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Abstract

This paper focuses on the distinction between methods which are mathematicaly "clever”, and those
which are smply crude, typicaly repetitive and computer intensive, gpproaches for “crunching” out
answers to problems. Examples of the latter include smulated probability distributions and
resampling methods in datigtics, and iterative methods for solving equations or optimisation
problems. Most of these methods require software support, but thisis easily provided by a PC. The
paper argues that the crunchier methods often have substantia advantages from the perspectives of
user-friendliness, rdiability (in the sense that misuse is less likdly), educationd efficiency and rediam.
This means that they offer very condderable potentid for smplifying the mathematica syllabus
underlying many aress of gpplied mathematics such as management science and datistics: crunchier
methods can provide the same, or greeter, technicad power, flexibility and insght, while requiring
only afraction of the mathematical conceptua background needed by their cleverer brethren.

Introduction
Imagine a girl with 155 pence to spend on chocolate bars costing 37 pence each. If she has a
thorough command of arithmetic she will smply divide 155 by 37, obtain 4.2 and redise that she
can buy four chocolate bars and be left with some change. If she is not sure about divison but
understands about multiplication, she might proceed by guessng the answer and then checking by
multiplying:

37x3=111, and

37 x 4 =148, but

37x5=185, s0
she can buy four, but not five, bars. Alternatively she may add 37 to itself until she reaches atotd
which is more than 155. It should then be obvious to her that the number of bars she can buy is one
less than the number of 37's she has added together:

37+37+37+37=148, but

37+37+37+37+37=185
50 she can buy four bars. Findly, she could adopt a smpler strategy still by getting her 155 pencein
individua one penny coins, and then counting them out in piles of 37 to see how many complete
such piles she has. There are thus (at least) four gpproaches to this problem: divison, guess-
multiply-check, repeated addition and counting.



There is often a smilar choice with more advanced problems. Algebraic equations may be
solved symbolicaly (sometimes), or by numericd, trid and error methods; definite integras can be
evduated symbolicdly (sometimes) or numericaly; optimization problems can be tackled by the
methods of the caculus (sometimes) or by a search heurigtic; probability digtributions can be
investigated elther by mathematical theory (sometimes) or by computer smulation; queues can be
modelled by means of probaility theory (Sometimes) or by smulation; and so on.

The common dement in dl these examples is the choice between usng a crude repstitive
method to crunch out the answer, and using sophisticated (relaively speeking), or clever,
mathematics. This paper treats the crunchiness of a mathematicd method as a generd property,
and considers the advantages and disadvantages of greater or lesser crunchiness. The conclusion is
that crunchier methods have a number of substantial advantages over cleverer methods. these
include the fact that they are conceptudly more straightforward and they tend to be of more genera
goplicability and require fewer restrictive assumptions (note the frequent occurrence of the quaifying
"sometimes' in the previous paragraph).

My perspective in this paper is not that of an educationaist. | am not interested in how to
ensure that the girl above, and her friends, understand division, but that they have available a ussful
range of gpproaches to problems - which may or may not include the concept of divison. Similarly,
managers wishing to use management science techniques and medica researchers using datistica
techniques are not concerned with learning mathemeatics for its own sake, but in the avallability of a
practical and reliable cognitive and technologica toolkit for approaching their problems. These
toolkits include artifacts of various kinds (caculators, computers, etc). Needless to say these
atifacts are a crucid, and changing, factor in the Stuation. At present, the most important of the
these artifacts are computer packages (e.g. preadsheets, smulation packages) and, a a more
eementary leve, cdculators.

The arguments concerning crunchy methods have implications for the desgn of atifacts to
support cognitive processes, and for the mathematics curriculum - particularly for older students
who need to use mathematica techniques of various kinds for practica purposes. This paper argues
that crunchy methods have the potentid to offer very substantid improvements in the user-
friendliness, power and reliability of the cognitive and technologicd toolkits avalable to these
students.

The use of mathematically based techniques for practical purposes by people who are not
experts in the techniques, or the mathematics underlying them, poses widdy acknowledged
problems in areas such as management and engineering, and most of the many fields to which
gatistics is applied (see, for example, Yilmaz, 1996; Mar Malinero, 1996; Stuart 1995; Romero et
a, 1995; Greenfield, 1993; Bailey and Wed, 1993; Altman and Bland, 1991). The symptoms of the
problems include didike, often bordering on fear, of the techniques and the courses which teach
them, as well as the consequent under-use and mis-use of the techniques in practica contexts, the
remedies suggested usudly centre on relating the subject more closdy to red world gpplications.
One argument of this paper is that a move to crunchier methods provides a very powerful means of
tackling these problems.

Crunchy methods



We mugt dart by defining the term "crunchy”. In generd, "cdever" methods employ a mathematicd
theorem to deduce the corollaries of assumptions about a dtuation; crunchy methods use the
assumptions directly to work out the corollaries, sometimes with the aid of some common sense or
heuritic principles.

To be more precise, we can say that Method A is crunchier than Method B if Method A is
1 More directly linked to the intuitive definition of the Stuation (more transparent); and
2 Likdy to involve mor e repetitive steps, and
3 Dependent on fewer, or lower leve, technical concepts and theorems, so can be followed

by userswith alower levd of technica expertise (lower technical level)
than Method B.

The choice of the word "crunchy" stems from the phrase "number crunching” and is intended
to convey the idea of a crude "crunching" through of stages or possibilities. Severa other phrases
have a smilar meaning in specific contexts: these include brute force methods, iterative heurigtics,
numerical methods, computer-intensive methods (based on smulation) in datistics (Noreen, 1989;
Simon, 1992) and trid and error methods. However none of these redly has the right meaning
across the full range of Stuations | have in mind. The closest is probably "brute force”, but this does
not seem gppropriate to crude methods of avoiding divison, and there is dso no convenient
comparative form like "crunchier”.

I will illustrate the notion of crunchiness in the context of the chocolate problem. The initid
assumptions are that the shopkeeper will want 37 pence for the first bar, and another 37 pence for
the second bar, and so on (discounts are not available). The cleverest of the four methods is the
divison drategy. The guess-mulltiply-check strategy is crunchier than the divison drategy because it
is more clearly linked to the idea that the price of four items s four times the price of one (point 1 of
the definition), is likey to involve some incorrect guesses s0 the guess-multiply-check sequence
needs repeeting (point 2), and does not depend on an understanding of the concept of division -
(point 3). A amilar argument demondirates that the repeated addition strategy is crunchier ill (by dl
three criteria), and the counting strategy isthe crunchiest of them dl (again, by dl three criteria).

Similar congderations apply to more advanced problems: for example the estimation of the
probability of afamily of four children comprising two girls and two boys. This can eadly be worked
out using the binomid probability digtribution which gives an answer of 37.5% (making the usud
assumptions of independence and equd probabilities for boys and girls). Alternatively the same
answer can be obtained by computer smulation of, say, 10,000 smulated families. Figure 1 shows
the result of such a smulation: the proportion of two girl families in this Smulated set of families is
37.1%.

Figure 1. Smulation of 10,000 families of four

Ogirls XXXXXXX

1girl 1 9,9,9.9.9.9,9,9.9.9,0.9.9,.90.9.9.9.9,0.9.9,0.9.9,0.0.4

2grls ) 9,9,9.9.9.9.9,9.9.9,.9.9.9.0.9.9.9.9,0.9.9,0.9,0.9.9.9.9.9,0.9.9.9.9,.0.9.9,0.4
3grls ) 9,9,9.9.9.9.9,9.9.9,0.9.9,0.9.9.9.9.9,.9.9,0.9.9,0.¢

4 girls XXXXXX

(X represents 93 families))
Proportion of 2 girl families: 37.1%



This latter gpproach is crunchier because:
1 The dmulation is defined directly by the definition of the Stuation: each smulated family has
four children and in each case there is a 50% chance of the child being agirl.

2 It involves smulating the 10,000 families and so involves repeating the same process 10,000
timesingead of usng the "dever" binomia formula
3 It involves no more conceptua background than the assumption of dtatistica independence

between the sexes of different children in the same family, and the notion of a probakility as
a long run proportion. Use of the binomia didribution, on the other hand, requires
knowledge of the addition and multiplication rules of probability and the idea of
"combinations’ if the digtribution is worked out from firgt principles. Alternatively, if the
binomid digtribution is taken "on trugt”, the user needs to have mastered the concept of the
binomid digtribution as a mathematicd entity, the assumptions under which it isvaid, and the
nature of the information necessary to use the binomid equations. The conceptud
background needed here isfar richer and more extengve than for the smulation method.

Statigtica process control (Shewhart) charts entail using probability theory to monitor an ongoing
indugtrid or business process. The conventional methods, based on clever formulae derived from
probability didtributions such as the binomid, are difficult for the typicaly non-expert users to
understand and interpret meaningfully (Hoerl and Pam, 1992; Wood and Preece, 1992), and, in
addition, the probability modds often fall to fit closdy the patterns found in red processes. A
crunchy approach - resampling (Noreen, 1989, Simon, 1992) - has been suggested to make the
methods more user friendly (Wood et d, 1999), and to make them mirror redity more closdy
(Bajgier, 1992; Seppaaet a, 1995). Concepts such as the standard deviation, centra limit theorem,
binomid digtribution and the norma didribution are an essentid part of understanding how the
conventional methods work, but are irrdlevant to an gppreciation of the crunchy method.

There are many other examples. One is the cdculation of the economic order quantity in
inventory management (see, for example, Dennis and Dennis, 1991, 452-7). This is the order
quantity which minimises the tota codts to a business of ordering and of carrying sock. Thereis a
ample formula, based on a number of assumptions, which can be used for this purpose (Dennis and
Dennis, 1991, p. 453) - this represents the clever method. Alternatively, formulae for the ordering
and carrying costs, and for the total cost, can be set up on a spreadsheet, and then different order
quantities can be "tried out” to see which makes the total cost as low as possble. (Most modern
Spreadshects have a "solver” or an "optimiser” which enables this process to be automated, although
the results are generdly not infdlible and users would be advised to check - for example - that the
suggested optimum is in fact reached from different starting points - see the gppendix for an
illugtration of this) This gpproach is crunchier because it follows directly from a smple modd of the
cogts, because it involves arepetitive trid and error process (even if this is performed automaticaly
by the spreadsheet), and because users do not need to understand the formula for the economic
order quantity or itsrationde (which involves the differentid caculus).

A very amilar argument gpplies to evauating an integra numericdly ingtead of symbalicdly,
solving an equation by trid and error rather than andyticdly, usng bootstrapping and resampling
methods instead of probability theory for satistica inference (Noreen, 1989; Simon, 1992), and to



many smilar examples. The computer Deep Blue which has recently defeeted the world chess
champion Gary Kasparov provides another illugtration of the theme. The strength of the computer is
ability to cdculate the consequences of more possible moves further ahead than can a human being.
Againg this, skilled human players have a more extensive and flexible repertoire of clever, but often
intuitive, strategies. The crunchy approach adopted by Deep Blue has been shown to be more
effective than the cleverest human being.

These examples show that the use of crunchy methods is far from being redtricted to
mathematical novices. In some cases, the "clever” method may not exis or may not have been
invented yet (eg. some integras and the roots of some polynomids cannot be expressed as
agebraic expressons of a convenient form), so acrunchier gpproach (e.g. numerical methods to find
anintegrd or the polynomid root) may be the only posshbility. In these cases Method B in the above
definition would be a hypothetica method. Sometimes a crunchy method may be hepful as a quick
gpproach for exploring a Stuation even if a cleverer method is feasible - an example of this appears
in the appendix.

The notion of crunchiness thus has three dimendons. trangparency, repetitiveness, and low
technica level. Thereis no logicaly conclusive reason why these three dimensons should aways go
together, athough the three examples above make, | think, a plausible case that they often do.
Sometimes the heuristics employed for a search procedure may be highly sophisticated - e.g. genetic
agorithms, the Smplex method for linear programming, the methods used by spreadsheet solvers
and optimizers - so the method may be crunchy in terms of criteria 1 and 2 above, but possibly not
on criterion 3. It is dso important to note that the definition of each dimengon is dightly vague: how,
for example, is the technicd leve to be defined? Similarly, if our guessmultiply-check shopper
grikes lucky with the initid guess, repetition may be unnecessary. Strictly we have defined a means
of comparing methods, and s0 a continuum of methods of varying crunchiness, and not absolute
definitions of crunchy and clever methods, but it is helpful to gpesk loosdy of the crunchier methods
as being "crunchy”.

My am in this paper is to bring these ideas together under one umbrdla, and explore the
implications for designing practicd mathematica curricula and the artifacts necessary to support
them.

Properties of crunchier methods
| will start with three positive points, and then go on to one neutrd and three negative ones.

1 Crunchy methods are conceptually simpler

The three criteria used to define the crunchiness of methods imply three important senses in which
crunchier methods are smpler: they are more transparent in the sense that they are more directly
linked to the definition of the problem, they involve repetition of smilar steps, and they demand less
in the way of technica conceptua background from users. Each of these is likely to make crunchy
methods smpler to understand - in the deep or relationa (Skemp, 1976) sense - than their clever
equivdents.



2 Crunchy methods tend to be more reliable in the sense that inappropriate use - misuse,
misinterpretation, or failure to use when appropriate - is less likely. For this reason users
may regard them as more trustworthy.

This follows directly from the first point: if the methods are more trangparent and depend on less
technica background, then users must be less likely to misuse them. (Like the firgt point, this is
"amog" atautology. If these points were found not to be true of some supposedly crunchy method,
then, by definition, the method cannot be as transparent as supposed. The qudification implied by
the word "amogt” is due to the three dimensond nature of crunchiness - eg. it is possble that
problems due to the repetitive nature of a crunchy method might cance out the advantages of
greater trangparency.) This implies thet, in practice, the applications of crunchier methods are likely
to be more rigorous (than cleverer methods) because the conditions on which they are based are
more transparent.

The difficulties experienced by beginners in subjects such as datistics (see Introduction
above) illustrate some of the problems due to the use of clever methods. Pfannkuch (1997), for
example, says that "it did not seem to occur to some students to use a significance test ... Underlying
this agpect seemed to be a lack of understanding of variation in relaionship to sgnificance testing.”
Usng a crunchy method such as resampling (Noreen, 1989; Simon, 1992), which involves
amulating the variaion in question and requires none of the pargpherndia of mathematicaly defined
probability digtributions, means that the rationde behind the method and its reationship to practica
dgtuaions are more transparent. This is not, of course, to clam that the problems of teaching
gatisticswill al be diminated, but that some of the obstacles can be removed.

There is a counter-argument to this that crunchy methods may sometimes (but by no means
aways) be less rigorous from a mathematica point of view - this is discussed under Property 6
below.

3 Crunchy methods tend to be more general and so more powerful and more able to model
complex phenomena

The essence of a clever method is that assumptions have to be made about the Structure of the
Stuation in order to deduce away of working out the answer. With crunchy methods, some of these
assumptions are often implicit in the fact that a step is repeeted, but these tend to be less redtrictive
and easer to override. For example, if the shopkeeper offers a discount for people buying more
than two bars of chocolate, thisis easer to build into the crunchier methods. Similarly, discounts can
eadly be built into the spreadsheet method for estimating the economic order quantity (see above),
but the standard formula is based on a number of assumptions, one of which is that there are no
discounts; the smulation gpproach to the family problem can easly (depending on the software) be
adapted to take account of the possihility of twins and triplets whereas the clever (binomid) formula
cannot; and the resampling gpproach to datistical process control charts avoids the (frequently
unredligtic) assumption that distributions are norma (Bajgier, 1992; Seppaaet d 1995).

These examples illudrate the way that crunchy methods can avoid (to some extent) the
necessity to impose a smple structure on redity because thisis necessary for the mathematics. There
isagrowing feding in some corners of academia (e.g. in mathematics - Stewart, 1990 especidly pp
81-4 - and economics, physics, biology and other areas - Waldrop, 1994) that, contrary to the
optimism engendered by the Newtonian world view, God may not after dl be a mathematician: the



world is more complex and less dructured than mathematicians would like it to be. The initid
impression that the world follows smple, linear mathematica patterns may be smply a function of
mathematicians ignoring anything which does not fit this assumption. To the extent to which thisis
true, crunchy methods are, by definition, more suited to red problems in a complex world than are
clever ones. Thereis, for example, increasing use of heuristic methods for searching for solutions to
complex, "messy" problemsin management science (Pidd, 1996, pp. 290-310).

Another aspect of the same point is that crunchy methods may be more genera in the sense
that they may incorporate severad conventiond clever methods. The formulae for the binomid
digribution will only modd this particular digtribution; the crunchy method (as implemented on a
computer program) on the other hand (Figure 1) will dso produce a (Smulated) probability
digtribution for the means of random samples from any empiricaly specified distribution, and could
eadlly be adapted to draw random samples without replacement - thus smulating the hypergeometric
digtribution. The same software and essentialy the same method can be used to derive bootstrap
confidence intervas for the mean (Gunter, 1991), and estimate action lines for mean and range, and
median and standard deviation, and many other control charts for quality control purposes (Wood et
d, 1999). Smilarly, tria and error methods of solving equations work for any equation provided that
the user has a means of evauating the two sdes. clever methods on the other hand require that the
equation is of a particular type - eg. there is one clever method for linear equations, another for
quadratic equations, another for trigonometric equations of a particular kind, and so on.

In addition to this, crunchy methods are often possible in Stuations where no clever method
has been invented, or even where it has been proven that none can exist (see above for examples).

4 Any method encourages the development of concepts which refer to the answers
produced. Crunchy methods, being different from clever methods, may lead to a different
set of concepts

Imagine someone who uses the counting strategy for problems like the chocolate one. If this method
becomes "interiorized to become a process [0 that it is possible for] the individud to think about it
as a totaity” (Cornu and Dubinsky, 1989), the individua in question is amost bound to develop,
implicitly or explicitly, a concept which refers to the answers produced by this counting strategy.
Someone tackling the chocol ate problem with the operation of divison and a caculator, on the other
hand, will have the concept of a "quotient” (or "answer produced by divison") to describe the
answer produced by the method. The counting strategy does not produce quotients - the answer is
aways an integer - and the concept developed is dightly different (and difficult to describe negtly).

Sometimes the clever and crunchy methods may lead to essentidly the same concept for the
answer. The binomid amulation in Figure 1 leads to a proportion which is a binomid probability in
just the same sense as the answer produced by probability theory. The methods may be different but
the answers both refer to the same concept. On the other hand, if the same smulation software is
used to smulate other distributions (as described below), the concepts for the answers produced by
the crunchy method may be more generd than those for the clever method.

These concepts are important. A very plausible theory of mathematica learning (Leron and
Dubinsky, 1995; Cornu and Dubinsky, 1989) asserts that the process of interiorizing an "action” or
a method so that it can be viewed as "a totdity” or a "higher level" object is a vitd part of
mathematicad learning. In the language of cognitive psychology, viewing a method as a whole as a



gngle "chunk" of information (a "maximd familiar subgstructure’) is helpful for higher leve thinking
about the method (or the results of the method) since human information processing can handle no
more than about seven chunks of information a a time (Smon, 1996). In the case of the
mathematical methods we have been discussing, a core aspect of the this higher level concept or
chunk of information is the nature and interpretation of the answer produced.

Sometimes concepts developed through the clever method may be more useful than those
developed by crunchy methods. The notion of a quotient which may be fractiond, for example, isan
essentid prerequisite for understanding the output of the crunchy binomid smulation. On other
occasions the greater generdity of crunchy methods may lead to their underlying concepts being
more ussful because of this gregter generdity.

One point to note here is that, for a variety of fairly obvious reasons, the vocabulary for
describing answers from clever methods is likely to be far richer and more established than the
corresponding vocabulary for crunchy methods eg. | could not think of a suitable term for the
answer to the chocolate problem from the counting strategy. It may be helpful to invent terms to
labdl some of these implicit concepts.

5 Crunchy methods tend to be computationally intensive or slow
This is a consequence of the repetitive nature of the methods. How serious a problem it is clearly
depends on the baance between the power of any computer support available and the number of

repetitions necessary.

6 Crunchy methods may only yield an approximate or tentative or unproven answer
Simulation methods will not yield an exact probability, and guess and check methods will yield an
exact answer in the chocolate problem (where the answer has to be an integer) but may not in
amilar problems where the possible answers lie on a continuum. However, in both cases the method
can yield an answer to any desired degree of accuracy - whichisal that is required in most practica
gtuations.

With optimisation problems, the typical crunchy search procedure may be fdlible if, for
example, the search heurigtic finds a locd optimum rather than the required globa optimum. A
cleverer method may find the globa optimum, and provide a proof that it is in fact optima. On the
other hand, the difficulty is often that there are no viable clever methods so there may be no
aternative to a crunchy heuristic approach (Pidd, 1996, chapter 10).

In practice, the potentid advantages of the greater accuracy and rigour of some (not dl)
clever methods compared to their crunchier dternatives, may be nullified if the clever methods are
misused or misinterpreted - see Property 2 above.

7 Crunchy methods do not provide a general answer and so may fail to provide insights
into the structure of the situation

For example, clever methods for solving polynomid equations (e.g. factorisation) demongtrate that
the maximum possible number of solutionsis equd to the degree of the polynomid, and the formula
for the gandard deviation of a binomia digtribution indicates the relation between sample sze and
the spread of the digtribution. No such ingghts would be likely from the use of a search heurigtic or
smulation method.



The fird three of these properties (the postive ones) are to some extent offset by the last
three. However it is important to stress the enormous practica advantages of the first three points:
the smplicity of crunchy methods, and their potentid generdity and ability to mode complex
gtuations. To take two examples of the first point, smulation methods can be used as a subgtitute for
probability theory (see, for example, Simon, 1992) with the consequent smplification of large areas
of atisticd theory, and the Solver built into the spreadsheet Excd will solve a very large variety of
equations and optimisation problems. The second point is equaly important, and linked to the first
point in that the generd nature of crunchy methods means that fewer such methods are necessary to
ded with a given range of problems with a subsequent amplification of the task of learners and
users. In addition crunchy methods will reach areas which clever methods cannot: this is illustrated
by the use of amulation and heuristic methods in areas as diverse as operationd research,
meteorology, economics and so on. Clever methods can only work if the universe conforms to the
assumptions on which they are based; if it does not, crunching out the answersis the only option.

Computer support for crunchy methods

Clever and crunchy methods can both be implemented with or without machine support - as is
illustrated by the chocolate example. However, for more advanced problems, crunchier methods are
likely to be more dependent on computer support systems (CSSs) than are cleverer methods. It is
easy to use the binomid probability formula without the help of a computer. On the other hand,
whileit is possble to smulate sufficient families of four to estimate the required probabilities without
a computer, it is not redly a practical propogtion. Many crunchy methods are only practicaly
feasble because of the reedy availability of computers. Accordingly, it is helpful to consder the
computer systems in question. (I will assume that the artifacts for supporting crunchy and clever
methods are computer packages - which seems a reasonably assumption at the present state of
evolution of technology.)

A computer support system for a clever method fulfils some or al of three functions:

1 it helps the user to develop or choose the gppropriate method; and/or
2 it implements the method; and/or
3 it hepsthe user to interpret the results of the method.

For example the caculator used for the chocolate problem just supports function 2; on the other
hand many dtatistical packages give the user help with 1 and 3 too. However, a the present state of
the art, computers are far more helpful for 2 than they are for 1 and 3. The reasons for this are fairly
obvious. one mgor problem is often the lack of a common frame of reference for communication
between user and software system (Wood, 1989) - non-expert users of dtatistical packages, for
example, may lack a clear undergtanding of essentid concepts like "sgnificant”, "interaction”, "main
effect” and even terms like "varigble' and "datd".

In principle, a computer package to support a crunchy method could support the same three
functions. However, the enormous advantage of a crunchier method is that 1 and 3 (the functions
which are difficult to support) are much less problematic so support is less necessary - but this is
only likely to be true if the user knows what the CSS is doing. If some intuitive procedure is being
repeated many times, it is important that the user appreciates exactly what the repeated procedure
is. Then, given the facts that the rationae behind this follows directly from the intuitive understanding



of the dtuation, and that the concepts involved are reatively smple, the whole method should be
clear s0 it should be obvious when it is useful and what the answers mean. In short, the problems
userstypicaly face usng amathematica CSS are solved.

This means that a crucid feature of a crunchy computer support system is that the method
implemented should be transparent to the user. The obvious way to achieve thisisto alow the user
the option of stepping through the method step by step. Then, when it is clear how it works, the
method can be accelerated and the details hidden from view.

How might this work in practice? A crunchy binomia support sysem dlows users to
amulate the firg few families individudly, and see the results put on the hisogram - as in Figure 2
below. Smilarly the solver or optimiser on most spreadsheets alows users the option of seeing the
first few iterations.

Figure 2. First two smulated families of four
1st simulated family (girl=1,boy=0): 101 1
Number of girlsin thisfamily is 3

Ogirls

1 gl

2girls

3airls X

4 girls
(X represents 1 family.)
Proportion of 2 girl families 0%
2nd simulated family (girl=1, boy=0): 0 0 0 0
Number of girlsin thisfamily isO

Ogirls X

1gil

2qirls

3girls X

4 girls
(X represents 1 family.)
Proportion of 2 girl families 0%

We may contrast this with a package for implementing a clever method. Here nothing would be
gained by stepping through the method a step at a time because the method is not directly linked to
intuitions about how the Stuation works, it is not repetitive and the conceptua background it links to
isreatively complex. A Help facility would be a possihility but the help islikely not to be very hdpful
if users lack an extendgve undersanding of probability theory. In practice, users of a datistics
package such as SPSStend to treat it as a black box and are often unaware of the methods used by
the package to obtain the answers. Thisis in strong contrast to the way a crunchy CSS can show
users the steps of the method and some intermediate results. This is another reason for the extra
trangparency and rdiability of crunchy methods when implemented with suitable software.

Strictly, the CSSs shown in Figures 1 and 2 are unlikely as practica CSSs because they
refer specificaly to the family problem. (I have changed the output to clarify the argument of this
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paper for readers not familiar with the subject area.) To be useful, a practica CSS needs to be able
to support the solution of a range of different problem types - not just problems about girls in
families of four, but about boys in families of any Sze, about defectives in samples taken for qudity
control purpose and about scores in multiple choice tests - dl of which can be moddled by the
binomid digtribution.

In fact, Figures 1 and 2 (except words like "family” and "girls") are produced by a smple
program whose uses are far wider than the binomid distribution. The program, RESAMPLE, stores
a lig of numbers (data) and then takes random "resamples’ (with replacement) from this lig and
andyses the mean, sum, standard deviation, median or any percentile of the resamples. The program
can be used to produce bootstrap confidence intervals (Kennedy and Schumeacher, 1993; Gunter,
1991) for any of these gatidtics, estimate control chart limits (Wood et d, 1999), smulate various
probability distributions, and severd other things as well. In effect the program is a crunchy method
for estimating the degree of variability between random samples drawn in Smilar circumstances. As
well as the advantages of trangparency (see Figure 2), this crunchy method has the advantage that
the learner has only to master one software tool to cover a range of different (from a conventiond
viewpoaint) contexts.

Spreadsheets are another useful tool for implementing crunchy methods (see the Appendix
for an example; the family smulation in Figure 1 could dso be implemented on a spreadshest), and
there are obvioudy many other possibilities.

The practica detall of the software is cearly important. Software which is difficult to use
may hinder users; different interface styles (e.g. menus, commands) may have different strengths and
weaknesses; the words used to describe inputs, outputs and operations are obvioudy important;
there is a drong case for people usng software with which they are familiar as much as possible.
Thereis, however, no space to pursue these issues here, except to point out their importance.

We turn now to some practica choices. We will consder three generd Stuations. Thefird is
the Stuation where a CSS must be designed to support a given set of mathematica methods. The
second is where the CSS must be designed to support problem solving in a given area for a given
group of people with agiven level of expertise - there is an extra eement of flexibility in that different
methods may be consdered. The third Stuation is like the second, except that the expertise of the
users is treated as part of the choice: what do people need to know to use the best possible
goproach to agiven type of problem? The first is a short term problem; the second is a medium term
problem in that it assumes that users can be weaned away from ingrained habits towards more
gopropriate methods; and the third is the long term problem in that it assumes that the training and
education system can take account of the computer systems which are likely to be available.

Choice 1: support systems, given methods and user education
This the usud dtuation. The method is seen as given, and the CSS is designed to support this
method as wdll as possible given the expertise of the users. The difficult aspects are likdy to be
phases 1 and 3 of the process (above): these are why the user's understanding of the method and its
interpretation is crucid.

Usudly the method to be implemented is on the clever end of the continuum. There may, on
occasons be a posshility of utilisng some of the user friendliness of the crunchier methods by
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pretending to the user that the method is in fact crunchier than it is. We may cdl such methods
virtual crunchy methods.

As an example, condder the case of a computer systems for multiple regresson such as
those provided by the tools in many spreadsheets. In fact, multiple regresson, is based on some
clever mathematics and does not use an iterative method. This leaves the uneducated user (relatively
gpesking) with the problem of understanding precisdy what multiple regression is and when it is
appropriate to useit.

However it would be possble for a multiple regresson CSS to start with a guess for the
coefficients of the least squares modd, show the user how the squares are computed, and then
move on to another set of coefficients with a dightly lower sum of squares. In this way the user
would get the idea of the technique as away of searching for aleast squares solution, but then, when
the button is pressed to speed up the process and find the best answer, the standard agorithm
would be used. The idea of searching for a best answer can be used as a metgphor to explain to the
user what is happening. The judtification for this is amply that the two methods are mathematicaly
equivaent.

(In fact, regression problems can easly be solved on a spreadsheet by using the Solver or
Optimiser to minimise the vaue of a function corresponding to the sum of squares. Thered crunchy
method does work in this ingance. Its disadvantage over the built in regresson formulae is that it
takes time and some skill with spreadsheet formulae to set up; its advantages are its transparency
and the fact that the method can very easily be adapted to modes other than the smple linear one
assumed by the built-in formulae.)

Choice 2: methods and support system, given user education

If we view the method as adjustable to suit the needs of the users and the dtuation, then a much
wider range of posshilities opens up. Clearly, given the advantages of crunchier methods, these
methods would often be the preferred ones for the computer to support, athough there are counter
arguments as discussed above. Each case would need to be treated on its own merits, taking
account of the level of expertise of potentid users.

So, for example, a suitable CSS for the very young child in the shop might use the crunchiest
gpproach - counting pennies, amilarly for the family example, the smulaion method (using whatever
software is convenient) would probably be more appropriate than the binomia distribution. On the
other hand for userswith a higher level of expertise, the cleverer methods may be more gppropriate.

There may be dtuations where there is a judtifiable fear that the provison of computer
packages supporting crunchy methods may remove the incentive for users to master the more
advanced concepts required by the clever methods. Thisiis the reason why | suspect that few would
support the use of computer-based counting software in primary schools. However, | do not think
this argument applies to many more advanced problems for the reasons discussed in the next
Section.

These conclusons may be complicated by convention and expectation. In practice problems
are often phrased in terms of the method or modd and not the requirements of the Stuation;
academics may want the results of an andysis of variance, and production managers may want the
economic order quantity as defined by the standard formula (Dennis and Dennis, 1991, p. 453). In
each case custom or conventiona advice decrees the appropriate piece of mathematics to be used,
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and the dituation isin effect, achoice of type 1 above. In the longer term, it may be possible to focus
on the actua requirements of the Situation and so move towards the more powerful choice where the
method can be fregly chosen.

We have mentioned above that one probable advantage of the crunchier methods is their
greater generdity. This factor is likely to be extremely important for CSSs smply because a CSS is
of little useif users do not know of it, and in rough terms what it will do - and acquiring this expertise
inevitably takes time. Generd methods are likdly to lead to a reduction in the time users need to
gpend familiarisng themsaves with what is available, and aso mean that the process of choosing an
gppropriate gpproach to a given problem is likely to be easier smply because there are fewer
possihilities to choose from.

Choice 3: methods and support systems and user education: implications
for the curriculum

From along term perspective we can ask what conceptua background education needs to foster
given the availability of CSSsimplementing crunchy methods. Is the binomia probability digtribution
a sendble part of the standard curriculum of dementary datistics given the availability of smulation
methods (which can be implemented on any suitable software including a spreadsheet)? Is divison a
sengble part of the primary school mathematics curriculum despite the crunchier methods which can
be used?

My answer to the first of these questions would be no, and to the second yes - and | would
sugpect that | am not aone in this judgment. There are three important differences between the two
gtuations: divison is much more commonly used than the binomid distribution, people are likely to
want to use it when they have no CSS to hand, and it leads on to many other ideas which non-
mathemeaticians would expect to master, whereas the binomia distribution does lead on to further
ideas (e.g. the normd digtribution) but exactly what and how would usualy be considered to be of
interest to mathematica specidists done.

In rough terms, if we view mathematica methods as forming a hierarchy in which the lower
levels are prerequisites for an understanding of the higher levels, the generd conclusion is thet there
is likely to be sense in using crunchy methods for the top level of the hierarchy since this does not
lead on to further ideas. This conclusion holds for both the novice and the expert mathematician.

It may aso be reasonably to use crunchy methods in parts of the lower leves of this
hierarchy, if the concepts developed by the crunchy methods (see Property 4 above) are adequate
for the higher level developments. For example, the smulation of the binomid digtribution leads to
the concept of a binomid probability digtribution (but without the probability formulae). This gives
users alabel and a concept which can be basis of further theory. The normd distribution can now be
viewed as a limiting case of this binomid distribution. The basic pattern of the norma distribution,
and the fact that this pattern is smilar to many empiricd distributions, is quite clear from the
smulaions, the only thing missng isthe formula

The implication of this concluson for education in mathematica methods is smply that many
clever methods may not be worth learning. Each clever method would have to be consdered on its
merits, but my judgment is that this trategy of replacing clever methods (especidly those at the
highest level of the cognitive hierarchy) by afew crunchy principles would lead to a very substantia
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reduction in the technica content of mathematics education. However, the increased trangparency of
the crunchy methods may lead to more powerful and redlistic gpproaches to problem solving.

An objection

When | showed an earlier version of this paper to a colleague his reaction was indignation based on
the assumption that these ideas would, if taken serioudy, "lower standards’. Students would no
longer need to grapple with "proper” mathematics such as methods for solving polynomids and
mathematica probability digtributions.

There were, | think, two points of difference between us. First we differed on the nature of
"proper" mathematics. From my perspective the ability to formulate models was far more important
than the ability to find aformula, and if some topics were discarded from the curriculum this was just
a pat of the inevitable change that the progress of technology brings to a rationd curriculum (see,
for example, Wood et a, 1997). In the words of Stewart (1990, p. 82):

"Formula? Who cares about formulas? Those are the surface of mathematics, not
the essence!”

The second difference between us was perhaps even more fundamenta. My perspective is
that we want to help students develop as powerful and rdiable a framework as possible with as
little pain and effort as possible. My colleague's implicit assumption was that we wanted to
develop as much understanding as possible of a given curriculum. For a given problem, from the first
perspective, it is generdly sengble to encourage the adoption of the easest method, but from the
second it may be more sensible to encourage learners to use the most difficult method since they
will then learn more. From my perspective the use of methods which are too difficult for learners to
grasp eadly with the time and resources available is slly as it is likely to lead to doctors failing to
grasp the basics of gatigtics (Altman and Bland, 1991) and production managers failing to grasp
essential datistica principles of quaity control. From my colleague's perspective the use of these
methods is necessary to "preserve sandards' in academia, but not, unfortunately, in red life.

The fact that a method is easy does not mean that it is a bad method. Crunchy methods
should not be regarded as lacking in rigour; on the contrary, their trangparency means that users can
see exactly what is going on and check the plausibility of any assumptions made.

Somerelated arguments
There are a number of other arguments about mathematics, education and computers, which | will
mention here very briefly to darify their rdaionship with the argument of the present paper.

Computers and calculators can perform clever methods without help from users; therefore
users can concentrate on applications and interpretation, and do not need to concern
themselves with technical details.

This is regarded by some as a good thing, and by others as a bad thing. It is, however, quite
different from the argument of the present paper, which concerns crunchy methods which are
thoroughly understood.

Crunchy methods like ssmulation or trial and error methods are useful for helping
students devel op the insights which will allow a deeper understanding of clever methods
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This is doubtless true, but the argument of this paper is that it is often sengble to treat crunchy
methods as an end in their own right, not as the means to another end.

Computer programming is helpful for learning mathematics

Encouraging students to program mathematica activities and processes has been found to be an
effective tool for making them explicit and so heping dudents learn mathematics (Leron and
Dubinsky, 1995; Cornu and Dubinsky, 1989; Papert, 1993). This principle could be applied to
helping people understand the principles behind both crunchy and clever methods, dthough it may
gpply more naturdly to crunchy methods with their typicaly repetitive dgorithms.

However, the argument in this paper is not about learning mathematics, but about which
mathematical methods are the most appropriate; about the content of the curriculum, not the
methods. The computer support systems discussed above are primarily for doing mathematics, not
for learning mathematics (although they may be helpful here too).

Conclusions

| have defined the crunchiness of a mathematicd method in terms of:

* its trangparency, and

* its repetitiveness, and

* the level of conceptua background required for its use.

Some methods may be crunchy according to some, but not dl, of these criteria.

Crunchy methods are contrasted with clever ones. Crunchier methods are likely to be;
* conceptudly smpler, and
* more generadl and so more powerful and more able to model complex phenomena
This means that they are often preferable from the perspectives of user-friendliness, reliability and
redism.

On the other hand crunchy methods:

* tend to be computationaly intensve and dow, and

* may only yield an gpproximate or tentative answer on some occasions, and

* may in some Stuations be less useful for building further concepts and techniques.
Sometimes these disadvantages are important but often they are of little consequence.

It isfairly easy to devise methods which are crunchier than many conventiona clever ones.
Examples include smulation, resampling and bootstrgpping for problems in probability and Satidtics,
numerica methods for solving equetions, optimisation and integration problems, smulation for
moddling queues, and S0 on.

Crunchy methods are idedly suited to computer packages for supporting mathematical
reasoning - particularly for non-expert users. To take advantage of the transparency of crunchy
methods it is important that users can step through a method dowly to see how it works. Crunchy
methods should then have the potentid to enable novice users to develop useful methods for red
problems and interpret their results with genuine, reliable and conagtent intelligence. This contrasts
drongly with the present dtuation where mathematic and datidicdl methods are frequently
misunderstood, misused and their results misinterpreted.

In practice, these opportunities have been taken up very little, dthough there is a limited
recognition of the advantages of resampling and bootstrap methods in satistics. Usudly, computer-
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supported mathematica reasoning follows the established methods. In part this is probably because
users understanding of some of the methods is inadequate to enable them to distinguish the method
from the problem it solves, the problem is the method and posshilities for improvement are
unrecognised. The difficulties are exacerbated by the expectations of examiners and curricula

The find section of the paper argues that the crunchier methods offer an opportunity to
amplify the mathematics curriculum very consderably. Many of the clever theorems of mathematics
are Imply not necessary (for practica purposes: | am not referring to the study of pure mathematics)
if you have a computer to crunch out the answers. Much of the standard curriculum of mathematics
goplied to gatigtics, management science and smilar disciplines is unnecessary. In its place would go
a few crunchy methods implemented by suitable computer packages - eg. one for smulaing
univariate probability distributions, one for optimisng numerica functions, and so on - and a more
thorough understanding of genera principles and "lower level" concepts.

I will finish by rasing afew questions prompted by these condderations. Is it possible to find
a crunchier dterndive to any mathematical method? Does the idea just gpply to mathematica
methods? Can we compile a short list of crunchy methods which subsume al commonly used clever
ones? As is often the case, | suspect that the answers to these questions depend on a careful
definition of the termsin which they are phrased.
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Appendix - Three methods for exploring a problem
| was recently writing a paper which puts forward a numerica model based on this equation:

c= (1-(1-p)")’
¢ and p represent quantities which are determined by assumptions which can be intuitively linked to
the Stuation being modelled (market research) - typical vaueswould be c = 0.8 and p = 0.1. The
purpose of the modd is to estimate a suitable vaue of n - the 9ze of a sample. Unfortunately v is
unknown and cannat, in principle, be determined.

If the range of vaues d n corresponding to dl "reasonable’ vaues of v was "reasonably
narrow", then | decided that the model would be gtill useful. Such areasonable range of valuesfor v
included dl integers from 5 to 1000. What is the corresponding range of vaues of n? There are four
obvious methods for solving this.

The crunchiest approach to this question (Method 1) isto set up a spreadsheet and use trail
and error:

p v n C
0.1 5 50 0.97
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The firg three cdls contain numerical vaues: the firg two given by the condraints of the problem,
and the third (50 for n) is afirst guess for an appropriate vaue for n. The fourth cel contains the
formula above to caculate the corresponding vaue of c. | then smply changed the vde of n until the
vaueof ¢ was 0.8. This process took four trials and was quick and straightforward. The answer
was that n is 30. | then changed v to 1000 and repeated the process to find that n now has to be
80. (I decided this was a suitably narrow range.)

Method 2 was the same but using the soreadsheet (Exced) Solver to find the vaue of n
corresponding to atarget value of 0.8 for c. Thisarived at the same answers but took dightly longer
due to the time taken to set up the parameters of the Solver. When | tried again, arting from an
initid vaue for n of 1, the computer falled to find a solution - which is one of the problems with
heuristic methods.

Method 3 involves manipulaing the equation and rewriting it as

n = log(1-c*)/log(1-p)

This formula can now be entered in the cdl for n, and 0.8 entered in the cdll for ¢ which gives the
vauesof n directly without trid and error.

Method 4 would be to use the last equation to try to deduce, in generd terms, how sengitive
nisto changesin v. In practice | could not see any easy way to do this, and as Method 3 had told
me all | needed to know, | abandoned Method 4.

The four methods are clearly in order of increasing cleverness and decreasing crunchiness.
Method 1 requires no ability to manipulate equations, and aso seems the most trustworthy in that it
is direct and gives very little scope for errors. It is aso a perfectly rigorous method and can give an
answer to any required degree of accuracy. It seems the obvious method for anyone who is not
good a manipulating equations.

As Method 1 was s0 quick Method 2 had few advantages in this Stuation. With more
variables, Method 2 may be preferable to Method 1 - but the Solver can never be regarded as fully
religble,

Method 3 was my preferred method. It enabled me to build up atable of vadues of n
corresponding to the different values of the other variables. On the other hand it is no more rigorous
than Method 1, and seemed less trustworthy in that | was not confident | had not made an error in
meanipulating the equation.

The main drawback of method 4 wasthat | was not clever enough to do it.
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