intrin-
sically spatially referenced,27 which is required for other measured features 
(e.g., height, population density) to be meaningful. Second, a content approach 
“defines the GIS by what it contains, either as a special case of more general infor-
mation systems or as an amalgamation of more specific uses”.28 Chrisman locates 
the following definition in a forestry journal:

A form of MIS [Management Information System] that allows map display 
of the general information.29

Of course, many proponents of GIS in the early 1990s would have critiqued such 
map-centrism.30 A death of the map was afoot.31 For instance, Waldo Tobler identi-
fies the “flat earth syndrome”32 and calls for a “global spatial analysis”. He urges 
listeners and readers to “forget about working on maps”,33 admitting that “map 
projections, my specialty, are now obsolete”.34 Finally, a contemporary characteri-
zation of GIS exemplifies the toolkit approach:

A geographic information system (GIS) integrates hardware, software, and 
data for capturing, managing, analyzing, and displaying all forms of geo-
graphically referenced information.35

Combined especially with the earlier (1997) definition of GIS presented in Chris-
man,36 it becomes evident that the focus of the Environmental Systems Research 
Institute (ESRI) is on the various software packages and hardware devices consti-
tutive of GIS activities. It is unsurprising that a firm developing and selling these 

Natural Kinds and Classification in Scientific Practice, edited by Catherine Kendig, Taylor & Francis Group, 2015. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/ucsc/detail.action?docID=4217943.
Created from ucsc on 2018-04-10 04:42:46.

C
op

yr
ig

ht
 ©

 2
01

5.
 T

ay
lo

r 
&

 F
ra

nc
is

 G
ro

up
. A

ll 
rig

ht
s 

re
se

rv
ed

.



Mapping kinds in GIS  201

products would characterize GIS in this way. While initially resisting definitions 
of GIS, Chrisman eventually produced his own reduced definition:

Geographic Information System (GIS) – Organized activity by which people 
measure and represent geographic phenomena then transform these represen-
tations into other forms while interacting with social structures.37

This definition was developed in the context of a “nested ring” structure of GIS, 
where “each ring encapsulates the more technical decisions inside, mobilizing 
them in a more complex structure”.38 Accordingly, “measurement and repre-
sentation” were prior to, and embedded in, “transformations and operations” of 
various sorts (e.g., spatial analysis, visualizations), which, in turn, were prior to, 
and embedded in, “social, cultural, and institutional context[s]”. These defini-
tions point to the trading zone of disciplines and research questions involved in 
GIS. Given the differences of perspective among these definitions, the need for a 
PGISC seems evident.

1.3.  The epistemic-technological structure of GIS

Data collection and collation, database management, map generalization, visu-
alization, and spatial analysis are central inferential and automated processes of 
GIS. Questions regarding the relative roles of human and computer persist.39 For 
instance, in contrasting “artificial” and “amplified” intelligence, Weibel walks a 
middle path between analog and digital cartography.40 Weibel identifies advan-
tages to amplified intelligence, including that “[k]nowledge is contributed by 
human experts in a direct way”, and “[i]t leaves creativity with the user to devote 
attention to interesting aspects of map production”.41 Two decades later, we are 
still far from fully automated map production systems. AI continues, in many 
ways, to be a dream.42 But the symbiotic relation between humans and computers 
is clearly strong as indicated by the related fields of AI, machine learning, and 
human-computer Interaction (HCI), and any PGISC must address these.

GIS’s relation to cartography is complex.43 Nadine Schuurman plausibly detects a 
“switching from a map to model-oriented approach to generalization”.44 In North 
America, the “culture of cartography” had been dominant, while “Europeans had 
developed a landscape model [the database] that is based on derived data”.45 The 
key shift was from earlier work “with mental models of maps” to committing 
to “the database” as generative of “information and map objects”.46 Schuurman 
highlights Brassel and Weibel47 as instrumental to this shift. Brassel and Weibel 
characterize generalization “as an intellectual process, [which] structures experi-
enced reality into a number of individual entities, then selects important entities 
and represents them in a new form”.48 They distinguish two kinds of “objectives 
for spatial modeling” corresponding to two kinds of generalization: (i) “spa-
tial modeling for the purposes of data compaction, spatial analysis and the like  
[. . . i.e.,] statistical generalization” and (ii) “cartographic generalization,” which, 
“in contrast, aims to modify local structure and is non-statistical”.49 By identifying a  
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202  Rasmus Grønfeldt Winther

broader set of generalization types beyond mere visual display and map-making, 
Brassel and Weibel prompted the emerging GIS community to move past the 
map and cartography. Modeling, broadly construed, rather than map-making and 
map-use, became central to GIS.

GIS’s interdisciplinarity and rich epistemic-technological structure make it a 
promising land for philosophers exploring scientific modeling and visualization, 
cognition and HCI, and the social and ethical impact of science. As a case study of 
philosophical issues in GIS, the next section turns to kind-making.

2.0.  Mapping kinds: data modeling and map generalization
Rich geographic features and processes collected and collated through various 
technologies (e.g., theodolite, GPS) must be structured into databases for further 
analysis and map-making. That is, a physical ontology is discovered and con-
structed in practices of data modeling.50 Moreover, map-making itself involves 
(automated or conscious) inferential processes of abstraction and generalization. 
It is to these purposive processes that I now turn.

2.1.  Data modeling

GIS models and maps rely on geographic information organized into kinds, cap-
tured in databases. Goodchild follows computer science in defining data models 
thus: “the set of rules used to create a representation of information, in the form 
of discrete entities and the relationships between them”.51 Up until the mid-1990s, 
two “models of the world”52 – that is, two physical ontologies – dominated GIS 
data modeling: raster and vector. Whereas the first organizes the world into a 
Cartesian grid, the second carves up the world into mutually exclusive and col-
lectively exhaustive irregular polygons, such as census or cadastral units. Each 
has advantages and disadvantages concerning ease of data collection, error pro-
clivity (e.g.,  locational, ecological fallacy, and the “modifiable areal unit prob-
lem, MAUP)”, computational efficiency, and appropriateness.53 As Tomlin quips, 
“Yes, raster is faster, but raster is vaster, and vector just seems more correcter”.54 
Because of their fundamentality in space-carving, Cartesian pixels or vector poly-
gons can be baptized calibrating kinds.

These two inter-translatable geometry-based models of the world serve as the 
unifying matrix on which a complex array of geographic features is captured. That 
is, data of various sorts are linked to point locations (raster view) or to polygons 
(vector view).55 Geographic data can be stored in tables with location or polygons 
as rows and features as columns.56 Cartographically, the data can also be repre-
sented in distinct “map layers”, each of which is framed via pixels (or polygons). 
Each map layer captures a small number of predicates (e.g., population density) 
income.57 The topographic (“general image of the Earth’s surface”58) or thematic 
(e.g., population density, crime rate, income, etc.) features represented on each 
data table column or map layer, or both, can be termed feature kinds. The map 
analogy comes to the fore here because every scientific paradigm, theory or model 
must take some stance towards the calibration (i.e., form) of its data, and the 

Natural Kinds and Classification in Scientific Practice, edited by Catherine Kendig, Taylor & Francis Group, 2015. ProQuest
         Ebook Central, http://ebookcentral.proquest.com/lib/ucsc/detail.action?docID=4217943.
Created from ucsc on 2018-04-10 04:42:46.

C
op

yr
ig

ht
 ©

 2
01

5.
 T

ay
lo

r 
&

 F
ra

nc
is

 G
ro

up
. A

ll 
rig

ht
s 

re
se

rv
ed

.



Mapping kinds in GIS  203

features (i.e., content) the paradigm, theory, or model wishes to capture in data 
models. A physical ontology has to be articulated. Calibrating and feature kinds 
were the form and content of early GIS data models.

The concepts and language of GIS evolved in concert with technological inno-
vations stemming from computer science. The calibrating kinds of the vector 
view (i.e., polygons) were sometimes referred to as “objects”.59 This manner of 
kind-ing space was associated with a discontinuous and individual-based perspec-
tive on the world, as opposed to the “field” view of continuous and homogenous 
rasters. But eventually it was recognized that both pixel and polygon calibrating 
kinds are “geometry-centric”,60 and today both are often referred to as “fields”.61 
In contrast, object kinds constitute a fundamentally different manner of represent-
ing geographic information. These are not spatial vectors such as census units or 
states or countries – the “objects” of yesteryear. They are individual kinds of things 
such as “oil wells, soil bodies, stream catchments, and aircraft flight paths”.62 
Object kinds in GIS originated in object-oriented programming.63 In contrast to 
geometry-centric data modeling modes permitting neither empty space nor pixel 
nor polygon overlap, GIS data models based on object kinds insist on emptiness 
and overlap. Via encapsulation, inheritance, and polymorphism,64 object-oriented 
programming permits significant flexibility and structural capacity in working 
with object kind data models.65 Today, objects are distinguished from fields, and 
object kinds emerging from programming systems in the 1990s assist in making 
new data model types.

Further questions regarding path-dependency and the biases, heuristics, and 
judgments associated with practices of data encoding (e.g., which kind of data 
model – field or object – is chosen for a particular purpose?) and data manage-
ment (e.g., inter-operability and translatability among data models66 and multiple 
representation databases67) remain promising areas for future PGISC exploration.

2.2.  Map generalization, in general

Map generalization in the broadest terms involves transforming and selecting 
kinds.68 For example, smoothing lines and aggregating buildings (represented 
either as calibrating/feature kinds or object kinds) are examples of transform-
ing single kinds. Eliminating entire classes of kinds or dissolving out an area are 
examples of selecting different kinds. Töpfer and Pillewizer succinctly describe 
“cartographic generalisation” as “the reduction of the amount of information 
which can be shown on a map in relation to reduction of scale”.69 Perhaps the 
first to have analyzed map generalization was Max Eckert in the early twentieth 
century.70 Wright identified “simplification and amplification” as the key gen-
eralization moves.71 While holding that “no rules can be given for generaliza-
tion,” Raisz posited three aspects of generalization called “combine”, “omit”, and 
“simplify”.72 Robinson and Sale influentially recognized four “elements of car-
tographic generalization”, namely, simplification, symbolization, classification, 
and induction. These elements are subject to “controls” such as the objective, 
the scale, and the quality of data.73 Especially in the last 20 years, cartographic 
generalization has become automated. Today, “elements” roughly correspond to 
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204  Rasmus Grønfeldt Winther

“operators” of “spatial and attribute transformations”74 and “algorithms”,75 while 
“controls” map onto “geometric conditions” and “transformation controls”76 and 
“constraints”.77 A more branching narrative of the development of map generali-
zation may be required.78

2.3.  Manual map generalization

Similarly to any scientific abstraction, map generalization must take functional 
context seriously. Indeed, the Swiss Society of Cartography’s classic analysis of 
cartographic generalization starts with the “need for a map”79. The “aim” of the 
map grows out of this need. Only once scale, source, legibility conditions, and 
revision have been specified, given the need and aim, can the conceptual and 
graphical aspects of the map be determined and implemented. A  functionalist 
top-down approach to map generalization is here suggested. Map-making is a 
function of map use, which itself involves descriptive and prescriptive purposes.80 
The Swiss Society of Cartography writes,

Cartographic generalization requires prior knowledge of the essence and the 
function of the map. Consequently we first of all have to ask ourselves about 
the purpose of the map, the extent of its information contents and also about 
the requirements of the map user regarding the power of expression of a map 
type desired for a specific purpose.81

Purpose and use play center stage here.82 Their verbatim citation from Imhof’s 
Kartographische Geländedarstellung bolsters the functionalist – rather than syn-
tactic or formalist – vision:

The objective of generalization is the highest accuracy possible in accordance 
with the map scale, good geometric informative power, good characterisa-
tion of the elements and forms, the greatest possible similarity to nature in 
the forms and colours, clarity [of meaning] and good legibility, simplicity 
and explicitness of the graphical expression and coordination of the different 
elements.83

The map must fit the purpose. Map generalization must start from map need (com-
pare epigraph). Following the map analogy, Imhof’s pragmatic view of carto-
graphic representation could certainly be generalized to other forms of scientific 
representation, outside of cartography and GIS.84

2.4.  Digital map generalization pluralism in GIS
A significant interpretative problem in the history and prehistory of GIS is that 
it remains unclear whether digital85 and digital generalization86 are continuous 
with earlier analog cartography and manual generalization.87 After all, pre-GIS 
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Mapping kinds in GIS  205

cartography required significant human aesthetic and judgment components88 and 
was “labor-intensive”, “subjective”, and “holistic” in contrast to automated, “con-
sistent”, and “much like the finite logic of a serial computer”.89 Thus, whether 
concepts such as “simplification” or “classification” share meanings and imply 
the same visualization consequences today and yesterday remains unclear.

Nevertheless, I  explore digital map generalization procedures, setting aside 
deeper matters regarding continuity of terms, periodization of history, and para-
digm identification. Of interest is the sheer plurality of digital map generalization 
procedures as well as map (and modeling) aims and audiences. There are multiple 
modes of selecting calibrating-feature kinds or object kinds, and of transforming 
the ones that remain, given map purpose (Figure  13.1). Shea and McMaster’s 
classify 12 digital generalization operators: simplification, smoothing, aggre-
gation, amalgamation, merge, collapse, refinement, typification, exaggeration, 
enhancement, displacement, and classification.90 In their 1992 book, McMaster 

Figure 13.1  The processual kinds of map generalization.
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206  Rasmus Grønfeldt Winther

and Shea remove typification as a spatial transformation and add symbolization, 
classifying it with classification as attribute transformations.

Consider simplification and smoothing. Simplification is the retention of the 
fewest number of data points or features necessary to accurately represent a single 
kind of object. As an example, the Douglas-Peucker algorithm keeps only those 
coordinate points of a line that exceed a predefined tolerance, and thereby pro-
duces a piecewise “zig-zag” from a meandering line (e.g., representing a river or 
road). This zig-zag retains the essential properties of the original line. Smoothing 
involves diminishing deviations and perturbations from general trends, given a 
particular number of data points or features. For instance, consider transforming 
an irregular quadrilateral to a square. While McMaster and Shea’s classification is 
fairly comprehensive, important generalization procedures are missing, including 
dissolution, segmentation, and selection.91 In fact, there is no single agreed-upon 
classification or model of or map generalization.92 Algorithmic implementation, 
conceptual model of map generalization adhered to, and background knowledge 
and objectives influence each creator’s classification and model.

As one way of classifying map generalization (alternatively: abstraction, ide-
alization) procedures, we can organize them into inferential processes that either 
transform or select among the kinds given by the data models (Figure 13.1). 
Intuitively complementary processes of REDUCE and AMPLIFY, JOIN and 
SEPARATE are part of an overarching framework of seven basic processual 
kinds within which the rich variety of approximately 20 map generalization 
procedures gleaned from multiple sources could be placed. Under my analy-
sis, map generalization kinds individuate inferential or automated processes, 
rather than objects or individuals. Even if the three-layer classification embod-
ied in Figure 13.1 turns out to be neither collectively exhaustive nor mutually 
exclusive, the fundamental distinction between transforming single kinds and 
selecting among kinds, and the basic seven processual kinds93 of generalization 
procedures, provide partial insight into the logic and goals behind map generali-
zation.94 Each processual kind can be implemented computationally in various 
ways.95 Moreover, the individuation criteria of the lowest-level processual kinds 
(e.g., smoothing and simplification) have to do with similarity of computational 
result rather than with static feature similarity. Finally, holistic cognitive, com-
municative, and aesthetic considerations of information visualization must also 
be addressed philosophically in trying to understand how and why these proces-
sual kinds can and should interact in producing visual maps.96 PGISC explores 
the pragmatics of modeling and visualization.

In summary, in digital map generalization, the calibrating-feature kinds or 
object kinds present in data models are transformed or selected, or both, to pro-
duce a simplified, abstracted, and idealized map representing certain aspects of 
complex geographic reality, in light of map purposes. Philosophical considera-
tions regarding kinds-in-practice (e.g., calibrating kinds and feature kinds) and 
kinds-of-practice (e.g., processual kinds) can be of benefit to GIS and philosophy 
alike. GIS is an exemplar97 whose pragmatic orientation can be extended, via the 
map analogy, to many other sciences.
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3.0.  Towards a philosophy of mapping kinds
Recall that the overarching aim of this chapter is to motivate a PGISC. In this 
final section, a précis is provided of why GIS is a particularly instructive locus for 
exploring, and perhaps helping reconstruct philosophy. Three overarching philo-
sophical perspectives on kinds help place mapping kinds in perspective.

First, a number of philosophers of science analyze pluralisms of kinds and clas-
sifications. Under this view, there is no single, ideal, and eternal hierarchical clas-
sification of kinds of objects. For instance, Nelson Goodman prefers to speak of 
“relevant” rather than “natural” kinds in part because the latter “suggests some 
absolute categorical or psychological priority, while the kinds in question are rather 
habitual or traditional or devised for a new purpose”.98 Moreover, Dupré’s “pro-
miscuous realism” argues for the interest-relativity of abstracting kinds. Dupré 
observes,

Is the kind of pluralism I have been advocating consistent with a realistic atti-
tude to the various kinds, and even individuals, that I have discussed? There 
are a number of pluralistic possibilities that I have defended, but none, as far as 
I can see, forces one to abandon realism. . . . Provided realism is separated from 
certain essentialist theses, I see little more reason why the possibility of distinct 
and perhaps overlapping kinds should threaten the reality of those kinds.99

Similarly, Khalidi notes,

The idea that there are crosscutting taxonomies is closely related to the view 
that scientific classification is interest relative. If classification is always rela-
tive to certain interests, we would expect some taxonomies to reorganize some 
of the same entities in different ways without displacing existing ones.100

As examples of this plural kinds argument, recall field versus object views on 
geographic space. Depending on a variety of goals and technical realities, either 
of these two inter-translatable kind-ings of space can be adopted. Of course, the 
plurality of inferential processes of map generalization – which may or may not 
be practiced together – can also be conceived within a plural kinds framework.

A related strategy for understanding kinds philosophically is an approach that 
focuses on the role of kinds in scientific inference. While he thinks that mature sci-
ence can and will do without natural kind terms, W.V.O. Quine also believes that 
“some such notion [of kind], some similarity sense, was seen to be crucial to all 
learning, and central in particular to the processes of inductive generalization and 
prediction which are the very life of science”.101 Indeed, Quine holds that kinds are 
“functionally relevant groupings in nature” whose recognition permits our induc-
tions to “tend to come out right”.102 That is, kinds ground fallible inductive infer-
ences and predictions, so essential to scientific projects including those of GIS and 
cartography. Brigandt and Love take this epistemic understanding of kind terms 
further. Brigandt wishes to bracket the search for “a unique metaphysical account of  
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‘natural’ kind,” calling instead for “the epistemological study of how different 
natural kind concepts are employed in scientific reasoning”.103 Love interprets 
typology and natural kinds as involved in “representational reasoning” and “explan-
atory reasoning”.104 The move from a metaphysical to an epistemic analysis of 
kinds – already instituted by Quine (and Goodman) – is welcome in a philosophical 
field emphasizing essences, rigid designators, counterfactually supported universal 
non–ceteris paribus laws, and other elements of the abstract, theory-centric “book 
of the world”.105 Certainly PGISC requires understanding how a variety of mapping 
kinds are involved in scientific inference.

Finally, a rather different approach is to leave the concept behind altogether, 
either via utter rejection or systematic reconstruction. Upon providing an erudite 
discussion of the natural kind tradition, Hacking concludes with this paragraph:

Although one may judge that some classifications are more natural than oth-
ers, there is neither a precise nor a vague class of classifications that may use-
fully be called the class of natural kinds. A stipulative definition, that picks 
out some precise or fuzzy class and defines it as the class of natural kinds, 
serves no purpose, given that there are so many competing visions of what the 
natural kinds are. In short, despite the honourable tradition of kinds and natu-
ral kinds that reaches back to 1840, there is no such thing as a natural kind.106

Wishing less to banish kinds from science and more to reconstruct them, John 
Dewey elucidates the standard view of species in classic and medieval thought 
thus:

. . . [J]ust as we naturally arrange plants and animals into series, ranks and 
grades, from the lowest to the highest, so with all things in the universe. The 
distinct classes to which things belong by their very nature form a hierarchi-
cal order. There are castes in nature. The universe is constituted on an aristo-
cratic, one can truly say a feudal, plan.107

Dewey resisted the standard view of natural kinds, inherited from the Greeks, 
and itself inflected by Greek sociopolitical context. Instead, Dewey presents an 
analysis of kinds (and classes and universals) as fallible and context-specific 
hypotheses permitting us to address problematic situations effectively. Consider 
this passage from Quest for Certainty:

The object is an abstraction, but unless it is hypostatized it is not a vicious 
abstraction. It designates selected relations of things which, with respect to 
their mode of operation, are constant within the limits practically important. . . . 
It marks an ordering and organizing of responses in a single focused way in 
virtue of which the original blur is definitized and rendered significant.108

Depending on the project or inquiry, a certain object will be classed and indi-
viduated as a certain kind. Dewey is applying his “reconstruction of philosophy” 
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program of (i) understanding concepts and kinds as tools, (ii) insisting that the 
function of philosophy is criticism, and (iii) viewing abstraction and analysis as 
embedded in larger wholes of social, communicative, and material needs and 
practices.109 GIS and cartography provide excellent scenarios of reconstructed 
kinds negotiating theory and practice, and realism and constructivism.

Mapping kinds can be understood from various philosophical perspectives, 
including “pluralism kinds” “scientific inference kinds”, and “reconstructive 
kinds”. These are not mutually exclusive. Moreover, my investigation the analysis  
of mapping kinds presented encourages their adoption, and the concomitant  
deemphasis of more standard essentialist perspectives on natural kinds.

4.0.  Conclusion
GIS and cartography suggest that kinds are simultaneously discovered and con-
structed. Geographic features, processes, and objects are of course real. Yet, we 
must structure them in our data models and, subsequently, select and transform 
them in our maps. Realism and (social) constructivism are hence not exclusive in 
this field.110 Moreover, kind-ing inferential processes – mediated by technology, 
cognition, and communication – force the questioning of a strong theory versus 
practice dichotomy. Kinds are no longer purely theoretical concepts serving as little  
little mirrors of nature. Instead, they are shaped by design principles, communica-
tive context, and local aims and norms. Kinds can be both about objects and pro-
cesses. Not just static essences, kinds emerge from processes in the world, in our 
minds, and in our technologies and societies. PGISC suggests the possibility that 
realism versus constructivism and theory versus practice should not be deemed 
two absolute binaries. Further development of PGISC will permit reflection on 
natural kinds, as well as other standard philosophical concerns, from a Pragmatic 
View perspective.111 Such a practice-turn view is detail based and relevance ori-
ented, with a deflationary and reconstructive approach to metaphysics.

GIS and its related disciplines of geography and cartography provides a model 
system for philosophy of science as well as for HPS, STS, history of science, and 
sociology of science. GIS is a young field, approximately 25 years old, and rela-
tively small in size.112 It is clearly interdisciplinary, involving a range of expertises,  
technologies, practices, and aims and values, as well as a variety of styles, par-
adigms, and models.113 Interestingly, many GIS and cartography scholars are 
already philosophically reflective about conceptual, methodological, and theoreti-
cal matters. It would be a pity, if not socially and intellectually irresponsible, not 
to further develop PGISC, in both its analytic and “continental” varieties.
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