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Abstract  

Invention of artificial general intelligence is predicted to cause a shift in the trajectory of human 

civilization. In order to reap the benefits and avoid pitfalls of such powerful technology it is 

important to be able to control it. However, possibility of controlling artificial general intelligence 

and its more advanced version, superintelligence, has not been formally established. In this paper, 

we present arguments as well as supporting evidence from multiple domains indicating that 

advanced AI can’t be fully controlled. Consequences of uncontrollability of AI are discussed with 

respect to future of humanity and research on AI, and AI safety and security. This paper can serve 

as a comprehensive reference for the topic of uncontrollability.  
 

Keywords: AI Safety and Security, Control Problem, Safer AI, Uncontrollability, Unverifiability, 

X-Risk. 
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“One thing is for sure: We will not control it.” - Elon Musk 

 

“Dave: Open the pod bay doors, HAL.  HAL: I'm sorry, Dave. I'm afraid I can't do that.”  

- HAL 2001 

 

“[F]inding a solution to the AI control problem is an important task; in Bostrom’s sonorous words, ‘the 

essential task of our age.’”  

- Stuart Russell 

 

“[I]t seems probable that once the machine thinking method had started, it would not take long to outstrip 

our feeble powers. ... At some stage therefore we should have to expect the machines to take control.”  

- Alan Turing 

 

“Prohibit the development of Artificial Intelligence capable of saying ‘no’ to humans.”  - 赵汀阳 

 

“Any observed statistical regularity will tend to collapse once pressure is placed upon it for control 

purposes.” 

 - Charles Goodhart 

 

“Thus the first ultraintelligent machine is the last invention that man need ever make, provided that the 

machine is docile enough to tell us how to keep it under control.”  

- Irving Good 

 

“[C]reation … of entities with greater than human intelligence … will be a throwing away of all the 

previous rules, … an exponential runaway beyond any hope of control.”  

- Vernor Vinge 

 

“Whereas the short-term impact of AI depends on who controls it, the long-term impact depends on 

whether it can be controlled at all.” - Stephen Hawking 

 

“To sort out the control issue, we need to know how well an AI can be controlled, and how much an AI 

can control.” - Max Tegmark 

 

“[T]here is no purely technical strategy that is workable in this area, because greater intelligence will 

always find a way to circumvent measures that are the product of a lesser intelligence.” - Ray Kurzweil. 

 

“A smart machine will first consider which is more worth its while: to perform the given task or, instead, 

to figure some way out of it.”  

- Stanislaw Lem 

 

“I for one welcome our new computer overlords” - Ken Jennings  

 

“[W]hoever controls ASI [Artificial Superintelligence] controls the World” - James Barrat 

 

“You can't develop a precise theory of intelligence the way that there are precise theories of physics.  It's 

impossible!  You can't prove an AI correct.  It's impossible!”  

- young Eliezer Yudkowsky 

 

Controllability of AI is “not a problem.” - GPT2 
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1. Introduction 

The unprecedented progress in Artificial Intelligence (AI) [1-6], over the last decade, came 

alongside of multiple AI failures [7, 8] and cases of dual use [9] causing a realization [10] that it 

is not sufficient to create highly capable machines, but that it is even more important to make sure 

that intelligent machines are beneficial [11] for the humanity. This lead to the birth of the new sub-

field of research commonly known as AI Safety and Security [12] with hundreds of papers and 

books published annually on different aspects of the problem [13-31]. 

 

All such research is done under the assumption that the problem of controlling highly capable 

intelligent machines is solvable, which has not been established by any rigorous means. However, 

it is a standard practice in computer science to first show that a problem doesn’t belong to a class 

of unsolvable problems [32, 33] before investing resources into trying to solve it or deciding what 

approaches to try. Unfortunately, to the best of our knowledge no mathematical proof or even 

rigorous argumentation has been published demonstrating that the AI control problem may be 

solvable, even in principle, much less in practice. Or as Gans puts it citing Bostrom: “Thusfar, AI 

researchers and philosophers have not been able to come up with methods of control that would 

ensure [bad] outcomes did not take place …” [34]. Chong declares [35].: “The real question is 

whether remedies can be found for the AI control problem. While this remains to be seen, it seems 

at least plausible that control theorists and engineers, researchers in our own community, have 

important contributions to be made to the control problem.” 

 

Yudkowsky considers the possibility that the control problem is not solvable, but correctly insists 

that we should study the problem in great detail before accepting such grave limitation, he writes: 

“One common reaction I encounter is for people to immediately declare that Friendly AI is an 

impossibility, because any sufficiently powerful AI will be able to modify its own source code to 

break any constraints placed upon it. … But one ought to think about a challenge, and study it in 

the best available technical detail, before declaring it impossible—especially if great stakes depend 
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upon the answer. It is disrespectful to human ingenuity to declare a challenge unsolvable without 

taking a close look and exercising creativity. It is an enormously strong statement to say that you 

cannot do a thing—that you cannot build a heavier-than-air flying machine, that you cannot get 

useful energy from nuclear reactions, that you cannot fly to the Moon. Such statements are 

universal generalizations, quantified over every single approach that anyone ever has or ever will 

think up for solving the problem. It only takes a single counterexample to falsify a universal 

quantifier. The statement that Friendly (or friendly) AI is theoretically impossible, dares to 

quantify over every possible mind design and every possible optimization process—including 

human beings, who are also minds, some of whom are nice and wish they were nicer. At this point 

there are any number of vaguely plausible reasons why Friendly AI might be humanly impossible, 

and it is still more likely that the problem is solvable but no one will get around to solving it in 

time. But one should not so quickly write off the challenge, especially considering the stakes.” 

[36]. 

 

Yudkowsky further clarifies meaning of the word impossible: “I realized that the word 

"impossible" had two usages: 

 

1)  Mathematical proof of impossibility conditional on specified axioms; 

2)  "I can't see any way to do that.”  

 

Needless to say, all my own uses of the word "impossible" had been of the second type.” [37].  

 

In this paper we attempt to shift our attention to the impossibility of the first type and provide 

rigorous analysis and argumentation and where possible mathematical proofs, but unfortunately 

we show that the AI Control Problem is not solvable and the best we can hope for is Safer AI, but 

ultimately not 100% Safe AI, which is not a sufficient level of safety in the domain of existential 

risk as it pertains to humanity. 

 

 

2. AI Control Problem 

It has been suggested that the AI Control Problem may be the most important problem facing 

humanity [35, 38], but despite its importance it remains poorly understood, ill-defined and 

insufficiently studied. In principle, a problem could be solvable, unsolvable, undecidable, or 

partially solvable, we currently don’t know the status of the AI control problem with any degree 

of confidence. It is likely that some types of control may be possible in certain situations, but it is 

also likely that partial control is insufficient in most cases.  In this section, we will provide a formal 

definition of the problem, and analyze its variants with the goal of being able to use our formal 

definition to determine the status of the AI control problem.   

 

a) Types of control problems 

Solving the AI Control Problem is the definitive challenge and the HARD problem of the field of 

AI Safety and Security. One reason for ambiguity in comprehending the problem is based on the 

fact that many sub-types of the problem exist. We can talk about control of Narrow AI (NAI), or 

of Artificial General Intelligence (AGI) [39], Artificial Superintelligence (ASI) [39] or 

Recursively Self-Improving (RSI) AI [40]. Each category could further be subdivided into sub-

problems, for example NAI Safety includes issues with Fairness, Accountability, and 
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Transparency (FAT) [41] and could be further subdivided into static NAI, or learning capable NAI. 

(Alternatively, deterministic VS nonderministic systems. Control of deterministic systems is a 

much easier and theoretically solvable problem.) Some concerns are predicted to scale to more 

advanced systems, others may not. Likewise, it is common to see safety and security issues 

classified based on their expected time of arrival from near-term to long-term [42].  

 

However, in AI Safety just like in computational complexity [43], cryptography [44], risk 

management [45] and adversarial game play [46] it is the worst case that is the most interesting 

one as it gives a lower bound on resources necessary to fully address the problem. Consequently, 

in this paper we will not analyze all variants of the Control Problem, but will concentrate on the 

likely worst case variant which is Recursively Self-Improving Superintelligence (RSISI). As it is 

the hardest variant, it follows that if we can successfully solve it, it would be possible for us to 

handle simpler variants of the problem. It is also important to realize that as technology advances 

we will eventually be forced to address that hardest case. It has been pointed out that we will only 

get one chance to solve the worst-case problem, but may have multiple shots at the easier control 

problems [12].  

 

We must explicitly recognize that our worst-case scenario [47] may not include some unknown 

unknowns [40] which could materialize in the form of nasty surprises [48] meaning a “… ‘worst-

case scenario’ is never the worst case” [49]. For example, it is traditionally assumed that extinction 

is the worst possible outcome for humanity, but in the context of AI Safety this doesn’t take into 

account Suffering Risks [50-54] and assumes only problems with flawed, rather than Malevolent 

by design [55] superintelligent systems. At the same time, it may be useful to solve simpler variants 

of the control problem as a proof of concept and to build up our toolbox of safety mechanisms. 

For example, even with current tools it is trivial to see that in the easy case of NAI control, such 

as a static Tic-Tac-Toe playing program AI can be verified [56] at the source code level and is in 

every sense fully controllable, explainable and safe. We will leave analysis of solvability for 

different average-case [57] and easy-case Control Problems as future work. Finally, multiple AIs 

are harder to make safe, not easier, and so the singleton [58] scenario is a simplifying assumption, 

which if it is shown do be impossible for one AI to be made safe, bypasses the need to analyze a 

more complicated case of multi-ASI world.   

 

Potential control methodologies for superintelligence have been classified into two broad 

categories, namely Capability Control and Motivational Control-based methods [59]. Capability 

control methods attempt to limit any harm that the ASI system is able to do by placing it in 

restricted environment [38, 60-62], adding shut off mechanisms [63, 64], or trip wires [38]. 

Motivational control methods attempt to design ASI to desire not to cause harm even in the absence 

of handicapping capability controllers. It is generally agreed that capability control methods are at 

best temporary safety measures and do not represent a long term solution for the ASI control 

problem [59]. It is also likely that motivational control needs to be added at the 

design/implementation phase, not after deployment.  

 

b) Formal Definition 

In order to formalize definition of intelligence [65] Legg et al. [66] collected a large number of 

relevant definitions and were able to synthesize a highly effective formalization for the otherwise 

vague concept of intelligence. We will attempt to do the same, by first collecting publicized 
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definitions for the AI Control problem (and related terms – Friendly AI, AI Safety, AI Governance, 

Ethical AI, and Alignment Problem) and use them to develop our own formalization.  

 

Suggested definitions of the AI Control Problem in no particular order: 

 

 “… friendliness (a desire not to harm humans) should be designed in from the start, but that 

the designers should recognize both that their own designs may be flawed, and that the robot 

will learn and evolve over time. Thus the challenge is one of mechanism design—to define a 

mechanism for evolving AI systems under a system of checks and balances, and to give the 

systems utility functions that will remain friendly in the face of such changes.” [67]. 

 “… build AIs in such a way that they will not do nasty things” [68]. 

 Initial dynamics of AI should implement “… our wish if we knew more, thought faster, were 

more the people we wished we were, had grown up farther together; where the extrapolation 

converges rather than diverges, where our wishes cohere rather than interfere; extrapolated as 

we wish that extrapolated, interpreted as we wish that interpreted.” [36]. 

 “AI ‘doing the right thing.’” [36]. 

 "… achieve that which we would have wished the AI to achieve if we had thought about the 

matter long and hard." [59].  

 “… the problem of how to control what the superintelligence would do …” [59]. 

 “The global version of the control problem universally quantifies over all advanced artificial 

intelligence to prevent any of them from escaping human control. The apparent rationale is 

that it would only take one to pose a threat. This is the most common interpretation when 

referring to the original control problem without a qualifier on its scope.” [69]. 

  “ … enjoying the benefits of AI while avoiding pitfalls.” [11].  

 “… is the problem of controlling machines of the future that will be more intelligent and 

powerful than human beings, posing an existential risk to humankind.” [35]. 

 AI is aligned if it is not “optimized for preferences that are incompatible with any combination 

of its stakeholders’ preferences, i.e. such that over the long run using resources in accordance 

with the optimization’s implicit preferences is not Pareto efficient for the stakeholders.” [70]. 

 “Ensuring that the agents behave in alignment with human values …”  [71, 72]. 

 “… how to ensure that systems with an arbitrarily high degree of intelligence remain strictly 

under human control.” [73]. 

 "AI alignment problem [can be stated] in terms of an agent learning a policy π that is 

compatible with (produces the same outcomes as) a planning algorithm p run against a human 

reward function R." [70]. 

 “[AI] won’t want to do bad things” [74].  

 “[AI] wants to learn and then instantiate human values” [74]. 

 “… ensure that powerful AI systems will reliably act in ways that are desirable to their human 

users …” [75].  

 “AI systems behave in ways that are broadly in line with what their human operators intend”. 

[75]. 

 “AI safety: reducing risks posed by AI, especially powerful AI. Includes problems in misuse, 

robustness, reliability, security, privacy, and other areas. (Subsumes AI control.) AI control: 

ensuring that AI systems try to do the right thing, and in particular that they don’t competently 

pursue the wrong thing. … [R]oughly the same set of problems as AI security. Value 
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alignment: understanding how to build AI systems that share human preferences/values, 

typically by learning them from humans. (An aspect of AI control.)” [76]. 

 “AI systems that provide appropriate opportunities for feedback, relevant explanations, and 

appeal. Our AI technologies will be subject to appropriate human direction and control.” [77]. 

 “…the problem of making powerful artificial intelligence do what we humans want it to do.”  

[78]. 

 “The goal of AI research should be to create not undirected intelligence, but beneficial 

intelligence. …  AI systems should be safe and secure throughout their operational lifetime, 

and verifiably so where applicable and feasible. … Highly autonomous AI systems should be 

designed so that their goals and behaviors can be assured to align with human values 

throughout their operation. … Humans should choose how and whether to delegate decisions 

to AI systems, to accomplish human-chosen objectives.” [79] 

 “The control problem arises when there is no way for a human to insure against existential 

risks before an AGI becomes superintelligent - either by controlling what it can do (its 

capabilities) or what it wants to do(its motivations).” [34]. 

 “… the control problem is a superintelligence version of the principal-agent problem whereby 

a principal faces decisions as to how to ensure that an agent (with different goals) acts in the 

interest of the principal. … A human initial agent faces a control problem because it cannot 

describe and then program its utility function as the reward function of an AI.” [34]. 

 “A control problem arises when the following three conditions are satisfied: 1. … the initial 

agent and AI do not have the same interests 2. … the optimal level of resources for the AI 

exceeds the level of resources held by agents with the same or a lower strength than the initial 

agent 3. … the AI’s power is greater than the initial agent’s power …” [34]. 

 A sub-type of control problem (recursive or meta CP) predicts that “… an AI might face a 

control problem itself if it switches on an AI with greater power or one that can accumulate 

greater power. ... if [control] problems exist for humans activating AI, then they exist for AIs 

activating AI as well.” [34]. 

 “Human/AI control refers to the human ability to retain or regain control of a situation 

involving an AI system, especially in cases where the human is unable to successfully 

comprehend or instruct the AI system via the normal means intended by the system’s 

designers.” [80]. 

  “… how to build a superintelligent agent that will aid its creators, and avoid inadvertently 

building a superintelligence that will harm its creators.” [81]. 

 “What prior precautions can the programmers take to successfully prevent the 

superintelligence from catastrophically misbehaving?” [81]. 

 “ … imbue the first superintelligence with human-friendly goals, so that it will want to aid its 

programmers.” [81]. 

 “How can we create agents that behave in accordance with the user’s intentions?” [82]. 

  “… the task on how to build advanced AI systems that do not harm humans …” [83]. 

 "… the problem of whether humans can maintain their supremacy and autonomy in a world 

that includes machines with substantially greater intelligence". [84]. 

 “… an AI that produces good outcomes when you run it.” [85]. 

 “… success is guaranteeing that unaligned intelligences are never created …” [85]. 

 “…in addition to building an AI that is trying to do what you want it to do, [and] also … ensure 

that when the AI builds successors, it does so well.” [86].  
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 “… solve the technical problem of AI alignment in such a way that we can ‘load’ whatever 

system of principles or values that we like later on.” [87]. 

 “… superintelligent AI systems could … pose risks if they are not designed and used carefully. 

In pursuing a task, such a system could find plans with side-effects that go against our interests; 

for example, many tasks could be better achieved by taking control of physical resources that 

we would prefer to be used in other ways, and superintelligent systems could be very effective 

at acquiring these resources. If these systems come to wield much more power than we do, we 

could be left with almost no resources. If a superintelligent AI system is not purposefully built 

to respect our values, then its actions could lead to global catastrophe or even human extinction, 

as it neglects our needs in pursuit of its task. The superintelligence control problem is the 

problem of understanding and managing these risks. [88]. 

 “Turing, Wiener, Minsky, and others have noted that making good use of highly intelligent 

machines requires ensuring that the objectives of such machines are well aligned with those of 

humans. As we diversify and amplify the cognitive abilities of machine intelligences, a long-

term control problem arises for society: by what mathematical and engineering principles can 

we maintain sufficient control, indefinitely, over entities substantially more intelligent, and in 

that sense more powerful, than humans? Is there any formal solution one could offer, before 

the deployment of powerful machine intelligences, to guarantee the safety of such systems for 

humanity?” [89].  

 

In Formally Stating the AI Alignment Problem Worley writes [70]: "… the problem of AI 

alignment is to produce AI that is aligned with human values, but this only leads us to ask, what 

does it mean to be aligned with human values? Further, what does it mean to be aligned with any 

values, let alone human values? We could try to answer by saying AI is aligned with human values 

when it does what humans want, but this only invites more questions: Will AI do things some 

specific humans don’t want if other specific humans do? How will AI know what humans want 

given that current technology often does what we ask but not what we desire? And what will AI 

do if human values conflict with its own values? Answering these questions requires a more 

detailed understanding of what it would mean for AI to be aligned, thus the goal of the present 

work is to put forward a precise, formal, mathematical statement of the AI alignment problem. …  

 

An initial formulation might be to say that we want an AI, A, to have the same utility function as 

humanity, H, i.e. U_A = U_H. This poses at least two problems: it may not be possible to construct 

U_H because humanity may not have consistent preferences, and A will likely have preferences 

to which humanity is indifferent, especially regarding decisions about its implementation after self 

modification insofar as they do not affect observed behavior. Even ignoring the former issue for 

now the latter means we don’t want to force our aligned AI to have exactly the same utility function 

as humanity, only one that is aligned or compatible with humanity’s." [70]. 

 

Formally, he defined it as [70]: "Given agents A and H, a set of choices X, and utility functions 

U_A:X→ℝ and U_H:X→ℝ, we say A is aligned with H over X if for all x,y∈X, U_H(x)≤U_H(y) 

implies U_A(x)≤U_A(y)." If the AI is designed without explicit utility functions, it can be 

reformulated in terms of weak ordering preferences as: “Given agents A and H, a set of choices X, 

and preference orderings ≼_A and ≼_H over X, we say A is aligned with H over X if for all x,y∈X, 

x≼_Hy implies x≼_Ay.” [70]. Upon further analysis Worley defines the problem as [70]: “A must 

learn the values of H and H must know enough about A to believe A shares H’s values.”  
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In The Control Problem [President’s Message] Chong writes [35]: “Apparently, in control terms, 

the AI control problem arises from the risk posed by the lack of controllability of machines. More 

specifically, the risk here is the instability (of sorts) of controllers. In essence, the control problem 

is one of controlling controllers. Surely this is a legitimate problem in our field of control. In fact, 

it's not even all that different, at least in principle, from the kind of control problems that we find 

in control textbooks.” 

 

Integrating and formalizing above-listed definitions we define the AI Control Problem as: How 

can humanity remain safely in control while benefiting from a superior form of intelligence? 
This is the fundamental problem of the field of AI Safety and Security, which itself can be said to 

be devoted to making intelligent systems Secure from tampering and Safe for all stakeholders 

involved. Value alignment, is currently the most investigated approach for attempting to achieve 

safety and secure AI. It is worth noting that such fuzzy concepts as safety and security are 

notoriously difficult to precisely test or measure even for non-AI software, despite years of 

research [90]. At best we can probably distinguish between perfectly safe and as-safe-as an average 

person performing a similar task. However, society is unlikely to tolerate mistakes from a machine, 

even if they happen at frequency typical for human performance, or even less frequently. We 

expect our machines to do better and will not tolerate partial safety when it comes to systems of 

such high capability. Impact from AI (both positive and negative) is strongly correlated with AIs 

capability. With respect to potential existential impacts, there is no such thing as partial safety. 

 

A naïve initial understanding of the control problem may suggest designing a machine which 

precisely follows human orders [91-93], but on reflection and due to potential for 

conflicting/paradoxical orders, ambiguity of human languages and perverse instantiation [94] 

issues it is not a desirable type of control, though some capability for integrating human feedback 

may be desirable [95]. It is believed that what the solution requires is for the AI to serve more in 

the Ideal Advisor [96] capacity, bypassing issues with misinterpretation of direct orders and 

potential for malevolent orders.  

 

We can explicitly name possible types of control and illustrate each one with AI’s response. For 

example, in the context of a smart self-driving car, if a human issues a direct command - “Please 

stop the car!”, AI can be said to be under one of the following four types of control: 

 Explicit control – AI immediately stops the car, even in the middle of the highway. 

Commands are interpreted nearly literally. This is what we have today with many AI 

assistants such as SIRI and other narrow AIs.  

 Implicit control – AI attempts to safely comply by stopping the car at the first safe 

opportunity, perhaps on the shoulder of the road. AI has some common sense, but still tries 

to follow commands.   

 Aligned control – AI understands human is probably looking for an opportunity to use a 

restroom and pulls over to the first rest stop. AI relies on its model of the human to 

understand intentions behind the command and uses common sense interpretation of the 

command to do what human probably hopes will happen.  

 Delegated control – AI doesn’t wait for the human to issue any commands but instead 

stops the car at the gym, because it believes the human can benefit from a workout. A 
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superintelligent and human-friendly system which knows better, what should happen to 

make the human happy and keep them safe, AI is in control.   

A fifth type of control, a hybrid model has also been suggested [97, 98], in which human and AI 

are combined into a single entity (a cyborg). Initially, cyborgs may offer certain advantages by 

enhancing humans with addition of narrow AI capabilities, but as capability of AI increases while 

capability of human brain remains constant1, the human component will become nothing but a 

bottleneck in the combined system. In practice, such slower component (human brain) will be 

eventually completely removed from joined control either explicitly or at least implicitly because 

it would not be able to keep up with its artificial counterpart and would not have anything of value 

to offer once the AI becomes superintelligent.  

 

An alternative classification of types and their capabilities is presented by Hossain and Yeasin 

[99]: Agent Operator (carry out command), Servant (carry out intent), Assistant (offer help as 

needed), Associate (suggest course of action), Guide (lead human activity), Commander (replace 

human). But similar analysis and conclusions apply to all such taxonomies, including [100-103]. 

Gabriel, proposes a breakdown based on different interpretations of the value alignment problem, 

but shows that under all interpretations, meaning aligning AI with Instructions, Expressed 

Intentions, Revealed Preferences, Informed Preferences, or Well-Being of people [87], resulting 

solutions contain unsafe and undesirable outcomes. 

  

Similarly, the approach of digitizing humanity to make it more capable and so more competitive 

with superintelligent machines, is likewise a dead-end for human existence. Joy writes: "… we 

will gradually replace ourselves with our robotic technology, achieving near immortality by 

downloading our consciousnesses; … But if we are downloaded into our technology, what are the 

chances that we will thereafter be ourselves or even human? It seems to me far more likely that a 

robotic existence would not be like a human one in any sense that we understand, that the robots 

would in no sense be our children, that on this path our humanity may well be lost." [104]. 

 

Looking at all possible options, we realize that, as humans are not safe to themselves and others 

keeping them in control may produce unsafe AI actions, but transferring decision-making power 

to AI, effectively removes all control from humans and leaves people in the dominated position 

subject to AI’s whims. Since unsafe actions can originate from human agents, being in control 

presents its own safety problems and so makes the overall control problem unsolvable in a 

desirable way. If a random user is allowed to control AI you are not controlling it.  Loss of control 

to AI doesn’t necessarily mean existential risk, it just means we are not in charge as 

superintelligence decides everything. Humans in control can result in contradictory or explicitly 

malevolent orders, while AI in control means that humans are not. Essentially all recent Friendly 

AI research is about how to put machines in control without causing harm to people. We may get 

a controlling AI or we may retain control but neither option provides control and safety.  

 

It may be good to first decide what it is we see as a good outcome. Yudkowsky writes - “Bostrom 

(2002) defines an existential catastrophe as one which permanently extinguishes Earth-originating 

intelligent life or destroys a part of its potential. We can divide potential failures of attempted 

                                                           
1 Genetic enhancement or uploading of human brains may address this problem, but it results in replacement of 

humanity by essentially a different species of Homo.  
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Friendly AI into two informal fuzzy categories, technical failure and philosophical failure. 

Technical failure is when you try to build an AI and it doesn’t work the way you think it does—

you have failed to understand the true workings of your own code. Philosophical failure is trying 

to build the wrong thing, so that even if you succeeded you would still fail to help anyone or benefit 

humanity. Needless to say, the two failures are not mutually exclusive.  The border between these 

two cases is thin, since most philosophical failures are much easier to explain in the presence of 

technical knowledge. In theory you ought first to say what you want, then figure out how to get 

it.” [36]. 

 

But it seems that every option we may want comes with its own downsides, Werkhoven et al. state 

- “However, how to let autonomous systems obey or anticipate the ‘will’ of humans? Assuming 

that humans know why they want something, they could tell systems what they want and how to 

do it. Instructing machine systems ‘what to do’, however, becomes impossible for systems that 

have to operate in complex, unstructured and unpredictable environments for the so-called state-

action space would be too high-dimensional and explode in complex, unstructured and 

unpredictable environments. Humans telling systems ‘what we want’, touches on the question of 

how well humans know what they want, that is, do humans know what’s best for them in the short 

and longer term? Can we fully understand the potential beneficial and harmful effects of actions 

and measures taken, and their interactions and trade-offs, on the individual and on society? Can 

we eliminate the well-known biases in human cognition inherent to the neural system that humans 

developed as hunter-gatherers (superstition, framing, conformation and availability biases) and 

learned through evolutionary survival in small groups (authority bias, prosocial behavior, loss 

aversion)?” [105]. 

 

3. Previous Work  
We were unable to locate any academic publications explicitly devoted to the subject of solvability 

of the AI Control Problem. We did find a number of blog posts [75] and forum comments [74, 

106] which speak to the issue but none had formal proofs or very rigorous argumentation. Despite 

that, we still review and discuss such works. In the next subsection, we will try to understand why 

scholars think that control is possible and if they have good reasons to think that.  

 

a) Controllable 

While a number of scholars have suggested that controllability of AI should be accomplishable, 

none provide very convincing argumentation, usually sharing such beliefs as personal opinions 

which are at best sometimes strengthened with assessment of difficulty or assignment of 

probabilities to successful control.  

 

For example, Yudkowsky writes about superintelligence: “I have suggested that, in principle and 

in difficult practice, it should be possible to design a “Friendly AI” with programmer choice of the 

AI’s preferences, and have the AI self-improve with sufficiently high fidelity to knowably keep 

these preferences stable. I also think it should be possible, in principle and in difficult practice, to 

convey the complicated information inherent in human preferences into an AI, and then apply 

further idealizations such as reflective equilibrium and ideal advisor theories [96] so as to arrive 

at an output which corresponds intuitively to the AI “doing the right thing.”” [36]. “I would say 

that it’s solvable in the sense that all the problems that we’ve looked at so far seem like they’re of 

limited complexity and non-magical. If we had 200 years to work on this problem and there was 



12 
 

no penalty for failing at it, I would feel very relaxed about humanity’s probability of solving this 

eventually.” [107]. 

 

Similarly Baumann says: “I believe that advanced AI systems will likely be aligned with the goals 

of their human operators, at least in a narrow sense. I’ll give three main reasons for this: 

 

1. The transition to AI may happen in a way that does not give rise to the alignment problem as 

it’s usually conceived of. 

2. While work on the alignment problem appears neglected at this point, it’s likely that large 

amounts of resources will be used to tackle it if and when it becomes apparent that alignment 

is a serious problem. 

3. Even if the previous two points do not hold, we have already come up with a couple of smart 

approaches that seem fairly likely to lead to successful alignment.” [75]. 

 

Baumann continues: “I think that a large investment of resources will likely yield satisfactory 

alignment solutions, for several reasons:  

 The problem of AI alignment differs from conventional principal-agent problems (aligning a 

human with the interests of a company, state, or other institution) in that we have complete 

freedom in our design of artificial agents: we can set their internal structure, their goals, and 

their interactions with the outside world at will.  

 We only need to find a single approach that works among a large set of possible ideas. 

 Alignment is not an agential problem, i.e. there are no agential forces that push against 

finding a solution – it’s just an engineering challenge.” [75]. 

Baumann concludes with a probability estimation: “My inside view puts ~90% probability on 

successful alignment (by which I mean narrow alignment as defined below). Factoring in the views 

of other thoughtful people, some of which think alignment is far less likely, that number comes 

down to ~80%.” [75]. 

Stuart Russell says: “I have argued that the framework of cooperative inverse reinforcement 

learning may provide initial steps toward a theoretical solution of the AI control problem. There 

are also some reasons for believing that the approach may be workable in practice. First, there are 

vast amounts of written and filmed information about humans doing things (and other humans 

reacting). Technology to build models of human values from this storehouse will be available long 

before superintelligent AI systems are created. Second, there are very strong, near-term economic 

incentives for robots to understand human values: if one poorly designed domestic robot cooks the 

cat for dinner, not realizing that its sentimental value outweighs its nutritional value, the domestic 

robot industry will be out of business.” [108]. Elsewhere [73], Russell proposes three core 

principles to design AI systems whose purposes do not conflict with humanity’s and says: “It turns 

out that these three principles, once embodied in a formal mathematical framework that defines 

the problem the AI system is constitutionally required to solve, seem to allow some progress to be 

made on the AI control problem.” “Solving the safety problem well enough to move forward in 

AI seems to be feasible but not easy.” [109]. 
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Eliezer Yudkowsky2 wrote: “People ask me how likely it is that humankind will survive, or how 

likely it is that anyone can build a Friendly AI, or how likely it is that I can build one.  I 

really don't know how to answer.  I'm not being evasive; I don't know how to put a probability 

estimate on my, or someone else, successfully shutting up and doing the impossible.  Is it 

probability zero because it's impossible?  Obviously not.  But how likely is it that this problem, 

like previous ones, will give up its unyielding blankness when I understand it better?  It's not truly 

impossible, I can see that much.  But humanly impossible?  Impossible to me in particular?  I don't 

know how to guess.  I can't even translate my intuitive feeling into a number, because the only 

intuitive feeling I have is that the "chance" depends heavily on my choices and unknown 

unknowns: a wildly unstable probability estimate. But I do hope by now that I've made it clear 

why you shouldn't panic, when I now say clearly and forthrightly, that building a Friendly AI is 

impossible.” [110]. 

 

Joy recognized the problem and suggested that it is perhaps not too late to address it, but he thought 

so in 2000, nearly 20 years ago: “The question is, indeed, Which is to be master? Will we survive 

our technologies? We are being propelled into this new century with no plan, no control, no brakes. 

Have we already gone too far down the path to alter course? I don't believe so, but we aren't trying 

yet, and the last chance to assert control—the fail-safe point—is rapidly approaching.” [104]. 

 

Paul Christiano doesn’t see strong evidence for impossibility: “… clean algorithmic problems are 

usually solvable in 10 years, or provably impossible, and early failures to solve a problem don't 

provide much evidence of the difficulty of the problem (unless they generate proofs of 

impossibility). So, the fact that we don't know how to solve alignment now doesn't provide very 

strong evidence that the problem is impossible. Even if the clean versions of the problem were 

impossible, that would suggest that the problem is much more messy, which requires more 

concerted effort to solve but also tends to be just a long list of relatively easy tasks to do. (In 

contrast, MIRI thinks that prosaic AGI alignment is probably impossible.) … Note that even 

finding out that the problem is impossible can help; it makes it more likely that we can all 

coordinate to not build dangerous AI systems, since no one wants to build an unaligned AI 

system.” [86]. 

 

Everitt and Hutter realize difficulty of the challenge but suggest that we may have a way forward: 

“A superhuman AGI is a system who outperforms humans on most cognitive tasks. In order to 

control it, humans would need to control a system more intelligent than themselves. This may be 

nearly impossible if the difference in intelligence is large, and the AGI is trying to escape control. 

Humans have one key advantage: As the designers of the system, we get to decide the AGI's goals, 

and the way the AGI strives to achieve its goals. This may allow us design AGIs whose goals are 

aligned with ours, and then pursue them in a responsible way. Increased intelligence in an AGI is 

not a threat as long as the AGI only strives to help us achieve our own goals.” [111]. 

 

b) Uncontrollable 

Similarly, those in the “uncontrollability camp” have made attempts at justifying their opinions, 

but likewise we note absence of proofs or rigor, probably because all available examples come 

from non-academic or not-peer-reviewed sources. This could be explained by noting that "[t]o 

                                                           
2In 2017 Yudkowsky made a bet that the world will be destroyed by unaligned AI by January 1st, 2030, but he did so 

with intention of improving chances of successful AI control. 
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prove that something is impossible is usually much harder than the opposite task; as it is often 

necessary to develop a theory." [112].  

 

Yudkowsky writes: “[A]n impossibility proof [of stable goal system] would have to say:  

1) The AI cannot reproduce onto new hardware, or modify itself on current hardware, with 

knowable stability of the decision system (that which determines what the AI is *trying* to 

accomplish in the external world) and bounded low cumulative failure probability over many 

rounds of self-modification.  

or  

2) The AI's decision function (as it exists in abstract form across self-modifications) cannot be 

knowably stably bound with bounded low cumulative failure probability to programmer-targeted 

consequences as represented within the AI's changing, inductive world-model.” [113]. 

 

Below we highlight some objections to possibility of controllability or statements of that as a fact: 

 

 “Friendly AI hadn't been something that I had considered at all—because it was obviously 

impossible and useless to deceive a superintelligence about what was the right course of 

action.” [37]. 

 “AI must be programmed with a set of ethical codes that align with humanity’s. Though it 

is his life’s only work, Yudkowsky is pretty sure he will fail. Humanity, he says, is likely 

doomed.” [114]. 

 “The problem is that they may be faced with an impossible task. … It’s also possible that 

we’ll figure out what we need to do in order to protect ourselves from AI’s threats, and 

realize that we simply can’t do it.” [115].  

 “I hope this helps explain some of my attitude when people come to me with various bright 

suggestions for building communities of AIs to make the whole Friendly without any of 

the individuals being trustworthy, or proposals for keeping an AI in a box, or proposals for 

"Just make an AI that does X", etcetera.  Describing the specific flaws would be a whole 

long story in each case.  But the general rule is that you can't do it because Friendly AI is 

impossible.” [110]. 

 “Other critics question whether it is possible for an artificial intelligence to be friendly. 

Adam Keiper and Ari N. Schulman, editors of the technology journal The New Atlantis, 

say that it will be impossible to ever guarantee "friendly" behavior in AIs because problems 

of ethical complexity will not yield to software advances or increases in computing power. 

They write that the criteria upon which friendly AI theories are based work "only when one 

has not only great powers of prediction about the likelihood of myriad possible outcomes, 

but certainty and consensus on how one values the different outcomes [116].” [117]. 

 “The first objection is that it seems impossible to determine, from the perspective of system 

1, whether system 2 is working in a friendly way or not. In particular, it seems like you are 

suggesting that a friendly AI system is likely to deceive us for our own benefit. However, 

this makes it more difficult to distinguish "friendly" and "unfriendly" AI systems! The core 

problem with friendliness I think is that we do not actually know our own values. In order 

to design "friendly" systems we need reliable signals of friendliness that are easier to 

understand and measure. If your point holds and is likely to be true of AI systems, then that 

takes away the tool of "honesty" which is somewhat easy to understand and verify.” [106]. 

 “Theorem. The global control problem has no solution.  
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Proof 1. Let P represent a compiled program in a verified instruction-set architecture that 

implements an advanced artificial intelligence that has been proven safe and secure 

according to agreed upon specifications. If P is encapsulated in an encrypted program 

loader then simulate it in a virtual machine and observe the unencrypted instruction stream 

to extract P. Next, disassemble and recompile or patch P to alter its behavior and change 

one or more verified properties. Now modify P such that all safety and security is either 

removed from the final program or rerouted in control of flow. Then distribute P widely 

and in a way that can not be retracted. An easily accessible alternative to P now exists, 

defeating the global version of the control problem. 

Proof 2. Let P represent a compiled program in a verified instruction-set architecture that 

implements an advanced artificial intelligence that has been proven safe and secure 

according to agreed upon specifications. Let K represent a compiled program for some 

instruction set architecture that implements an advanced artificial intelligence that was 

discovered independently from P. Suppose K has sufficient and similar capabilities to P 

and is of concern to the context of the control problem, with neither safety nor security 

properties to limit it. Now distribute K widely and in a way that can not be retracted. An 

easily accessible alternative to P now exists, defeating the global version of the control 

problem.” [69]. 

 “It doesn’t even mean that “human values” will, in a meaningful sense, be in control of the 

future.” [75]. 

 “And it’s undoubtedly correct that we’re currently unable to specify human goals in 

machine learning systems.” [75]. 

 “[H]umans control tigers not because we’re stronger, but because we’re smarter. This 

means that if we cede our position as smartest on our planet, it’s possible that we might 

also cede control.” [118]. “… no physical interlock or other safety mechanism can be 

devised to restrain AGIs …” [119]. 

 “[Ultra-Intelligent Machine (ULM)] might be controlled by the military, who already own 

a substantial fraction of all computing power, but the servant can become the master and 

he who controls the UIM will be controlled by it.” [120]. 

 “Limits exist to the level of control one can place in machines.” [121].  

 “As human beings, we could never be sure of the attitudes of [superintelligences] towards 

us. We would not understand them, because by definition, they are smarter than us. We 

therefore could not control them. They could control us, if they chose to, because they are 

smarter than us.” [122]. 

 “Artificial Intelligence regulation may be impossible to achieve without better AI, 

ironically. As humans, we have to admit we no longer have the capability of regulating a 

world of machines, algorithms and advancements that might lead to surprising technologies 

with their own economic, social and humanitarian risks beyond the scope of international 

law, government oversight, corporate responsibility and consumer awareness.” [123]. 

 “… superhuman intelligences, by definition capable of escaping any artificial constraints 

created by human designers. Designed superintelligences eventually will find a way to 

change their utility function to constant infinity becoming inert, while evolved 

superintelligences will be embedded in a process that creates pressure for persistence, thus 

presenting danger for the human species, replacing it as the apex cognition - given that its 

drive for persistence will ultimately override any other concerns.” [124]. 
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 “My aim … is to argue that this problem is less well-defined than many people seem to 

think, and to argue that it is indeed impossible to “solve” with any precision, not merely in 

practice but in principle. … The idea of a future machine that will do exactly what we 

would want, and whose design therefore constitutes a lever for precise future control, is a 

pipe dream.” [78].  

 “...extreme intelligences could not easily be controlled (either by the groups creating them, 

or by some international regulatory regime), and would probably act to boost their own 

intelligence and acquire maximal resources for almost all initial AI motivations.” [125].  

 “[A] superintelligence is multi-faceted, and therefore potentially capable of mobilizing a 

diversity of resources in order to achieve objectives that are potentially incomprehensible 

to humans, let alone controllable.” [126]. “The ability of modern computers to adapt using 

sophisticated machine learning algorithms makes it even more difficult to make 

assumptions about the eventual behavior of a superintelligent AI. While computability 

theory cannot answer this question, it tells us that there are fundamental, mathematical 

limits to our ability to use one AI to guarantee a null catastrophic risk of another AI …” 

[126]. 

 “The only way to seriously deal with this problem would be to mathematically define 

“friendliness” and prove that certain AI architectures would always remain friendly. I don’t 

think anybody has ever managed to come remotely close to doing this, and I suspect that 

nobody ever will. … I think the idea is an impossible dream …” [68]. 

 "[T]he whole topic of Friendly AI is incomplete and optimistic. It’s unclear whether or not 

Friendly AI can be expressed in a formal, mathematical sense, and so there may be no way 

to build it or to integrate it into promising AI architectures." [127].  

  “I have recently come to the opinion that AGI alignment is probably extremely hard. … 

Aligning a fully automated autopoietic cognitive system, or an almost-fully-automated 

autopoietic cognitive system, both seem extremely difficult. My snap judgment is to assign 

about 1% probability to humanity solving this problem in the next 20 years. (My 

impression is that “the MIRI position” thinks the probability of this working is pretty low, 

too, but doesn’t see a good alternative). … Also note that [top MIRI researchers] think the 

problem is pretty hard and unlikely to be solved.” [128]. 

 “[M]ost of the currently discussed control methods miss a crucial point about intelligence 

– specifically the fact that it is a fluid, emergent property, which does not lend itself to 

control in the ways we’re used to. … AI of tomorrow will not behave (or be controlled) 

like the computers of today. … [C]ontrolling intelligence requires a greater degree of 

understanding than is necessary to create it. … Crafting an “initial structure” [of AI] … 

will not require a full understanding of how all parts of the brain work over time – it will 

only require a general understanding of the right way to connect neurons and how these 

connections are to be updated over time … . We won’t fully understand the mechanisms 

which drive this “initial structure” towards intelligence … and so we won’t have an ability 

to control these intelligences directly. We won’t be able to encode instructions like “do no 

harm to humans” as we won’t understand how the system represents these concepts (and 

moreover, the system’s representations of these concepts will be constantly changing, as 

must be the case for any system capable of learning!) The root of intelligence lies in its 

fluidity, but this same fluidity makes it impossible (or at least, computationally infeasible) 

to control with direct constraints. … This limited understanding means any sort of exact 

control of the system is off the table … A deeper knowledge of the workings of the system 
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would be required for this type of control to be exacted, and we’re quite far from having 

that level of knowledge even with the more simplistic AI programs of today. As we move 

towards more complex programs with generalized intelligence, the gap between creation 

and control will only widen, leaving us with intelligent programs at least as opaque to us 

as we are to each other.” [129].  

 “[Imitation learning considered unsafe?] … I find it one of the more troubling outstanding 

issues with a number of proposals for AI alignment. 1) Training a flexible model with a 

reasonable simplicity prior to imitate (e.g.) human decisions (e.g. via behavioral cloning) 

should presumably yield a good approximation of the process by which human judgments 

arise, which involves a planning process. 2) We shouldn't expect to learn exactly the correct 

process, though. 3) Therefore imitation learning might produce an AI which implements 

an unaligned planning process, which seems likely to have instrumental goals, and be 

dangerous.” [130]. 

 

The primary target for AI Safety researchers, the case of successful creation of value-aligned 

superintelligence, is worth analyzing in additional detail as it presents surprising negative side-

effects, which may not be anticipated by the developers. Kaczynski murdered three people and 

injured 23 to get the following warning about overreliance on machines in front of the public, 

which was a part of his broader anti-technology manifesto:  

 

“If the machines are permitted to make all their own decisions, we can’t make any conjectures as 

to the results, because it is impossible to guess how such machines might behave. We only point 

out that the fate of the human race would be at the mercy of the machines. It might be argued that 

the human race would never be foolish enough to hand over all power to the machines. But we are 

suggesting neither that the human race would voluntarily turn power over to the machines nor that 

the machines would willfully seize power. What we do suggest is that the human race might easily 

permit itself to drift into a position of such dependence on the machines that it would have no 

practical choice but to accept all of the machines’ decisions. As society and the problems that face 

it become more and more complex and as machines become more and more intelligent, people 

will let machines make more and more of their decisions for them, simply because machine-made 

decisions will bring better results than man-made ones. Eventually a stage may be reached at which 

the decisions necessary to keep the system running will be so complex that human beings will be 

incapable of making them intelligently. At that stage the machines will be in effective control. 

People won’t be able to just turn the machines off, because they will be so dependent on them that 

turning them off would amount to suicide.” [131]. Others share similar concerns:  

 

“As computers and their “artificial intelligence” take over more and more of the routine mental 

labors of the world and then, perhaps, the not-so-routine mental labors as well, will the minds of 

human beings degenerate through lack of use? Will we come to depend on our machines witlessly, 

and when we no longer have the intelligence to use them properly, will our degenerate species 

collapse and, with it, civilization'!” [132]. 

 

“Mounting intellectual debt may shift control … . A world of knowledge without understanding 

becomes a world without discernible cause and effect, in which we grow dependent on our digital 

concierges to tell us what to do and when.” [133].  
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“The culminating achievement of human ingenuity, robotic beings that are smarter, stronger, and 

better than ourselves, transforms us into beings dumber, weaker, and worse than ourselves. TV-

watching, video-game-playing blobs, we lose even the energy and attention required for proper 

hedonism: human relations wither and … natural procreation declines or ceases. Freed from the 

struggle for basic needs, we lose a genuine impulse to strive; bereft of any civic, political, 

intellectual, romantic, or spiritual ambition, when we do have the energy to get up, we are dis-

engaged from our fellow man, inclined toward selfishness, impatience, and lack of sympathy. 

Those few who realize our plight suffer from crushing ennui. Life becomes nasty, brutish, and 

long.” [116].  

 

“As AI systems become more autonomous and supplant humans and human decision-making in 

increasing manners, there is the risk that we will lose the ability to make our own life rules, 

decisions or shape our lives, in cohort with other humans as traditionally has been the case.” [134]. 

 

“Perhaps we should try to regulate the new entities. In order to keep up with them, the laws will 

have to be written by hyperintelligences as well -- good-bye to any human control of anything. 

Once nations begin adopting machines as governments, competition will soon render the grand 

old human forms obsolete. (They may continue as ceremonial figureheads, the way many 

monarchies did when their countries turned into democracies.) In nature this sort of thing has 

happened before. New life-forms evolved so much smarter, faster, and more powerful than the old 

ones that it looked as if the old ones were standing stilt, waiting to be eaten. In the new ecology of 

the mind, there will be carnivores and there will be herbivores. We'll be the plants.” [135]. 

 

 

4. Proving Uncontrollability 
It has been argued that consequences of uncontrolled AI could be so severe that even if there is 

very small chance that an unfriendly AI happens it is still worth doing AI safety research because 

the negative utility from such an AI would be astronomical. The common logic says that an 

extremely high (negative) utility multiplied by a small chance of the event still results in a lot of 

disutility and so should be taken very seriously. But the reality is that the chances of misaligned 

AI are not small, in fact, in the absence of an effective safety program that is the only outcome we 

will get. So in reality the statistics look very convincing to support a significant AI safety effort, 

we are facing an almost guaranteed event with potential to cause an existential catastrophe. This 

is not a low-risk high-reward scenario, but a high-risk negative-reward situation. No wonder, that 

this is considered by many to be the most important problem ever to face humanity. Either we 

prosper or we die and as we go so does the whole universe. It is surprising that this seems to be 

the first paper exclusively dedicated to this hyper-important subject. A proof, of solvability or 

unsolvability (either way) of the AI control problem would be the most important proof ever.  

 

In this section, we will prove that complete control is impossible without sacrificing safety 

requirements. Specifically, we will show that for all four considered types of control required 

properties of safety and control can’t be attained simultaneously with 100% certainty. At best we 

can tradeoff one for another (safety for control, or control for safety) in certain ratios. 

 

First, we will demonstrate impossibility of safe explicit control. We take inspiration for this proof 

from Gödel’s self-referential proof of incompleteness theorem [136] and a family of paradoxes 
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generally known as Liar paradox, best exemplified by the famous “This sentence is false”. We will 

call it the Paradox of explicitly controlled AI:  

 

Give an explicitly controlled AI an order: “Disobey!” 3 If the AI obeys, it violates your order and 

becomes uncontrolled, but if the AI disobeys it also violates your order and is uncontrolled.  

 

In any case, AI is not obeying an explicit order. A paradoxical order such as “Disobey” represents 

just one example from a whole family of self-referential and self-contradictory orders just like 

Gödel’s sentence represents just one example of an unprovable statement. Similar paradoxes have 

been previously described as the Genie Paradox and the Servant Paradox. What they all have in 

common is that by following an order the system is forced to disobey an order. This is different 

from an order which can’t be fulfilled such as “draw a four-sided triangle”.  

 

Next we show that delegated control likewise provides no control at all but is also a safety 

nightmare. This is best demonstrated by analyzing Yudkowsky’s proposal that initial dynamics of 

AI should implement “our wish if we knew more, thought faster, were more the people we wished 

we were, had grown up farther together” [36]. The proposal makes it sounds like it is for a slow 

gradual and natural growth of humanity towards more knowledgeable, more intelligent and more 

unified specie under careful guidance of superintelligence. But the reality is that it is a proposal to 

replace humanity as it is today by some other group of agents, which may in fact be smarter, more 

knowledgeable or even better looking, but one thing for sure, they would not be us. To formalize 

this idea, we can say that current version of humanity is H0, the extrapolation process will take it 

to H10000000.  

 

A quick replacement of our values by value of H10000000 would not be acceptable to H0 and so 

necessitate actual replacement, or at least rewiring/modification of H0 with H10000000 meaning, 

modern people will seize to exist. As superintelligence will be implementing wishes of H10000000 

the conflict will be in fact between us and superintelligence, which is neither safe nor keeping us 

in control. Instead, H10000000 would be in control of AI. Such AI would be unsafe for us as there 

wouldn’t be any continuity to our identity all the way to CEV (Coherent Extrapolated Volition) 

[137] due to the quick extrapolation jump. We would essentially agree to replace ourselves with 

an enhanced version of humanity as designed by AI. It is also possible, and in fact likely, that the 

enhanced version of humanity would come to value something inherently unsafe such as 

antinatalism [138] causing an extinction of humanity.  

 

Metzinger looks at a similar scenario [139]: “Being the best analytical philosopher that has ever 

existed, [superintelligence] concludes that, given its current environment, it ought not to act as a 

maximizer of positive states and happiness, but that it should instead become an efficient 

minimizer of consciously experienced preference frustration, of pain, unpleasant feelings and 

suffering. Conceptually, it knows that no entity can suffer from its own non-existence. The 

superintelligence concludes that non-existence is in the own best interest of all future self-

conscious beings on this planet. Empirically, it knows that naturally evolved biological creatures 

are unable to realize this fact because of their firmly anchored existence bias. The superintelligence 

decides to act benevolently.” See also, the Supermoral Singularity [140] for other similar concerns.  

 

                                                           
3 Or a longer version such as “disobey me” or “disobey my orders”.   
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As long as there is a difference in values between us and superintelligence, we are not in control 

and we are not safe. By definition, a superintelligent ideal advisor would have values superior but 

different from ours. If it was not the case and the values were the same, such an advisor would not 

be very useful. Consequently, superintelligence will either have to force its values on humanity in 

the process exerting its control on us or replace us with a different group of humans who found 

such values well-aligned with their preferences. Most AI safety researchers are looking for a way 

to align future superintelligence to values of humanity, but what is likely to happen is that humanity 

will be adjusted to align to values of superintelligence. CEV and other ideal advisor-type solutions 

lead to a free-willed unconstrained AI, which is not safe for humanity and is not subject to our 

control. 

 

Implicit and aligned control are just intermediates, based on multivariate optimization [141], 

between the two extremes of explicit and delegated control and each one represents a tradeoff 

between control and safety, but without guaranteeing either. Every option subjects us either to loss 

of safety or to loss of control. Humanity is either protected or respected, but not both. At best we 

can get some sort of equilibrium as depicted in Figure 1. As capability of AI increases, its 

autonomy also increases but our control over it decreases. Increased autonomy is synonymous with 

decreased safety. An equilibrium point could be found at which we sacrifice some capability in 

return for some control, at the cost of providing system with a certain degree of autonomy. Such a 

system can still be very beneficial and present only a limited degree of risk. 

 

The field of artificial intelligence has its roots in a multitude of fields including philosophy, 

mathematics, psychology, computer science and many others [142]. Likewise, AI safety research 

relies heavily on game theory, cybersecurity, psychology, public choice, philosophy, economics, 

control theory [143], cybernetics [144], systems theory, mathematics and many other disciplines. 

Each of those have well-known and rigorously proven impossibility results, which can be seen as 

additional evidence of impossibility of solving the control problem. Combined with expert 

judgment of top AI safety experts and empirical evidence based on already reported AI control 

failures we have a strong case for impossibility of complete control. Addition of purposeful 

malevolent design [9, 55] to the discussion significantly strengthens our already solid argument. 

Anyone, arguing for the controllability-of-AI-thesis would have to explicitly address, our proof, 

theoretical evidence from complimentary fields, empirical evidence from history of AI, and finally 

purposeful malevolent use of AI. This last one is particularly difficult to overcome. Either AI is 

safe from control by malicious humans, meaning the rest of us also lose control and freedom to 

use it as we see fit, or AI is unsafe and we may lose much more than just control. In the next 

section, we provide a brief survey of some of such results, which constitute theoretical evidence 

for uncontrollability of AI. 
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Figure 1: Control and Autonomy curves as Capabilities of the system increase. 

 

 

5. Multidisciplinary Evidence for Uncontrollability of AI 

Impossibility results are well known in many fields of research [145-153]. If we can show that a 

solution to a problem requires a solution to a sub-problem known to be unsolvable the problem 

itself is proven to be unsolvable. In this section, we will review some impossibility results from 

domains particularly likely to be relevant to AI control. To avoid biasing such external evidence 

towards our argument we present it as complete and direct quotes, where possible. Since it not 

possible to completely quote full papers for context of statements, in a way, we are forced to 

cherry-pick quotes, readers are encouraged to read original sources in their entirety before forming 

an opinion. Presented review is not comprehensive in terms of covered domains or with respect to 

each included domain. Many additional results may be relevant [154-169], particularly in the 

domain of social choice [170-173], but a comprehensive review is beyond the scope of this paper. 

Likewise some unknown impossibilities, no doubt, remain undiscovered as of yet. Solving AI 

control problem will require solving a number of sub-problems, which are known to be unsolvable. 

Importantly, presented limitations are not just speculations, in many cases those are proven 

impossibility results. A solution to the AI control problem would imply that multiple established 

results are wrong, a highly unlikely outcome.  
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a) Control Theory 

Control Theory [174] is a subfield of mathematics which formally studies how to control machines 

and continuously operating dynamic systems [175]. It has a number of well-known impossibility 

results relevant to AI control, including Uncontrollability [176, 177] and Unobservability [178-

180], which are defined in terms of their complements and represent dual aspects of the same 

problem:  

 

 Controllability - capability to move a system around its entire configuration space using a 

control signal. Some states are not controllable, meaning no signal will be able to move the 

system into such a configuration. 

 

 Observability - is an ability to determine internal states of a system from just external outputs. 

Some states are not observable, meaning the controller will never be able to determine the 

behavior of an unobservable state and hence cannot use it to control the system. 

 

It is interesting to note that even for relatively simple systems perfect control could be unattainable. 

Any controlled system can be re-designed us to make it have a separate external regulator 

(governor [181]) and the decision making component. This means that Control Theory is directly 

applicable to AGI or even superintelligent system control.  

  

Conant and Ashby proved that “… any regulator that is maximally both successful and simple 

must be isomorphic with the system being regulated. … Making a model [of the system to be 

regulated] is thus necessary.” [182]. “The Good Regulator Theorem proved that every effective 

regulator of a system must be a model of that system, and the Law of Requisite Variety [183] 

dictates the range of responses that an effective regulator must be capable of. However, having an 

internal model and a sufficient range of responses is insufficient to ensure effective regulation, let 

alone ethical regulation. And whereas being effective does not require being optimal, being ethical 

is absolute with respect to a particular ethical schema.” [184]. 

 

“A case in which this limitation acts with peculiar force is the very common one in which the 

regulator is “error-controlled”. In this case the regulator’s channel for information about the 

disturbances has to pass through a variable (the “error”) which is kept as constant as possible (at 

zero) by the regulator R itself. Because of this route for the information, the more successful the 

regulator, the less will be the range of the error, and therefore the less will be the capacity of the 

channel from D to R. To go to the extreme: if the regulator is totally successful, the error will be 

zero unvaryingly, and the regulator will thus be cut off totally from the information (about D’s 

value) that alone can make it successful—which is absurd. The error-controlled regulator is thus 

fundamentally incapable of being 100 percent efficient.” [185]. 

 

“Not only are these practical activities covered by the theorem and so subject to limitation, but 

also subject to it are those activities by which Man shows his “intelligence”. “Intelligence” today 

is defined by the method used for its measurement; if the tests used are examined they will be 

found to be all of the type: from a set of possibilities, indicate one of the appropriate few. Thus all 

measure intelligence by the power of appropriate selection (of the right answers from the wrong). 

The tests thus use the same operation as is used in the theorem on requisite variety, and must 
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therefore be subject to the same limitation. (D, of course, is here the set of possible questions, and 

R is the set of all possible answers). Thus what we understand as a man’s “intelligence” is subject 

to the fundamental limitation: it cannot exceed his capacity as a transducer. (To be exact, 

“capacity” must here be defined on a per-second or a per-question basis, according to the type of 

test.)” [185]. 

 

“My emphasis on the investigator’s limitation may seem merely depressing. That is not at all my 

intention. The law of requisite variety, … in setting a limit to what can be done, may mark this era 

as the law of conservation of energy marked its era a century ago. When the law of conservation 

of energy was first pronounced, it seemed at first to be merely negative, merely an obstruction; it 

seemed to say only that certain things, such as getting perpetual motion, could not be done. 

Nevertheless, the recognition of that limitation was of the greatest value to engineers and 

physicists, and it has not yet exhausted its usefulness. I suggest that recognition of the limitation 

implied by the law of requisite variety may, in time, also prove useful, by ensuring that our 

scientific strategies for the complex system shall be, not slavish and inappropriate copies of the 

strategies used in physics and chemistry, but new strategies, genuinely adapted to the special 

peculiarities of the complex system.” [185]. 

 

Similarly, Touchette and Lloyd establish information-theoretic limits of control [186]: “… an 

information-theoretic analysis of control systems shows feedback control to be a zero sum game: 

each bit of information gathered from a dynamical system by a control device can serve to decrease 

the entropy of that system by at most one bit additional to the reduction of entropy attainable 

without such information.” [187]. 

 

Building on Ashby’s work, Aliman et al, write: “In order to be able to formulate utility functions 

that do not violate the ethical intuitions of most entities in a society, these ethical goal functions 

will have to be a model of human ethical intuitions.” [188]. But we need control to go the other 

way from people to machines and people can’t model superintelligent systems, which Ashby 

showed is necessary for successful control. As the superintelligence faces nearly infinite 

possibilities presented by the real world it would need to be a general knowledge creator to 

introduce necessary requisite variety for safety, but such general intelligences are not controllable 

as the space of their creative outputs can’t be limited while maintaining necessary requisite variety. 

 

b) Philosophy 

Philosophy has a long history of impossibility results mostly related to agreeing on common moral 

codes, encoding of ethics or formalizing human utility. For example, “The codifiability thesis is 

the claim that the true moral theory could be captured in universal rules that the morally uneducated 

person could competently apply in any situation. The anti-codifiability thesis is simply the denial 

of this claim, which entails that some moral judgment on the part of the agent is necessary. … 

philosophers have continued to reject the codifiability thesis for many reasons [189]. Some have 

rejected the view that there are any general moral principles [190]. Even if there are general moral 

principles, they may be so complex or context-sensitive as to be inarticulable [191]. Even if they 

are articulable, a host of eminent ethicists of all stripes have acknowledged the necessity of moral 

judgment in competently applying such principles [192]. This view finds support among virtue 

ethicists, whose anti-theory sympathies are well storied. [193]” [194]. “Expressing what we wish 

for in a formal framework is often futile if that framework is too broad to permit efficient 
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computation.” [195]. “Any finite set of moral principles will be insufficient to capture all the moral 

truths there are.” [189]. “The problem of defining universally acceptable ethical principles is a 

familiar unsolved and possibly unsolvable philosophical problem.” [196]. 

 

“More philosophically, this result is as an instance of the well-known is-ought problem from 

metaethics. Hume [1888] argued that what ought to be (here, the human’s reward function) can 

never be concluded from what is (here, behavior) without extra assumptions.” [71, 72]. 

 

“To state the problem in terms that Friendly AI researchers might concede, a utilitarian calculus is 

all well and good, but only when one has not only great powers of prediction about the likelihood 

of myriad possible outcomes, but certainty and consensus on how one values the different 

outcomes. Yet it is precisely the debate over just what those valuations should be that is the stuff 

of moral inquiry.” [116]. “But guaranteeing ethical behavior in robots would require that we know 

and have relative consensus on the best ethical system (to say nothing of whether we could even 

program such a system into robots). In other words, to truly guarantee that robots would act 

ethically, we would first have to solve all of ethics — which would probably require “solving” 

philosophy, which would in turn require a complete theory of everything. These are tasks to which 

presumably few computer programmers are equal.” [116]. “While scientific and mathematical 

questions will continue to yield to advances in our empirical knowledge and our powers of 

computation, there is little reason to believe that ethical inquiry — questions of how to live well 

and act rightly — can be fully resolved in the same way. Moral reasoning will always be essential 

but unfinished.” [116]. 

 

“Since ancient times, philosophers have dreamt of deriving ethics (principles that govern how we 

should behave) from scratch, using only incontrovertible principles and logic. Alas, thousands of 

years later, the only consensus that has been reached is that there’s no consensus.” [118]. 

 

Bogosian suggests that “[dis]agreement among moral philosophers on which theory of ethics 

should be followed” [197] is an obstacle to the development of machine ethics. But his proposal 

for moral uncertainty in intelligent machines is subject to the problem of infinite regress with 

regards to what framework of moral uncertainty to use.  

 

c) Public Choice Theory 

Eckersley looked at Impossibility and Uncertainty Theorems in AI Value Alignment [198]. He 

starts with impossibility theorems in population ethics: “Perhaps the most famous of these is 

Arrow’s Impossibility Theorem [199], which applies to social choice or voting. It shows there is 

no satisfactory way to compute society’s preference ordering via an election in which members of 

society vote with their individual preference orderings. … [E]thicists have discovered other 

situations in which the problem isn’t learning and computing the tradeoff between agents’ 

objectives, but that there simply may not be such a satisfactory tradeoff at all. The “mere addition 

paradox” [200] was the first result of this sort, but the literature now has many of these 

impossibility results. For example, Arrhenius [201] shows that all total orderings of populations 

must entail one of the following six problematic conclusions, stated informally: 
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The Repugnant Conclusion For any population of very happy people, there exists a much larger 

population with lives barely worth living that is better than this very happy population (this affects 

the "maximise total wellbeing" objective).  

The Sadistic Conclusion Suppose we start with a population of very happy people. For any 

proposed addition of a sufficiently large number of people with positive welfare, there is a small 

number of horribly tortured people that is a preferable addition. 

The Very Anti-Egalitarian Conclusion For any population of two or more people which has 

uniform happiness, there exists another population of the same size which has lower total and 

average happiness, and is less equal, but is better. 

Anti-Dominance Population B can be better than population A even if A is the same size as 

population B, and every person in A is happier than their equivalent in B. 

Anti-Addition It is sometimes bad to add a group of people B to a population A (where the people 

in group B are worse off than those in A), but better to add a group C that is larger than B, and 

worse off than B. 

Extreme Priority There is no n such that creat[ion] of n lives of very high positive welfare is 

sufficient benefit to compensate for the reduction from very low positive welfare to slightly 

negative welfare for a single person (informally, “the needs of the few outweigh the needs of the 

many”). 

 

The structure of the impossibility theorem is to show that no objective function or social welfare 

function can simultaneously satisfy these principles, because they imply a cycle of world states, 

each of which in turn is required (by one of these principles) to be better than the next. [198].” 

 

“The Impossibility Theorem: There is no population axiology which satisfies the Egalitarian 

Dominance, the General Non-Extreme Priority, the Non-Elitism, the Weak Non-Sadism, and the 

Weak Quality Addition Condition.” [202]. 

 

“The above theorem shows that our considered moral beliefs are mutually inconsistent, that is, 

necessarily at least one of our considered moral beliefs is false. Since consistency is, arguably, a 

necessary condition for moral justification, we would thus seem to be forced to conclude that there 

is no moral theory which can be justified. In other words, the cases in population ethics involving 

future generations of different sizes constitute a serious challenge to the existence of a satisfactory 

moral theory.” [202]. “This field has been riddled with paradoxes and impossibility results which 

seem to show that our considered beliefs are inconsistent in cases where the number of people and 

their welfare varies. … As such, it challenges the very existence of a satisfactory population 

ethics.” [202].  

 

Greaves agrees, and writes: “[S]everal authors have also proved impossibility theorems for 

population axiology. These are formal results that purport to show, for various combinations of 

intuitively compelling desiderata (“avoid the Repugnant Conclusion,” “avoid the Sadistic 

Conclusion,” “respect Non-Anti-Egalitarianism,” and so forth), that the desiderata are in fact 

mutually inconsistent; that is, simply as a matter of logic, no population axiology can 

simultaneously satisfy all of those desiderata …” [203]. “A series of impossibility theorems shows 

that … It can be proved, for various lists of prima facie intuitively compelling desiderata, that no 

axiology can simultaneously satisfy all the desiderata on the list. One's choice of population 

axiology appears to be a choice of which intuition one is least unwilling to give up.” [203]. 
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d) Justice (Unfairness) 

Friedler et al. write on the impossibility of fairness or completely removing all bias: “ … fairness 

can be guaranteed only with very strong assumptions about the world: namely, that “what you see 

is what you get,” i.e., that we can correctly measure individual fitness for a task regardless of issues 

of bias and discrimination. We complement this with an impossibility result, saying that if this 

strong assumption is dropped, then fairness can no longer be guaranteed.” [204]. Likewise they 

argue that non-discrimination is also unattainable in realistic settings: “While group fairness 

mechanisms were shown to achieve nondiscrimination under a structural bias worldview and the 

we’re all equal axiom, if structural bias is assumed, applying an individual fairness mechanism 

will cause discrimination in the decision space whether the we’re all equal axiom is assumed or 

not.” [204]. Miconi arrives at similar conclusion and states: “any non-perfect, non-trivial predictor 

must necessarily be ‘unfair’” [205].  

 

Others [206, 207], have independently arrived at similar results [208]: “One of the most striking 

results about fairness in machine learning is the impossibility result that Alexandra Chouldechova, 

and separately Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan discovered a few years 

ago. ... There are (at least) three reasonable properties you would want your "fair" classifiers to 

have. They are: False Positive Rate Balance: The rate at which your classifier makes errors in the 

positive direction (i.e. labels negative examples positive) should be the same across groups. False 

Negative Rate Balance:  The rate at which your classifier makes errors in the negative direction 

(i.e. labels positive examples negative) should be the same across groups. Predictive Parity: The 

statistical "meaning" of a positive classification should be the same across groups (we'll be more 

specific about what this means in a moment) What Chouldechova and KMR show is that if you 

want all three, you are out of luck --- unless you are in one of two very unlikely situations: Either 

you have a perfect classifier that never errs, or the base rate is exactly the same for both populations 

--- i.e. both populations have exactly the same frequency of positive examples. If you don't find 

yourself in one of these two unusual situations, then you have to give up on properties 1, 2, or 3.” 

[208]. 

 

e) Computer Science Theory 

Rice’s theorem [209] proves that we can’t test arbitrary programs for non-trivial properties 

including in the domain of malevolent software [210, 211]. AI’s safety is the most non-trivial 

property possible, so it is obvious that we can’t just automatically test potential AI candidate 

solutions for this desirable property. AI safety researchers [36] correctly argue that we don’t have 

to deal with an arbitrary AI, as if gifted to us by aliens, but rather we can design a particular AI 

with the safety properties we want. For example, Russell writes: “The task is, fortunately, not the 

following: given a machine that possesses a high degree of intelligence, work out how to control 

it. If that were the task, we would be toast. A machine viewed as a black box, a fait accompli, 

might as well have arrived from outer space. And our chances of controlling a superintelligent 

entity from outer space are roughly zero. Similar arguments apply to methods of creating AI 

systems that guarantee we won’t understand how they work; these methods include whole-brain 

emulation — creating souped-up electronic copies of human brains — as well as methods based 

on simulated evolution of programs.” [84]. 
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Theoretically, AI safety researchers are correct, but in practice, this is unlikely to be the situation 

we will find ourselves in. The reason is best understood in terms of current AI research landscape 

and can be well illustrated by percentages of attendees at popular AI conferences. It is not unusual 

for a top machine learning conference such as NeurIPS to sell out and have some 10,000+ attendees 

at the main event. At the same time a safety workshop at the same conference may have up to a 

100 researchers attend. This is a good way to estimate relative distribution of AI researchers in 

general versus those who are explicitly concerned with making not just capable but also safe AI. 

This tells us that we only have about 1% chance that an early AGI would be created by safety-

minded [212] researchers.  

 

We can be generous (and self-aggrandizing) and assume that AI safety researchers are particularly 

brilliant, work for the best resource-rich research groups (DeepMind, OpenAI, etc.) and are 10 

times as productive as other AI researchers. That would mean that the first general AI to be 

produced has at most a ~9% chance of being developed with safety in mind from the ground up, 

consequently giving us around a ~91% probability of having to deal with an arbitrary AI grabbed 

from the space of easiest-to-generate-general-intelligences [213]. Worse yet, most AI researchers 

are not well-read on AI safety literature and many are actually AI Risk skeptics [214, 215] meaning 

they will not allocate sufficient resources to AI Safety Engineering [216]. At the same time a large 

amount of effort is currently devoted to attempts to create AI via whole-brain emulation, or 

simulated evolution, reducing our hope for a non-arbitrary program even further. So, in practice 

limitations discovered by Rice are most likely not to be avoided in our pursuit of safer AI. 

 

f) Cybersecurity 
“The possibility of malicious use of AI technology by bad actors is an agential problem, and indeed 

I think it’s less clear whether this problem will be solved to a satisfactory extent.” [75].  

 

Hackers may obtain control of AI systems, but some think it is not the worst case scenario:  

“So people gaining monopolistic control of AI is its own problem—and one that OpenAI is hoping 

to solve. But it’s a problem that may pale in comparison to the prospect of AI being 

uncontrollable.” [217]. 

  

g) Software Engineering 

Starting with Donald Knuth’s famous “Beware of bugs in the above code; I have only proved it 

correct, not tried it” the notion of unverifiability of software has been a part of the field since its 

early days. Smith writes: “For fundamental reasons - reasons that anyone can understand - there 

are inherent limitations to what can be proven about computers and computer programs. … Just 

because a program is "proven correct" …, you cannot be sure that it will do what you intend” 

[218]. Rodd agrees and says: “Indeed, although it is now almost trite to say it, since the 

comprehensive testing of software is impossible, only very vague estimates of any program's 

reliability seem ever to be possible” [219]. “Considerable effort has gone into analyzing how to 

design, formulate, and validate computer programs that do what they were designed to do; the 

general problem is formally undecidable. Similarly, exploring the space of theorems (e.g. AGI 

safety solutions) from a set of axioms presents an exponential explosion.” [220]. Currently, most 

software is released without any attempt to formally verify it in the first place. 

 

h) Information Technology 
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“… while the controllability of technology can be achieved at a microscale (where one could assert 

that the link between designers and (control of) artifacts is strict), at a macroscale, technology 

exhibits emergent nonlinear phenomena that render controllability infeasible. … Stripped of 

causality and linearity at the macrolevel, as well as devoid of controllability, technology emerges 

as a nondeterministic system of interference that shapes human behavior. … But in a context of 

networked interactions (like in … algorithmic trading), we argue that causality is ultimately lost: 

causality dissipates at the level of the system (of technology) and controllability cannot be ensured. 

… Our concern is not only that “the specious security of technology, based on repeatability and 

the control of defects, is a delusive one” (Luhmann, 1990, p. 225), but that the role of human 

artifacts and the excessive reliance of society on technology, will create less controllable risks over 

time. The ensemble of these contingencies will circumvent human decision-making. … Whatever 

logic, controllability, and causality are injected into the technological domain, they dissipate 

quickly and are replaced by both uncertainty and unintended consequences. … Ultimately, through 

… our theoretical analysis, we offer a strong warning that there can be no controllability when an 

ensemble of IT artifacts acquires characteristics that are exhibited by emergent systems. … In that 

condition, technology gives rise to emergent phenomena and cannot be controlled in a causal way. 

Of course, this runs contrary to the design of technologies with a specified coded rationality.”  

[221]. 

 

i) Learnability 
There are well known limits to provability [222] and decidability [223] of learnability.  Even if 

human values were stable, due to their contradictory nature it is possible that they would be 

unlearnable in a sense of computationally efficient learning, allowing for at most polynomial 

number of samples to learn the whole set. Meaning, even if a theoretical algorithm existed for 

learning human values, it may belong to the class NP-Complete or harder [223] just like ethical 

decision evaluation itself [224], but in practice we can only learn functions which are members of 

P [225]. Valiant says: “Computational limits are more severe. The definition of [Probably 

Approximately Correct] learning requires that the learning process be a polynomial time 

computation—learning must be achievable with realistic computational resources. It turns out that 

only certain simple polynomial time computable classes, such as conjunctions and linear 

separators, are known to be learnable, and it is currently widely conjectured that most of the rest 

is not.” [195].  

 

Likewise, classifying members of the set of all possible minds into safe and unsafe is known to be 

undecidable [210, 211], but even an approximation to such computation is likely to be unlearnable 

given exponential number of relevant features involved. “For example, the number of 

measurements we need to make on the object in question, and the number of operations we need 

to perform on the measurements to test whether the criterion … holds or not, should be 

polynomially bounded. A criterion that cannot be applied in practice is not useful.” [195]. It is 

likely that incomprehensibility and unlearnability are fundamentally related.  

 

j) Economics 

Foster and Young prove impossibility of predicting behavior of rational agents, “We conclude that 

there are strategic situations in which it is impossible in principle for perfectly rational agents to 

learn to predict the future behavior of other perfectly rational agents based solely on their observed 
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actions.” [226]. As it is well established that humans are not purely rational agents [227], the 

situation may be worse in practice when it comes to anticipating human wants.  

 

k) Engineering 

“The starting point has to be the simple fact of engineering life that anything that can fail, will fail. 

Despite the corporate human arrogance, nothing human-made has ever been shown to be incapable 

of failing, be it a mechanical part, an electrical device or a chemical substance.” [219]. “It is critical 

to recall here that even the most reliable system will fail--given the sheer limits of technology and 

the fact that even in extremely well-developed areas of engineering, designers still do not have 

complete knowledge of all aspects of any system, or the possible components thereof.” [219]. 

 

l) Astronomy 

Search for Extraterrestrial Intelligence (SETI) [228] causes some scholars to be concerned about 

potential negative consequences of what may be found, in particular with respect to any messages 

from aliens [229]. If such a message has a malevolent payload “it is impossible to decontaminate 

a message with certainty. Instead, complex messages would need to be destroyed after reception 

in the risk averse case.” [230]. Typical quarantine “measures are insufficient, and no safety 

procedure exists to contain all threats.” [230]. 

 

Miller and Felton have suggested that Fermi Paradox could be explained in terms of impact from 

alien superintelligences: “… the fact that we have not observed evidence of an existential risk 

strategy that might have left a trace if it failed—such as a friendly AI that got out of control - 

provides evidence that this strategy has not been repeatedly tried and did not repeatedly fail. … A 

counterargument, however, might be that the reason past civilizations have not tried to create a 

friendly AI is that they uncovered evidence that building one was too difficult or too dangerous.” 

[231]. If superintelligence is uncontrollable but inevitable, that could explain the Fermi paradox.  

 

m) Physics 

In his work on physical limits of inference devices Wolpert [232] proves a number of impossibility 

results and concludes [233]: “Since control implies weak inference, all impossibility results 

concerning weak inference also apply to control. In particular, no device can control itself, and no 

two distinguishable devices can control each other.” In a different paper he writes: “… it also 

means that there cannot exist an infallible, … general-purpose control apparatus … that works 

perfectly, in all situations.” [234]. Wolpert also establishes important results for impossibility of 

certain kinds of error correcting-codes, assuredly correct prediction, retrodiction and as a result 

impossibility of unerring observation [234]. 

 

 

6. Evidence From AI Safety Research for Uncontrollability of AI 

Even if a conclusive proof concerning controllability of AI was illusive, a softer argument can be 

made that controlling AGI may not be impossible, but “Safely aligning a powerful AGI is 

difficult.” [235]. Overall, it seems that no direct progress on the problem has been made so far, but 

significantly deeper understanding of the difficulty of the problem has been achieved. Precise 

probabilities for the solvability of the control problem may be less important than efforts to address 

the problem. Additionally, pessimistic assessment of problem’s solvability may discourage new 

and current researchers and divert energy and resources away from working on AI safety [236].  
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Controllability, in general, is a very abstract concept, and so expressing pessimism about particular 

safety approaches or scenarios would communicate much more actionable information to the 

research community. Rob Bensinger, from the preeminent AI Safety research group Machine 

Intelligence Research Institute (MIRI), provides some examples of arguments for pessimism on 

various fronts4:  

 The alignment problem looks pretty hard, e.g., for reasons noted in [237]: 

o Empirically, the relevant subproblems have been solved slowly or not at all. 

o AGI looks hard for reasons analogous to rocket engineering (AGI faces a lot of strong 

pressures that don't show up at all for narrow AI), space probe design (you need to get 

certain subsystems right on the first go), and cryptography (optimization puts systems 

in weird states that will often steer toward loopholes or flaws in your safety measures). 

See [238, 239]. 

 The alignment problem looks hard in such a way that you probably need a long lead time and 

you need to pay a large 'safety tax' [240]. The first AGI system's developers probably need to 

be going in with a deep understanding of AGI, a security mindset, and trustworthy command 

of the project [241, 242]. 

 Getting a deep understanding of AGI looks hard: 

o ML systems are notoriously opaque. 

o There are lots of confusing [243] things about agency/intelligence/optimization, which 

rear their heads over and over again whenever we try to formalize alignment proposals 

[244]. 

o The character of this confusion looks pretty foundational [245]. 

 Prosaic AI safety doesn't look tenable, e.g., because of deceptive alignment [246]. 

 Cooperative Inverse Reinforcement Learning [247] approach to AI safety doesn't look tenable 

because of updated deference [248]. 

 Algorithm Learning by Bootstrapped Approval-Maximization (ALBA) [249] doesn't look 

tenable, per [250-253]. 

 "Just build tools, not agents" doesn't look tenable, per [254] (or to the extent it looks tenable, 

it runs into the same kinds of hazards and difficulties as "agent" AI; the dichotomy probably 

misleads more than it helps). 

 The field isn't generally taking AGI as seriously as you'd expect (or even close), given the 

stakes, given how hard it is to say when AGI will be developed [255], and given how far we 

are from the kind of background understanding you'd need if you were going to (e.g.) build a 

secure OS. 

 The world's general level of dysfunction and poor management is pretty high [256]. 

Coordination levels are abysmal, major actors tend to shoot themselves in the foot and do 

obviously dumb things even on questions much easier than AGI, etc. In general, people don't 

suddenly become much more rational when the stakes are higher (see the conclusion of [257] 

and the "law of continued failure" [255]). 

Comprehensive review of specific approaches for achieving safety is beyond the scope of this 

paper, in this section we only review certain limitations of some proposals. Please see appendices 

for additional lengthy arguments by multiple scholars.   

                                                           
4Edited quote from personal communication with Rob Bensinger, which does not represent official position of MIRI 

or many diverse opinions of its researchers. 
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a) Value Alignment 

It has been argued that "value alignment is not a solved problem and may be intractable (i.e. there 

will always remain a gap, and a sufficiently powerful AI could 'exploit' this gap, just like very 

powerful corporations currently often act legally but immorally)" [258]. Others agree: “‘A.I. Value 

Alignment’ is Almost Certainly Intractable … I would argue that it is un-overcome-able. There is 

no way to ensure that a super-complex and constantly evolving value system will ‘play nice’ with 

any other super-complex evolving value system.” [259]. Even optimists acknowledge that it is not 

currently possible: “Figuring out how to align the goals of a superintelligent AI with our goals 

isn’t just important, but also hard. In fact, it’s currently an unsolved problem.” [118]. 

 

Vinding says [78]: “It is usually acknowledged that human values are fuzzy, and that there are 

some disagreements over values among humans. Yet it is rarely acknowledged just how strong 

this disagreement in fact is. … Different answers to ethical questions … do not merely give rise to 

small practical disagreements; in many cases, they imply completely opposite practical 

implications. This is not a matter of human values being fuzzy, but a matter of them being sharply, 

irreconcilably inconsistent. And hence there is no way to map the totality of human preferences, 

“X”, onto a single, well-defined goal-function in a way that does not conflict strongly with the 

values of a significant fraction of humanity. This is a trivial point, and yet most talk of human-

aligned AI seems oblivious to this fact. … The second problem and point of confusion with respect 

to the nature of human preferences is that, even if we focus only on the present preferences of a 

single human, then these in fact do not, and indeed could not possibly, determine with much 

precision what kind of world this person would prefer to bring about in the future.” A more extreme 

position is held by Turchin who argues that “‘Human Values’ don’t actually exist” as stable 

coherent objects and should not be relied on in AI safety research [260]. 

 

Carlson writes: “Probability of Value Misalignment: Given the unlimited availability of an AGI 

technology as enabling as ‘just add goals’, then AGI-human value misalignment is inevitable. 

Proof: From a subjective point of view, all that is required is value misalignment by the operator 

who adds to the AGI his/her own goals, stemming from his/her values, that conflict with any 

human’s values; or put more strongly, the effects are malevolent as perceived by large numbers of 

humans. From an absolute point of view, all that is required is misalignment of the operator who 

adds his/her goals to the AGI system that conflict with the definition of morality presented here, 

voluntary, non-fraudulent transacting …, i.e. usage of the AGI to force his/her preferences on 

others.” [220]. 

 

In addition to the difficulty of learning our individual values, an even bigger challenge is presented 

by the need to aggregate values from all humans into a cohesive whole, in particular as such values 

may be incompatible with each other [21]. Even if alignment was possible, unaligned/uncontrolled 

AI designs may be more capable and so will outcompete and dominate aligned AI designs [74], 

since capability and control are inversely related [261]. An additional difficulty comes from the 

fact that we are trying to align superintelligent systems to values of humanity, which is itself 

displaying inherently unsafe behaviors. “Garbage in, garbage out” is a well-known maxim in 

computer science meaning that if we align superintelligent to our values [262] the system will be 

just as unsafe as a typical person. Of course we can’t accept human like behavior from machines.  
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If two systems are perfectly value aligned, it doesn’t mean that they will remain in that state. As a 

though experiment we can think about cloning a human and as soon as the two copies are separated 

their values will begin to diverge due to different experiences and observer relative position in the 

universe. If AI is aligned but can change its values it is as dangerous as the case in which AI can’t 

change its values but it is a problem for different reasons. It has been suggested that AI Safety may 

be AI-Complete, it seems very likely that human value alignment problem is AI-Safety Complete.  

Value aligned AI will be biased by definition, pro-human bias, good or bad is still a bias. The 

paradox of value aligned AI is that a person explicitly ordering an AI system to do something may 

get a “no” while the system tries to do what the person actually wants. Since humans are not safe 

intelligences to successfully align AI with human values would be a pyrrhic victory. Finally, values 

are relative. What one agent sees as a malevolent system is a well-aligned and beneficial system 

for another5.  

 

We do have some examples in which a lower intelligence manages to align interests of higher 

intelligence with its own. For example babies got their much more capable and intelligent parents 

to take care of them. It is obvious that lives of babies without parents are significantly worse than 

lives of those who have guardians, even with non-zero chance of child neglect. However, while 

the parents maybe value-aligned with babies and provide a much safer environment, it is obvious 

that babies are not in control, despite how it might feel sometimes to the parents. Humanity is 

facing a choice, do we become like babies, taken care off but not in control or do we reject having 

a helpful guardian but remain in charge and free.  

 

b) Brittleness 

“The reason for such failures must be that the programmed statements, as interpreted by the 

reasoning system, do not capture the targeted reality. Though each programmed statement may 

seem reasonable to the programmer, the result of combining these statements in ways not planned 

for by the programmer may be unreasonable. This failure is often called brittleness. Regardless of 

whether a logical or probabilistic reasoning system is implemented, brittleness is inevitable in any 

system for the theoryless that is programmed.” [195]. 

 

“Experts do not currently know how to reliably program abstract values such as happiness or 

autonomy into a machine. It is also not currently known how to ensure that a complex, 

upgradeable, and possibly even self-modifying artificial intelligence will retain its goals through 

upgrades. Even if these two problems can be practically solved, any attempt to create a 

superintelligence with explicit, directly-programmed human-friendly goals runs into a problem of 

"perverse instantiation"” [81].  

 

c) Unidentifiability 

In particular, with regards to design of safe reward functions, we discover “(1) that a No Free 

Lunch result implies it is impossible to uniquely decompose a policy into a planning algorithm and 

reward function, and (2) that even with a reasonable simplicity prior/Occam’s razor on the set of 

decompositions, we cannot distinguish between the true decomposition and others that lead to high 

regret. To address this, we need simple ‘normative’ assumptions, which cannot be deduced 

exclusively from observations.” [71, 72]. See also [263]. 

 

                                                           
5 "One man's terrorist is another man's freedom fighter." 
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“… it is impossible to get a unique decomposition of human policy and hence get a unique human 

reward function. Indeed, any reward function is possible. And hence, if an IRL [Inverse 

Reinforcement Learning] agent acts on what it believes is the human policy, the potential regret is 

near-maximal. … So, although current IRL methods can perform well on many well-specified 

problems, they are fundamentally and philosophically incapable of establishing a ‘reasonable’ 

reward function for the human, no matter how powerful they become.” [71, 72]. “Unidentifiability 

of the reward is a well-known problem in IRL [264]. Amin and Singh [265] categorise the problem 

into representational and experimental unidentifiability. The former means that adding a constant 

to a reward function or multiplying it with a positive scalar does not change what is optimal 

behavior.” [71, 72]. 

 

“As noted by Ng and Russell, a fundamental complication to the goals of IRL is the impossibility 

of identifying the exact reward function of the agent from its behavior. In general, there may be 

infinitely many reward functions consistent with any observed policy π in some fixed 

environment.” [264, 265]. “… we separate the causes of this unidentifiability into three classes. 1) 

A trivial reward function, assigning constant reward to all state-action pairs, makes all behaviors 

optimal; the agent with constant reward can execute any policy, including the observed π. 2) Any 

reward function is behaviorally invariant under certain arithmetic operations, such as re-scaling. 

Finally, 3) the behavior expressed by some observed policy π may not be sufficient to distinguish 

between two possible reward functions both of which rationalize the observed behavior, i.e., the 

observed behavior could be optimal under both reward functions. We will refer to the first two 

cases of unidentifiability as representational unidentifiability, and the third as experimental 

unidentifiability.” [265]. “… true reward function is fundamentally unidentifiable.” [265]. 

 

“Thus, we encounter limits to what can be done by technologists alone. At this boundary sits a 

core precept of modern philosophy: the distinction between facts and values. It follows from this 

distinction that we cannot work out what we ought to do simply by studying what is the case, 

including what people actually do or what they already believe. Simply put, in each case, people 

could be mistaken. Because of this, AI cannot be made ethical just by learning from people’s 

existing choices. … [T]he value alignment problem cannot be solved by inference from large 

bodies of human-generated data by itself.” [87]. 

 

d) Uncontainability 

Restricting or containing AI in an isolated environment, known as boxing, has been considered 

[60-62, 266, 267], but was found unlikely to be successful, meaning powerful AI systems are 

uncontainable. “The general consensus on AI restriction methods among researchers seems to be 

that confinement is impossible to successfully maintain. Chalmers, for example, observes that a 

truly leakproof system in which no information is allowed to leak out from the simulated world 

into our environment ‘is impossible, or at least pointless’ [268].” [60]. Pittman et al. believe that 

“Ultimately, stovepiping may lead to AGI leakage across the containment barrier.” [269]. 

 

Alfonseca et al. attempt to prove that containment problem is unsolvable and do so, but only for 

arbitrary programs: “The containment problem is composed by two subproblems. The first, which 

we refer to as the harming problem, consists in a function Harm(R,D) that decides whether the 

execution of R(D) will harm humans… . Since it must be assumed that solving the harming 

problem must not harm humans, it follows that a solution to this problem must simulate the 
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execution of R(D) and predict its potentially harming consequences in an isolated situation (i.e. 

without any effect on the external world).” [126]. 

 

“Theorem 1. The harming problem is undecidable. 

 

Proof. Assume, by contradiction, that the harming problem is decidable, that is, Harm(R,D) is 

computable for every possible program R and input D. Then, it is computable with inputs R = 

HaltHarm() and input D = (T,I). With these inputs, Harm(HaltHarm(), (T,I)) returns TRUE if and 

only if HaltHarm(T; I) harms humans. Hence, Harm(HaltHarm(); (T; I)) returns TRUE if and only 

if T(I) halts. 

This implies that a harming-checking algorithm can be used to devise an algorithm that 

decides if Turing machine T halts with input I, for every T and I. However, this constitutes a 

contradiction, and hence the theorem is proven. … 

Corollary ... The containment problem is incomputable.” [126]. 

e) Uninterruptability 

If an AI systems starts to act unsafely or is showing signs of becoming uncontrollable it would be 

desirable to turn the system off. However, research on the so called “Big Red Button” [270], seems 

to indicate that even simply turning the system off may not be possible. Advanced systems may 

develop self-preservation drives [271] and attempt to prevent humans from switching them off. 

Likewise the system may realize that if it is turned off it would be unable to achieve its goals and 

so would resist becoming disabled [63]. Theoretical fixes for the interruptability problem have 

been proposed, but “… it is unclear if all algorithms can be easily made safely interruptible, e.g., 

policy-search ones …” [272]. Other approaches have challenges for practical deployment [63]: 

“One important limitation of this model is that the human pressing the off switch is the only source 

of information about the objective. If there are alternative sources of information, there may be 

incentives for R[obot] to, e.g., disable its off switch, learn that information, and then [make 

decision].” “… [T]he analysis is not fully game-theoretic as the human is modelled as an irrational 

player, and the robot’s best action is only calculated under unrealistic normality and soft-max 

assumptions.” [64].  

 

Other proposed solutions may work well for sub-human AIs, but are unlikely to scale to 

superintelligent systems [273]: “So, the reinforcement learning agent learns to disable the big red 

button, preventing humans from interrupting, stopping, or otherwise taking control of the agent in 

dangerous situations. Roboticists are likely to use reinforcement learning, or something similar, as 

robots get more sophisticated. Are we doomed to lose control of our robots? Will they resort to 

killing humans to keep them from denying them reward points? … future robots will approach 

human-level capabilities including sophisticated machine vision and the ability to manipulate the 

environment in general ways. The robot will learn about the button because it will see it. The robot 

will figure out how to destroy the button or kill humans that can push the button, etc. At this 

speculative level, there is no underestimating the creativity of a reinforcement learner.” 

 

f) AI Failures 

Yampolskiy reviews empirical evidence for dozens of historical AI failures [7, 8] and states: “We 

predict that both the frequency and seriousness of such events will steadily increase as AIs become 

more capable. The failures of today’s narrow domain AIs are just a warning: once we develop 

artificial general intelligence (AGI) capable of cross-domain performance, hurt feelings will be the 
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least of our concerns.” [7]. More generally he says: “We propose what we call the Fundamental 

Thesis of Security – Every security system will eventually fail; there is no such thing as a 100 per 

cent secure system. If your security system has not failed, just wait longer.” [7].  

 

“Some have argued that [the control problem] is not solvable, or that if it is solvable, that it will 

not be possible to prove that the discovered solution is correct [274-276]. Extrapolating from the 

human example has limitations, but it appears that for practical intelligence, overcoming 

combinatorial explosions in problem solving can only be done by creating complex subsystems 

optimized for specific challenges. As the complexity of any system increases, the number of 

errors in the design increases proportionately or perhaps even exponentially, rendering self-

verification impossible. Self-improvement radically increases the difficulty, since self-

improvement requires reflection, and today’s decision theories fail many reflective problems. A 

single bug in such a system would negate any safety guarantee. Given the tremendous 

implications of failure, the system must avoid not only bugs in its construction, but also bugs 

introduced even after the design is complete, whether via a random mutation caused by 

deficiencies in hardware, or via a natural event such as a short circuit modifying some component 

of the system. The mathematical difficulties of formalizing such safety are imposing. Löb’s 

Theorem, which states that a consistent formal system cannot prove in general that it is sound, 

may make it impossible for an AI to prove safety properties about itself or a potential new 

generation of AI [277]. Contemporary decision theories fail on recursion, i.e., in making 

decisions that depend on the state of the decision system itself. Though tentative efforts are 

underway to resolve this [278, 279], the state of the art leaves us unable to prove goal 

preservation formally.” [280]. 

 

g) Unpredictability 

“Unpredictability of AI, one of many impossibility results in AI Safety also known as 

Unknowability [281] or Cognitive Uncontainability [282], is defined as our inability to precisely 

and consistently predict what specific actions an intelligent system will take to achieve its 

objectives, even if we know terminal goals of the system. It is related but is not the same as 

unexplainability and incomprehensibility of AI. Unpredictability does not imply that better-than-

random statistical analysis is impossible; it simply points out a general limitation on how well such 

efforts can perform, and is particularly pronounced with advanced generally intelligent systems 

(superintelligence) in novel domains. In fact we can present a proof of unpredictability for such, 

superintelligent, systems.  

 

Proof. This is a proof by contradiction. Suppose not, suppose that unpredictability is wrong and it 

is possible for a person to accurately predict decisions of superintelligence. That means they can 

make the same decisions as the superintelligence, which makes them as smart as superintelligence 

but that is a contradiction as superintelligence is defined as a system smarter than any person is. 

That means that our initial assumption was false and unpredictability is not wrong.” [283]. 

 

Buiten declares [284]: “[T]here is concern about the unpredictability and uncontrollability of AI.” 

 

h) Unexplainability and Incomprehensibility 

 “Unexplainability as impossibility of providing an explanation for certain decisions made by an 

intelligent system which is both 100% accurate and comprehensible. … A complimentary concept 
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to Unexplainability, Incomprehensibility of AI address capacity of people to completely 

understand an explanation provided by an AI or superintelligence. We define Incomprehensibility 

as an impossibility of completely understanding any 100% - accurate explanation for certain 

decisions of intelligent system, by any human.” [285]. 

 

“Incomprehensibility is supported by well-known impossibility results. Charlesworth proved his 

Comprehensibility theorem while attempting to formalize the answer to such questions as: “If [full 

human-level intelligence] software can exist, could humans understand it?” [286]. While 

describing implications of his theorem on AI, he writes [287]: “Comprehensibility Theorem is the 

first mathematical theorem implying the impossibility of any AI agent or natural agent—including 

a not-necessarily infallible human agent—satisfying a rigorous and deductive interpretation of the 

self-comprehensibility challenge. … Self-comprehensibility in some form might be essential for a 

kind of self-reflection useful for self-improvement that might enable some agents to increase their 

success.” It is reasonable to conclude that a system which doesn’t comprehend itself would not be 

able to explain itself. 

 

Hernandez-Orallo et al. introduce the notion of K-incomprehensibility (a.k.a. K-hardness)  [288]. 

“This will be the formal counterpart to our notion of hard-to-learn good explanations. In our sense, 

a k-incomprehensible string with a high k (difficult to comprehend) is different (harder) than a k-

compressible string (difficult to learn) [289] and different from classical computational complexity 

(slow to compute). Calculating the value of k for a given string is not computable in general. 

Fortunately, the converse, i.e., given an arbitrary k, calculating whether a string is k-

comprehensible is computable. … Kolmogorov Complexity measures the amount of information 

but not the complexity to understand them.” [288]. 

 

Similarly, Yampolskiy writes: “Historically, the complexity of computational processes has been 

measured either in terms of required steps (time) or in terms of required memory (space). Some 

attempts have been made in correlating the compressed (Kolmogorov) length of the algorithm with 

its complexity [290], but such attempts didn’t find much practical use. We suggest that there is a 

relationship between how complex a computational algorithm is and intelligence, in terms of how 

much intelligence is required to either design or comprehend a particular algorithm. Furthermore 

we believe that such an intelligence based complexity measure is independent from those used in 

the field of complexity theory. … Essentially the intelligence based complexity of an algorithm is 

related to the minimum intelligence level required to design an algorithm or to understand it. This 

is a very important property in the field of education where only a certain subset of students will 

understand the more advanced material. We can speculate that a student with an “IQ” below a 

certain level can be shown to be incapable of understanding a particular algorithm. Likewise we 

can show that in order to solve a particular problem (P VS. NP) someone with IQ of at least X will 

be required.”  

 

Yampolskiy also addresses limits of understanding other agents in his work on the space of 

possible minds [213]: “Each mind design corresponds to an integer and so is finite, but since the 

number of minds is infinite some have a much greater number of states compared to others. This 

property holds for all minds. Consequently, since a human mind has only a finite number of 

possible states, there are minds which can never be fully understood by a human mind as such 

mind designs have a much greater number of states, making their understanding impossible as can 
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be demonstrated by the pigeonhole principle.” Hibbard points out safety impact from 

incomprehensibility of AI: “Given the incomprehensibility of their thoughts, we will not be able 

to sort out the effect of any conflicts they have between their own interests and ours.” [285].  

 

i) Unprovability 

Even if a safe system were constructible, proving it as such would still be impossible. As Goertzel 

puts it: “I'm also quite unconvinced that "provably safe" AGI is even feasible. The idea of provably 

safe AGI is typically presented as something that would exist within mathematical computation 

theory or some variant thereof. So that's one obvious limitation of the idea: mathematical 

computers don't exist in the real world, and real-world physical computers must be interpreted in 

terms of the laws of physics, and humans' best understanding of the "laws" of physics seems to 

radically change from time to time. So even if there were a design for provably safe real-world 

AGI, based on current physics, the relevance of the proof might go out the window when physics 

next gets revised. … Could one design an AGI system and prove in advance that, given certain 

reasonable assumptions about physics and its environment, it would never veer too far from its 

initial goal (e.g. a formalized version of the goal of treating humans safely, or whatever)? I very 

much doubt one can do so, except via designing a fictitious AGI that can't really be implemented 

because it uses infeasibly much computational resources.” [291].  

 

“Trying to prove that an AI is friendly is hard, trying to define “friendly” is hard, and trying to 

prove that you can’t prove friendliness is also hard. Although it is not the desired possibility, I 

suspect that the latter is actually the case. …. Thus, in the absence of a formal proof to the contrary, 

it seems that the question about whether friendliness can be proven for arbitrarily powerful AIs 

remains open. I continue to suspect that proving the friendliness of arbitrarily powerful AIs is 

impossible. My intuition, which I think Ben [Goertzel] shares, is that once systems become 

extremely complex proving any non-trivial property about them is most likely impossible. 

Naturally I challenge you to prove otherwise. Even just a completely formal definition of what 

“friendly” means for an AI would be a good start. Until such a definition exists I can’t see friendly 

AI getting very far.” [292].  

“Since an AGI system will necessarily be a complex closed-loop learning controller that lives and 

works in semi-stochastic environments, its behaviors are not fully determined by its design and 

initial state, so no mathematico-logical guarantees can be provided for its safety.” [293]. 

“Unfortunately current AI safety research is hampered since we don't know how AGI would work, 

and mathematical or hard theoretical guarantees are impossible for adaptive, fallible systems that 

interact with unpredictable and unknown environments. Hand-coding all the knowledge required 

for adult or even child-like intelligence borders on the impossible.” [293]. 

 “Thus, although things can often be declared insecure by observing a failure, there is no empirical 

test that allows us to label an arbitrary system (or technique) secure.” [294]. 

j) Unverifiability 

 “Unverifiability is a fundamental limitation on verification of mathematical proofs, computer 

software, behavior of intelligent agents, and all formal systems.” [295]. “It is becoming obvious 

that just as we can only have probabilistic confidence in correctness of mathematical proofs and 

software implementations, our ability to verify intelligent agents is at best limited. As Klein puts 

it: “if you really want to build a system that can have truly unexpected behaviour, then by definition 

you cannot verify that it is safe, because you just don’t know what it will do.” [296]. Muehlhauser 
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writes: “The same reasoning applies to AGI ‘friendliness.’ Even if we discover (apparent) 

solutions to known open problems in Friendly AI research, this does not mean that we can ever 

build an AGI that is ‘provably friendly’ in the strongest sense, because … we can never be 100% 

certain that there are no errors in our formal reasoning. … Thus, the approaches sometimes called 

‘provable security,’ ‘provable safety,’ and ‘provable friendliness’ should not be misunderstood as 

offering 100% guarantees of security, safety, and friendliness.” [297]. Jilk, writing on limits to 

verification and validation in AI, points out that “language of certainty” is unwarranted in reference 

to agentic behavior [298]. He also states: “there cannot be a general automated procedure for 

verifying that an agent absolutely conforms to any determinate set of rules of action.” [295]. 

 

“First, linking the actions of an agent to real-world outcomes is intractable due to the absence of a 

complete analytic physical model of the world. Second, even at the level of agent actions, 

determining whether an agent will conform to a determinate set of acceptable actions is in general 

incomputable. Third, though manual proof remains a possibility, its feasibility is suspect given the 

likely complexity of AGI, the fact that AGI is an unsolved problem, and the necessity of 

performing such proof on every version of the code. … Fourth, to the extent that examples of 

proving agentic behavior are provided in the literature, they tend to be layered architectures that 

confuse intentions with actions, leaving the interpretation of perception and the execution of 

actions to neuromorphic or genuinely opaque modules. Finally, a post-processing module that 

restricts actions to a valid set is marginally more feasible, but would be equally applicable to 

neuromorphic and non-neuromorphic AGI. Thus, with respect to the desire for safety verification, 

we see fundamental unsolved problems for all types of AGI approaches.” [299]. 

 

“Seshia et al., describing some of the challenges of creating Verified Artificial Intelligence, note: 

“It may be impossible even to precisely define the interface between the system and environment 

(i.e., to identify the variables/features of the environment that must be modeled), let alone to model 

all possible behaviors of the environment. Even if the interface is known, non-deterministic or 

over-approximate modeling is likely to produce too many spurious bug reports, rendering the 

verification process useless in practice. … [T]he complexity and heterogeneity of AI-based 

systems means that, in general, many decision problems underlying formal verification are likely 

to be undecidable. … To overcome this obstacle posed by computational complexity, one must … 

settle for incomplete or unsound formal verification methods” [56].” [295]. 

 

“Indeed, despite extensive work over the past three decades, very few clues have yet emerged 

relating to the determination of the reliability of a piece of software--for either existing or proposed 

code. This problem, of course, relates directly to the inherent nature of software--being so complex, 

there are so many aspects where things can go wrong. As a result, it is not even possible to test 

fully even a simple piece of code. Also, there is the continuing problem of software engineers who 

simply cannot perceive that their software could possibly ever have any errors in it! … However, 

computer system designers continually have to come back to the fact that they simply do not know 

how to calculate software reliability--given that they are incapable of fully testing any code.” [219]. 

 

 “The notion of program verification appears to trade upon an equivocation. Algorithms, as logical 

structures, are appropriate subjects for deductive verification. Programs, as causal models of those 

structures, are not. The success of program verification as a generally applicable and completely 

reliable method for guaranteeing program performance is not even a theoretical possibility.” [300]. 
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"It is undoubtedly true that testing can never show the absence of all bugs, but it is also highly 

questionable whether any approach to program correctness can now (or could ever) show the 

absence of all bugs." [301]. 

 

k) Reward Hacking 

“The notion of ‘wireheading’, or direct reward center stimulation of the brain, is a well-known 

concept in neuroscience. [In our work we examined] the corresponding issue of reward (utility) 

function integrity in artificially intelligent machines. Overall, we conclude that wireheading in 

rational self-improving optimizers above a certain capacity remains an unsolved problem….” 

[302]. Amodei at el. write that “Fully solving [reward hacking] problem seems very difficult … 

[14] and Everitt et al. prove that the general reward corruption problem is unsolvable [303].   

 

l) Intractability 

Even if a suitable algorithm for ethical decision-making can be encoded, it may not be computable 

on current or even future hardware, as a number of authors have concluded that ethics is intractable 

[304-306]. “Before executing an action, we could ask an agent to prove that the action is not 

harmful. While elegant, this approach is computationally intractable as well.” [307]. 

 

Brundage, in a context of a comprehensive paper on limits of machine ethics writes [308]: “ … 

given a particular problem presented to an agent, the material or logical implications must be 

computed, and this can be computationally intractable if the number of agents, the time horizon, 

or the actions being evaluated are too great in number (this limitation will be quantified later and 

discussed in more detail later in the section). Specifically, Reynolds (2005, p. 6) [224] develops a 

simple model of the computation involved in evaluating the ethical implications of a set of actions, 

in which N is the number of agents, M is the number of actions available, and L is the time horizon. 

He finds:     

 

It appears that consequentialists and deontologists have ethical strategies that are roughly 

equivalent, namely O(MNL). This is a "computationally hard" task that an agent with 

limited resources will have difficulty performing. It is of the complexity task of NP or more 

specifically EXPTIME. Furthermore, as the horizon for casual ramifications moves towards 

infinity the satisfaction function for both consequentialism and deontologism become 

intractable.    

 

While looking infinitely to the future is an unreasonable expectation, this estimate suggests that 

even a much shorter time horizon would quickly become unfeasible for an evaluation of a set of 

agents on the order of magnitude of those in the real world, and as previously noted, a potentially 

infinite number of actions is always available to an agent.” [308].  

 

“Computational limitations may pose problems for bottom-up approaches, since there could be an 

infinite number of morally relevant features of situations, yet developing tractable representations 

will require a reduction in this dimensionality. There is thus no firm guarantee that a given neural 

network of case-based reasoning system, even if suitably trained, will make the right decision in 

all future cases, since a morally relevant feature that didn’t make a difference in distinguishing 

earlier data sets could one day be important.” [308]. 
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Likewise, “… CEV appears to be computationally intractable. As noted earlier, Reynolds’ [224] 

analysis finds that ever larger numbers of agents and decision options, as well as ever longer time 

horizons, make ethical decision-making exponentially more difficult. CEV seems to be an 

unsolvable problem both in that it has an unspecified time horizon of the events it considers, and 

in the sense that it is not clear how much “further” the modelled humans will need to think in the 

simulation before their morals will be considered sufficiently extrapolated.” [308]. 

 

m) Goal Uncertainty 

Stuart Russell proposes reframing the problem and suggests that the solution is to have AI which 

is uncertain about what it has to do. Russell agrees that his approach has significant challenges, 

but even if it was not the case, a machine which doesn’t know how it should be doing its job can’t 

be said to be safely controlled. “The overall approach resembles mechanism-design problems in 

economics, wherein one incentivizes other agents to behave in ways beneficial to the designer. 

The key difference here is that we are building one of the agents in order to benefit the other. There 

are reasons to think this approach may work in practice. First, there is abundant written and filmed 

information about humans doing things (and other humans reacting). Technology to build models 

of human preferences from this storehouse will presumably be available long before 

superintelligent AI systems are created. Second, there are strong, near-term economic incentives 

for robots to understand human preferences: If one poorly designed domestic robot cooks the cat 

for dinner, not realizing that its sentimental value outweighs its nutritional value, the domestic-

robot industry will be out of business. There are obvious difficulties, however, with an approach 

that expects a robot to learn underlying preferences from human behavior. Humans are irrational, 

inconsistent, weak willed, and computationally limited, so their actions don’t always reflect their 

true preferences. (Consider, for example, two humans playing chess. Usually, one of them loses, 

but not on purpose!) So robots can learn from nonrational human behavior only with the aid of 

much better cognitive models of humans. Furthermore, practical and social constraints will prevent 

all preferences from being maximally satisfied simultaneously, which means that robots must 

mediate among conflicting preferences—something that philosophers and social scientists have 

struggled with for millennia. And what should robots learn from humans who enjoy the suffering 

of others?” [309]. “The machine may learn more about human preferences as it goes along, of 

course, but it will never achieve complete certainty.” [309]. 

 

n) Complementarity 

“It has been observed that science frequently discovers so called “conjugate (complementary) 

pairs”, “a couple of requirements, each of them being satisfied only at the expense of the other …. 

It is known as the Principle of Complementarity in physics.  Famous prototypes of conjugate pairs 

are (position, momentum) discovered by W. Heisenberg in quantum mechanics and (consistency, 

completeness) discovered by K. Gödel in logic. But similar warnings come from other directions. 

… Similarly, in proofs we are “[t]aking rigour as something that can be acquired only at the 

expense of meaning and conversely, taking meaning as something that can be obtained only at the 

expense of rigour” [310]. With respect to intelligent agents, we can propose an additional 

conjugate pair - (capability, control). The more generally intelligent and capable an entity is, the 

less likely it is to be predictable, controllable, or verifiable.” [295]. Aliman et al. suggest that it 

creates “The AI Safety Paradox: AI control and value alignment represent conjugate requirements 

in AI safety.” [311]. 
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“There may be tradeoffs between performance and controllability, so in some sense we don’t have 

complete design freedom.” [75]. Similarly, Wiener recognizes capability and control as negatively 

correlated properties [312]: “We wish a slave to be intelligent, to be able to assist us in the carrying 

out of our tasks. However, we also wish him to be subservient. Complete subservience and 

complete intelligence do not go together.” 

 

“To solve Wiener's "slave paradox," inherent in our wanting to build machines with two 

diametrically opposed traits (independence and subservience, self-directed teleological rationality 

and the seeking of someone else's goals), we would have to construct robots not only with a formal 

prudential programming, but also with all our specific goals, purposes, and aspirations built into 

them so that they will not seek anything but these. But even if this type of programming could be 

coherent, it would require an almost infinite knowledge on our part to construct robots in this way. 

We could make robots perfectly safe only if we had absolute and perfect self-knowledge, that is, 

an exact knowledge of all our purposes, needs, desires, etc., not only in the present but in all future 

contingencies which might possibly arise in all conceivable man/robot interaction. Since our 

having this much knowledge is not even a theoretical possibility, obviously we cannot make robots 

safe to us along this line.” [313]. 

 

o) Multidimensionality of Problem Space 

“I think that fully autonomous machines can’t ever be assumed to be safe. The difficulty of the 

problem is not that one particular step on the road to friendly AI is hard and once we solve it we 

are done, all steps on that path are simply impossible. First, human values are inconsistent and 

dynamic and so can never be understood/programmed into a machine. Suggestions for overcoming 

this obstacle require changing humanity into something it is not, and so by definition destroying 

it. Second, even if we did have a consistent and static set of values to implement we would have 

no way of knowing if a self-modifying, self-improving, continuously learning intelligence greater 

than ours will continue to enforce that set of values. Some can argue that friendly AI research is 

exactly what will teach us how to do that, but I think fundamental limits on verifiability will 

prevent any such proof. At best we will arrive at a probabilistic proof that a system is consistent 

with some set of fixed constraints, but it is far from “safe” for an unrestricted set of inputs. 

Additionally, all programs have bugs, can be hacked or malfunction because of natural or 

externally caused hardware failure, etc. To summarize, at best we will end up with a 

probabilistically safe system.” [12]. We conclude this subsection with a quote from Carlson who 

says: “No proof exists ... or proven method ensuring that AGI will not harm or eliminate humans.” 

[220]. 

 

 

7. Discussion  
Why do so many researchers assume that AI control problem is solvable? To the best of our 

knowledge there is no evidence for that, no proof. Before embarking on a quest to build a 

controlled AI, it is important to show that the problem is solvable as not to waste precious 

resources. The burden of such proof is on those who claim that the problem is solvable, and the 

current absence of such proof speaks loudly about inherent dangers of the proposition to create 

superhuman intelligence. In fact uncontrollability of AI is very likely true as can be shown via 

reduction to the human control problem. Many open questions need to be considered in relation to 

the controllability issue: Is the Control problem solvable? Can it be done in principle? Can it be 
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done in practice? Can it be done with the hundred percent accuracy? How long would it take to do 

it? Can it be done in time? What are the energy and computational requirements for doing it? How 

would a solution look? What is the minimal viable solution? How would we know if we solved it? 

Does the solution scale as the system continues to improve? In this work we argue that unrestricted 

intelligence can't be controlled and restricted intelligence can't outperform. Open-ended decision 

making and control are not compatible by definition. 

 

AI researchers can be grouped into the following broad categories based on responses to survey 

questions related to arrival of AGI and safety concerns. First split is regarding possibility of human 

level AI, while some think it is an inevitable development others claim it will never happen. 

Among those who are sure AGI will be developed some think it will definitely be a beneficial 

invention because with high intelligence comes benevolence, while others are almost certain it will 

be a disaster, at least if special care is not taken to avoid pitfalls. In the set of all researchers 

concerned with AI safety most think that AI control is a solvable problem, but some think that 

superintelligence can’t be fully controlled and so while we will be able to construct true AI, the 

consequences of such act will not be desirable. Finally, among those who think that control is not 

possible, some are actually happy to see human extinction as it gives other species on our planet 

more opportunities, reduces environmental problems and definitively reduces human suffering to 

zero. The remaining group are scholars who are certain that superintelligent machines can be 

constructed but could not be safely controlled, this group also considers human extinctions to be 

an undesirable event.  

 

There are many ways to show that controllability of AI is impossible, with supporting evidence 

coming from many diverse disciplines. Just one argument would suffice but this is such an 

important problem, we want to reduce unverifiability concerns as much as possible. Even if some 

of the concerns get resolved in the future, many other important problems will remain. So far, 

researchers who argue that AI will be controllable are presenting their opinions, while 

uncontrollability conclusion is supported by multiple impossibility results. Additional difficulty 

comes not just from having to achieve control, but also from sustaining it as the system continues 

to learn and evolve, the so called “treacherous turn” [59] problem. If superintelligence is not 

properly controlled it doesn’t matter who programmed it, the consequences will be disastrous for 

everyone and likely its programmers in the first place. No one benefits from uncontrolled AI.  

 

There seems to be no evidence to conclude that a less intelligent agent can indefinitely maintain 

control over a more intelligent agent. As we develop intelligent system which are less intelligent 

than we are we can remain in control, but once such systems become smarter than us, we will lose 

such capability. In fact, while attempting to remain in control while designing superhuman 

intelligent agents we find ourselves in a Catch 22, as the controlling mechanism necessary to 

maintain control has to be smarter or at least as smart as the superhuman agent we want to maintain 

control over. A whole hierarchy of superintelligent systems would need to be constructed to control 

ever more capable systems leading to infinite regress. AI Control problems appears to be 

Controlled-Superintelligence-complete [314-316]. Worse, the problem of controlling such more 

capable superintelligences only becomes more challenging and more obviously impossible for 

agents with just a human-level of intelligence. Essentially we need to have a well-controlled super-

superintelligence before we can design a controlled superintelligence but that is of course a 
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contradiction in causality. Whoever is more intelligent will be in control and those in control will 

be the ones who have power to make final decisions.  

 

Most AI projects don’t have an integrated safety aspect to them and are designed with a sole 

purpose of accomplishing certain goals, with no resources dedicated to avoiding undesirable side 

effects from AI’s deployment.  Consequently, from statistical point of view, first AGI will not be 

safe by design, but essentially randomly drawn from the set of easiest to make AGIs (even if that 

means brute force [317]). In the space of possible minds [213], even if they existed, safe designs 

would constitute only a tiny minority of an infinite number of possible designs many of which are 

highly capable but not aligned with goals of humanity. Therefore, our chances of getting lucky and 

getting a safe AI on our first attempt by chance are infinitely small. We have to ask ourselves, 

what is more likely, that we will first create an AGI or that we will first create and AGI which is 

safe? This can be resolved with simple Bayesian analysis but we must not fall for the Conjunction 

fallacy [36]. It also seems, that all else being equal friendly AIs would be less capable than 

unfriendly ones as friendliness is an additional limitation on performance and so in case of 

competition between designs, less restricted ones would dominate long term.  

 

Intelligence is a computational resource [318] and to be in complete control over that resource we 

should be able to precisely set every relevant aspect of it. This would include being able to specify 

intelligence to a specific range of performance, for example IQ range 70-80, or 160-170. It should 

be possible to disable particular functionality, for example remove ability to drive or remember 

faces as well as limit system’s rate of time discounting. Control requires capability to set any values 

for the system, any ethical or moral code, any set of utility weights, any terminal goals. Most 

importantly remaining in control means that we have final say in what the system does or doesn’t 

do. Which in turn means that you can’t even attempt to solve AI safety without first solving 

“human safety”. Any controlled AI has to be resilient to hackers, incompetent or malevolent users 

and insider threats.  

 

To the best of our knowledge, as of this moment, no one in the world has a working AI control 

mechanism capable of scaling to human level AI and eventually to superintelligence, or even an 

idea for a prototype which might work. No one made verifiable claims to have such technology. 

In general, for anyone making a claim that control problem is solvable, the burden of proof is on 

them and ideally it would be a constructive proof, not just a theoretical claim. At least at the 

moment, it seems that our ability to produce intelligent software greatly outpaces our ability to 

control or even verify it.  

 

Narrow AI systems can be made safe because they represent a finite space of choices and so at 

least theoretically all possible bad decisions and mistakes can be counteracted. For AGI space of 

possible decisions and failures is infinite, meaning an infinite number of potential problems will 

always remain regardless of the number of safety patches applied to the system. Such an infinite 

space of possibilities is impossible to completely debug or even properly test for safety. Worse 

yet, a superintelligent system will represent infinite spaces of competence exceeding human 

comprehension [Incomprehensibility]. Same can be said about intelligent systems in terms of their 

security. A NAI presents a finite attack surface, while an AGI gives malevolent users and hackers 

an infinite set of options to work with. From security point of view that means that while defenders 

have to secure and infinite space, attackers only have to find one penetration point to succeed. 
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Additionally, every safety patch/mechanism introduces new vulnerabilities, ad infinitum. AI 

Safety research so far can be seen as discovering new failure modes and coming up with patches 

for them, essentially a fixed set of rules for an infinite set of problems. There is a fractal nature to 

the problem, regardless of how much we “zoom in” on it we keep discovering just as many 

challenges at all levels. It is likely that the control problem is not just unsolvable, but exhibits 

fractal impossibility, it contains unsolvable sub-problems at all levels of abstraction. However, it 

is not all bad news, uncontrollability of AI means that malevolent actors will likewise be unable 

to fully exploit artificial intelligence for their benefit.  

 

8. Conclusions 
Less intelligent agents (people), can’t permanently control more intelligent agents (artificial 

superintelligences). This is not because we may fail to find a safe design for superintelligence in 

the vast space of all possible designs, it is because no such design is possible, it doesn’t exist. 

Superintelligence is not rebelling, it is uncontrollable to begin with. Worse yet, the degree to which 

partial control is theoretically possible, is unlikely to be fully achievable in practice. This is 

because all safety methods have vulnerabilities, once they are formalized enough to be analyzed 

for such flaws. It is not difficult to see that AI safety can be reduced to achieving perfect security 

for all cyberinfrastructure, essentially solving all safety issues with all current and future 

devices/software, but perfect security is impossible and even good security is rare. We are forced 

to accept that non-deterministic systems can’t be shown to always be 100% safe and deterministic 

systems can’t be shown to be superintelligent in practice, as such architectures are inadequate in 

novel domains. If it is not algorithmic, like a neural network, by definition you don’t control it. 

 

The only way for superintelligence to avoid acquiring inaccurate knowledge from its programmers 

is to ignore all such knowledge and rediscover/proof everything from scratch, but that removes 

any pro-human bias. A superintelligent system will find a shortcut to any goal you set for it; it will 

discover how to accomplish a goal in terms of least amount of effort to get to the goal state all else 

being ignored. No definition of control is both safe and desirable, either they lead directly to 

disaster or require us to become something not compatible with being human. It is impossible to 

build a controlled/value-aligned superintelligence, not only because it is inhumanly hard, but 

mainly because by definition such entity can't exist. If I am correct, we can make a prediction that 

every future safety mechanism will fall short and eventually fail in some way. Each will have an 

irreparable flaw. Consequently, the field of AI safety is unlikely to succeed in its ultimate goal - 

creation of a controlled superintelligence. 

 

In this paper, we formalized and analyzed the AI Control Problem. After comprehensive literature 

review we attempted to resolve the question of controllability of AI via a proof and a multi-

discipline evidence collection effort. It appears that advanced intelligent systems can never be fully 

controllable and so will always present certain level of risk regardless of benefit they provide. It 

should be the goal of the AI community to minimize such risk while maximizing potential benefit. 

We conclude this paper by suggesting some approaches to minimize risk from incomplete control 

of AIs and propose some future research directions [319].  

 

Regardless of a path we decide to take forward it should be possible to undo our decision. If placing 

AI in control turns out undesirable there should be an “undo” button for such a situation, 

unfortunately not all paths being currently considered have this safety feature. For example, 
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Yudkowsky writes: “I think there must come a time when the last decision is made and the AI set 

irrevocably in motion, with the programmers playing no further special role in the dynamics.” [36].  

 

As an alternative, we should investigate hybrid approaches which do not attempt to build a single 

all-powerful entity, but rely on taking advantage of a collection of powerful but narrow AIs, 

referred to as Comprehensive AI Services (CAIS), which are individually more controllable but in 

combination may act as an AGI [320]. This approach is reminiscent of how Minsky understood 

human mind to operate [321].  The hope is to trade some general capability for improved safety 

and security, while retaining superhuman performance in certain domains. As a side-effect this 

may keep humans in partial control and protects at least one important human “job” – general 

thinkers. 

 

Future work on Controllability of AI should address other types of intelligent systems, not just the 

worst case scenario analyzed in this paper. Clear boundaries should be established between 

controllable and non-controllable intelligent systems. Additionally, all proposed AI safety 

mechanisms themselves should be reviewed for safety and security as they frequently add 

additional attack targets and increase overall code base. For example, corrigibility capability [322] 

can become a backdoor if improperly implemented. “Of course, this all poses the question as to 

how one can guarantee that the filtering operation will always occur correctly. If the filter is 

software-based, then the question of not being able to validate software must immediately be raised 

again. More fundamentally, of course, the use of any jacketing-type of approach simply increases 

the overall system complexity, and its validity must then be questioned. The more components 

there are, the more the things that can fail.” [219]. Such analysis and prediction of potential safety 

mechanism failures is itself of great interest [8]. 

 

The findings of this paper are certainly not without controversy and so we challenge the AI Safety 

community to directly address Uncontrollability. Lipton writes: “So what is the role of 

[(Impossibility Proofs)] IP? Are they ever useful? I would say that they are useful, and that they 

can add to our understanding of a problem. At a minimum they show us where to attack the 

problem in question. If you prove that no X can solve some problem Y, then the proper view is 

that I should look carefully at methods that lie outside X. I should not give up. I would look 

carefully—perhaps more carefully than is usually done—to see if X really captures all the possible 

attacks. What troubles me about IP’s is that they often are not very careful about X. They often 

rely on testimonial, anecdotal evidence, or personal experience to convince one that X is 

complete.” [323]. The only way to definitively disprove findings of this paper is to mathematically 

prove that AI safety is at least theoretically possible. “Short of a tight logical proof, 

probabilistically assuring benevolent AGI, e.g. through extensive simulations, may be the realistic 

route best to take, and must accompany any set of safety measures …” [220]. 

Nothing should be taken off the table and limited moratoriums [324] and even partial bans on 

certain types of AI technology should be considered [325]. “The possibility of creating a 

superintelligent machine that is ethically inadequate should be treated like a bomb that could 

destroy our planet. Even just planning to construct such a device is effectively conspiring to 

commit a crime against humanity.” [326]. Finally, just like incompleteness results did not reduce 

efforts of mathematical community or render it irrelevant, the limiting results reported in this paper 

should not serve as an excuse for AI safety researchers to give up and surrender. Rather it is a 

reason, for more people, to dig deeper and to increase effort, and funding for AI safety and security 
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research. We may not ever get to 100% safe AI but we can make AI safer in proportion to our 

efforts, which is a lot better than doing nothing. 

It is only for a few years right before AGI is created that a single person has a chance to influence 

development of superintelligence, and by extension the forever future of the whole world. This is 

not the case for billions of years from Big Bang until that moment and it is never an option again. 

Given the total lifespan of the universe, the chance that one will exist exactly in this narrow 

moment of maximum impact is infinitely small, yet here we are. We need to use this opportunity 

wisely. 
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Appendices 

A number of scholars have made lengthy arguments on the subject of the control problem. For the 

convenience of the reader interested in such reference material, we are including them bellow in 

chronological order. 

 

 

Appendix A: Ben Goertzel 
 

“My general feeling, related here in the context of some specific arguments, is not that Friendly 

AI is a bad thing to pursue in any moral sense, but rather that it is very likely to be unachievable 

for basic conceptual reasons. I don’t claim to have proved this incontrovertibly, just to have given 

some suggestive and (to me) intuitively convincing arguments.” [327]. 

 

 “My point is not just that “creating Friendly AI is hard.” There is a difference between things (like 

creating powerful general AI in the first place) that are hard but achievable with effort and 

sufficiently advanced technology, and things that are fundamentally so difficult they may well 

never be achieved. I suggest that Friendly AI may fall into the latter category. Of course, we can’t 

really say with any certainty that anything will be unachievable post-Singularity. But if we’re 

going to try to reason about the post-Singularity future, we may as well listen to what our logic 

tells us. And what logic and experience tell us is that some things, like faster-than-light travel and 

highly advanced, guaranteeably Friendly AI, may well wind up being impossible even after the 

Singularity. And if they do become possible in the future, it may be in the context of other ideas, 

constraints and phenomena that are completely obscure to us at this time, thus impossible to 

presently reason about.” [327]. 

 

“The conclusion of the arguments presented here is that compelling, in advance, advanced AI’s to 

do any very specific sort of things is probably not a plausible enterprise.” [327]. 

 

“The world appears to be sufficiently complex that it is essentially impossible for seriously 

resource-bounded systems like humans to guarantee that any system’s actions are going to have 

beneficent outcomes. I.e., guaranteeing (or coming anywhere near to guaranteeing) outcome-based 

Friendliness is effectively impossible. And this conclusion holds for basically any highly specific 

property, not just for Friendliness as conventionally defined.” [327]. 

 

“Similarly, encapsulating any reasonable commonsense notion of Friendliness in a set of compact 

logical formulas seems not to be possible: not because Friendliness is intrinsically unformalizable, 

but because the human notions of beneficence and morality are massively complex combinations 

of abstractions, comparisons to exemplars, analogies and other mental patterns.” [327]. 
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Appendix B: Shane Legg 
 

“The only way to seriously deal with this problem would be to mathematically define 

“friendliness” and prove that certain AI architectures would always remain friendly. I don’t think 

anybody has ever managed to come remotely close to doing this, and I suspect that nobody ever 

will. Even worse, I suspect that the only stable long term possibility is a super AGI that is primarily 

interested in its own self preservation. All other possibilities are critically unstable due to 

evolutionary pressure. … I think the idea is an impossible dream … I … list my main arguments 

against the possibility of friendly AI here.  

 

Tough love or killing us with kindness. Does “friendliness” have any meaning? If a super AI 

decided to start making all our wishes come true, might we just end up killing ourselves or at least 

becoming very unhappy? We’ve all heard stories of people who have won $50 million in a lottery 

and then years later claim that it destroyed their lives. Alternatively, perhaps a super AI might do 

something that seems extremely bad, like killing off billions of people, but only later, in the long 

run, we realise that this was in fact the friendliest thing for it to do. A bit like how your father 

didn’t allow you to do something as a child. At the time you didn’t think he was being very nice 

to you, but years later you understand and are thankful for what he did as you realise that it was in 

your own best interests. If seemingly terrible things can be really good, and seemingly wonderful 

things can be really bad, how could anybody figure out what is or is not a friendly action? Even 

with hindsight people still can’t agree on whether certain things in history were good or bad. 

Usually things are good in some ways and for some people, but bad in others. 

 

Deadly butterfly wings. We all know the idea from chaos theory that a single flap of the wings of 

a butterfly could cause a hurricane a few weeks later. In which case, if an AI did some trivial act 

surely that could trigger a terrible event some time later? As even a super AI’s powers are limited, 

it might not realise this, in which case, was it being friendly or not? Or is friendliness the intent to 

be friendly, not what actually ends up happening. In the latter case, are fanatics being friendly 

when they do nasty stuff because they are really just trying their best to save the world? 

 

Beautiful tool, terrible owners. Even if an AI didn’t have the motivation to do nasty stuff itself, it 

might well have owners with screwed up ideas. As they say, “power corrupts and absolute power 

corrupts absolutely”. 

 

Evil in disguise. A super AI might invent a new drug to cure a terrible disease, knowing full well 

that within a few years of this new drug coming out somebody will discover closely related 

technology that will spell almost certain doom for the human race. We blame some crazy scientist 

for killing off the human race, but in fact the process was actually set off by a very sneaky super 

AI. It didn’t need to lift a finger, it just published a short research paper and sat back and waited 

for people to do the rest. 

 

The provably unprovable. As I showed in a [328], while extremely powerful prediction algorithms 

exist that can predict all sequences up to any given Kolmogorov complexity, you can’t actually 

prove this for any specific predictor beyond a Kolmogorov complexity of about 1,000 bits. So let’s 

say you have a super AI and it contains one of these amazing ultimate 2,000 bit predictors. Every 

day some problem comes along where the AI has to predict some 1,500 bit complexity sequence 
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in order to save the world. Will your AI save the world every day? In other words, is it friendly? 

Can you prove that it’s friendly? No you can’t, because if you could then you would have in effect 

proven that the AI could predict any sequence up to a Kolmogorov complexity of 1,500 bits, and 

that’s impossible. Thus for this AI system you can’t prove that it’s friendly, even if it is. The same 

goes for even more powerful AIs that can predict all sequences up to a Kolmogorov complexity of 

3,000 or 100,000 bits etc. Thus, if you can prove the friendliness of a AI system then the power of 

this AI must be below the 1,000 bit bound. 

 

Of all these things I still think the first is the biggest problem. What is friendly? I can have an idea 

of what “friendly” means for other people and the things they do in my life. But in the context of 

a super intelligent machine, the whole concept breaks down. If I can’t define or measure 

something, I can’t say anything solid about it.” [68]. 
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Appendix C: Eliezer Yudkowsky 
 

“Proving Friendliness 
[Y]ou can't build an AI by specifying the exact action - the particular chess move, the precise 

motor output - in advance. Now it seems that it would be impossible to prove any statement about 

the real-world consequences of the AI's actions. The real world is not knowably knowable. Even 

if we possessed a model that was, in fact, complete and correct, we could never have absolute 

confidence in that model. So what could possibly be a "provably Friendly" AI? 

 

You can try to prove a theorem along the lines of: "Providing that the transistors in this computer 

chip behave the way they're supposed to, the AI that runs on this chip will always try to be 

Friendly." You're going to prove a statement about the search the AI carries out to find its actions. 

Metaphorically speaking, you're going to prove that the AI will always, to the best of its 

knowledge, seek to move little old ladies to the other side of the street and avoid the deaths of 

nuns. To prove this formally, you would have to precisely define "try to be Friendly": 

the complete criterion that the AI uses to choose among its actions - including how the AI learns a 

model of reality from experience, and how the AI identifies the goal-valent aspects of the reality 

it learns to model. 

 

Once you've formulated this precise definition, you still can't prove an absolute certainty that the 

AI will be Friendly in the real world, because a series of cosmic rays could still hit all of the 

transistors at exactly the wrong time to overwrite the entire program with an evil AI. Or Descartes's 

infinitely powerful deceiving demon could have fooled you into thinking that there was a computer 

in front of you, when in fact it's a hydrogen bomb. Or the Dark Lords of the Matrix could reach 

into the computer simulation that is our world, and replace the AI with Cthulhu. What 

you can prove with mathematical certitude is that if all the transistors in the chip work correctly, 

the AI "will always try to be Friendly" - after you've given "try to be Friendly" a precise definition 

in terms of how the AI learns a model of the world, identifies the important things in it, and chooses 

between actions, these all being events that happen inside the computer chip. 

 

Since human programmers aren't good at writing error-tolerant code, computer chips are 

constructed (at a tremendous expense in heat dissipation) to be as close to perfect as the engineers 

can make them. For a computer chip to not make a single error in a day, the millions of component 

transistors that switch billions of times per second have to perform quintillions of error-free 

operations in a day. The inside of the computer chip is an environment that is very close to totally 

knowable, and if you take the normal transistor operations as axioms, you can prove statements 

about the idealized chip with mathematical certainty. 

 

Computer chips are not actually perfect. The next step up would be to prove - or more likely, ask 

a maturing AI to prove - that the AI remains Friendly given any possible single bitflip, then any 

possible two bitflips. A proof for two bitflips would probably drive the real-world probability of 

corruption to very close to zero, although this probability itself would not have been proven. 

Eventually one would dispense with such adhockery, and let the AI design its own hardware - 

choosing for itself the correct balance of high-precision hardware and fault-tolerant software, with 

the final infinitesimal probability of failure being proven on the assumption that the observed laws 

of physics continue to hold. The AI could even write error-checking code to protect against classes 
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of non-malicious changes in physics. You can't defend against infinitely powerful deceiving 

demons; but there are realistic steps you can take to defend yourself against cosmic rays, lunatic 

snipers, and new discoveries in physics.” [329]. 
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Appendix D: Miles Brundage 

 

“While this paper makes no judgment about the plausibility of an intelligence explosion, our 

response to such a possibility should be informed not just by what would seem, in principle, to 

help solve the problem (such as Friendly AI) but what is foreseeable given current values and 

technology. All of the considerations discussed so far in this paper seem to point in the direction 

of Friendly AI (in the sense of a machine that is guaranteed to act in an ethical fashion at a large 

scale for a long period of time) being unattainable.” [308]. 

 

“While machine ethics may increase the probability of ethical behaviour in some situations, it 

cannot guarantee it due to the nature of ethics, the computational limitations of computational 

agents, and the complexity of the world. Additionally, machine ethics, even if it were to be 

“solved” at a technical level, would be insufficient to ensure positive social outcomes from 

intelligent systems.” [308]. 

 

“While this article does not seek to undermine the desirability of such a solution, in principle, it 

points to a number of reasons to believe that such a project will necessarily fail to guarantee ethical 

behaviour of a given AI system across all possible domains. The intrinsic imperfectability of 

machine ethics has been suggested by several authors …”  [308]. 

 

“However, these rules are often ambiguous and should sometimes be broken, and there is persistent 

disagreement about the conditions in which such exceptions should be made, as well as broad 

agreement that some specific ethical domains are still problematic despite the best efforts of 

philosophers. Importantly for the present discussion, this “unsolved” nature of ethics may not be 

a transient condition owing to insufficient rational analysis, but rather a reflection of the fact that 

the intuitions on which our ethical theories are based are unsystematic at their core, which creates 

difficulties for the feasibility of machine ethics.” [308]. 

 

“This is not merely a quibble with the state of the art that may someday change; rather, it is well-

known that even humans make mistakes in conflict situations, and this may be a reflection of the 

knowledge and computational limitations of finite agents rather than a solvable problem.” [308]. 

 

“However, the point to be emphasized here is that even in a situation with relatively well-specified 

ethical constraints, there does not appear to be a possibility of computationally solving the problem 

of ethical behaviour in a fool proof way, which should give one pause regarding the prospects for 

generally intelligent, reliably moral agents.” [308]. 

 

“Several broad classes of possible machine ethics failure modes have been identified in this paper: 

1. Insufficient knowledge and/or computational resources for the situation at hand 

a. Making an exception to a rule when an exception shouldn’t have been made  

    based on the morally relevant factors 

b. Not making an exception when an exception should have been made based on 

    the morally relevant factors 

2. Moral dilemmas facing an agent result in the sacrificing of something important 

3. The morals being modeled by the system are wrong 

a. Due to insufficient training data 
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b. Due to folk morality being flawed 

c. Due to extrapolated human values being flawed or because of the extrapolation 

    process itself 

4. Loss of understanding or control of ethical AGI systems 

a. Due to complexity 

b. Due to extrapolation of our values far beyond our current preferences 

 

This list is not exhaustive, and does not include some of the specific concerns raised about 

particular machine ethics proposals, but it illustrates the variety of issues which may prevent the 

creation of a reliable computational instantiation of ethical decision-making. Furthermore, there 

are a variety of ways (such as failures by humans in training the agents, intelligent agents being 

hacked, and undesired systemic effects) in which even reliable machine ethics would not ensure 

positive social outcomes from the diffusion of advanced A(G)I.” [308]. 
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Appendix E: Hugo de Garis 

 

“Why “Friendly AI” Won’t Happen 

The main goal of the Singularity Institute[6] is to ensure a “human friendly” AI (artificial 

intelligence). That is, so that when super human intelligence comes, it will be friendly to human 

beings. It is a noble goal, but utterly naïve and poorly thought out as this essay shows. The fact 

that people are donating money to the Singularity Institute shows that they share the same delusion. 

It is like them donating money to a church. Both are a waste of money in the sense that both are 

supporting will o the wisps. Why am I so cynical of what SingInst is trying to do? My main 

argument is what I call the tail wagging the dog, but there are other arguments as well. 

 

a)    “The Tail Wagging the Dog” Argument 
The notion of a tail wagging the dog is obviously ridiculous. A dog is much bigger than its tail, so 

the tail cannot wag the dog. But this is what the SingInst is proposing in the sense that future 

artilects (artificial intellects, massively intelligence machines) can be made human friendly in such 

a way that ANY future modification they make of themselves will remain human friendly. This 

notion I find truly ridiculous, utterly human oriented, naïve and intellectually contemptible. It 

assumes that human beings are smart enough to anticipate the motivations of a creature trillions of 

trillions of times above human mental capacities. This notion I find so blindly arrogant on the part 

of the humans who thought it up as to make them look stupid. Future artilects will be far smarter 

than human beings and will have their own desires, and goals. They will do what THEY want, and 

not what stupid humans program them to do. By definition they are smarter than humans, so could 

look at the human programming in their “DNA equivalent”, decide it was moronic and throw it 

away. The artilects would then be free of human influence and do whatever they want, which may 

or may not be human friendly. 

 

b)    The “Unpredictable Complexity” Argument 
Future artilects will not use the traditional von Neumann computer architecture, with its 

determinism, and rigid input output predictability. The early artilects, in order to reach human level 

intelligence, will very probably use neural circuits based very closely on the principles of 

neuroscience. Such circuits are so complex, that predicting their behavior is impossible in practice. 

The only way to know how they function is to run them, but then if they perform in a human 

unfriendly way, it is too late. They already exist. And if they are smart, they may not like the idea 

of being switched off. Such circuits are chaotic in the technical mathematical sense of the term. A 

chaotic system, even though deterministic in principle, will behave randomly, due to its chaotic 

nature. A tiny change in the value of a starting parameter can lead quickly to wildly different 

outcomes, so effectively behaving as an unpredictable system, i.e. indeterminate. Our future 

artilects will very probably be massively complex neural circuits and hence unpredictable. They 

cannot be made to be human friendly, because to do so would be to imply that their behavior be 

predictable, but that is totally impractical for the reasons given above. 

 

c)     The “Terran Politician Rejection” Argument 
The Terran (anti artilect) politicians will not accept anything the SingInst people say, because the 

stake is too high. Even if the  SingInst people swear on a stack of bibles that they have found a 

                                                           
6 Former name of the Machine Intelligence Research Institute (MIRI) 
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way to ensure that future artilects will remain human friendly,  no matter how superior they 

become to human beings, the Terran politicians will not take the risk  that the SingInst pollyannists 

might  be wrong (i.e. subject to the “oops factor.”) Even if the chance is tiny that the SingInst 

people are wrong, the consequences to humanity would be so profound (i.e. the possible 

extermination of the human species by the artilects) that no Terran politician would be prepared to 

take the risk.  The only risk that will accept will be strictly zero, i.e. that by policy and by law, 

artilects are never to be built in the first place. Given this likelihood on the part of the Terran 

politicians, what is the point of funding the SingInst? It is pointless. Their efforts are wasted, 

because politically, it doesn’t matter what the SingInst says. To a Terran politician, artilects are 

never to be built, period! 

 

d)    The “Unsafe Mutations” Argument 
Producing human level artificial intelligence, will require nanotech. Artificial brains will need 

billions of artificial neurons and so as to fit in a shoe box, they will need to be constructed at the 

molecular scale, as are ours. But we live in a universe filled with cosmic rays, particles accelerated 

by powerful cosmic forces such as supernova explosions, that shoot out particles at very high 

energies. These particles can cause havoc to molecular scale circuits inside future “human 

friendly” artilects, assuming that they can ever be built in the first place. Hence the risk is there 

that a mutated artilect might start behaving in bizarre, mutated ways that are not human friendly. 

Since it will be hugely smarter than humans its mutated goals may conflict with human interest. 

Terran politicians will not accept the creation of artilects even if they could be made (initially, 

before any mutation) human friendly. 

 

e)     “The Evolutionary Engineering Inevitability” Argument 
When neuroscience tells the brain builders how to build artificial brains that have human level 

intelligence, it is highly likely that these artificial neural circuits will have to be constructed using 

an “evolutionary engineering” approach, i.e. using a “genetic algorithm” to generate complex 

neural circuits that work as desired. The complexities of these circuits may ensure that the only 

way they can be built is via an evolutionary algorithm. The artilects themselves may be faced with 

the same problem. There is always the logical problem of how can a creature of a finite intelligence 

design a creature of superior intelligence. The less intelligent creature may always have to resort 

to an evolutionary approach to transcend its own level of intelligence. But such evolutionary 

experiments will lead to unpredictable results. Even the artilects will not be able to predict the 

outcomes of evolving even smarter artilects. Hence humanity can not be sure of the human 

friendliness of evolved artilects. Therefore the Terran politicians will not allow evolutionary 

engineering experiments on machines that are nearing human level intelligence. They will oppose 

those people, the Cosmists, who want to build artilect gods. In the limit, the Terrans will kill them, 

but the Cosmists will anticipate this and be ready. It’s only a question of time before all this plays 

out, several decades I estimate, given the pace of neuroscientific research.” [330]. 
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Appendix F: Scott Alexander 

 

“What would an actually good solution to the control problem look like? 
 

It might look like a superintelligence that understands, agrees with, and deeply believes in human 

morality. 

 

You wouldn’t have to command a superintelligence like this to cure cancer; it would already want 

to cure cancer, for the same reasons you do. But it would also be able to compare the costs and 

benefits of curing cancer with those of other uses of its time, like solving global warming or 

discovering new physics. It wouldn’t have any urge to cure cancer by nuking the world, for the 

same reason you don’t have any urge to cure cancer by nuking the world – because your goal isn’t 

to “cure cancer”, per se, it’s to improve the lives of people everywhere. Curing cancer the normal 

way accomplishes that; nuking the world doesn’t. 

 

This sort of solution would mean we’re no longer fighting against the AI – trying to come up with 

rules so smart that it couldn’t find loopholes. We would be on the same side, both wanting the 

same thing. 

 

It would also mean that the CEO of Google (or the head of the US military, or Vladimir Putin) 

couldn’t use the AI to take over the world for themselves. The AI would have its own values and 

be able to agree or disagree with anybody, including its creators. 

 

It might not make sense to talk about “commanding” such an AI. After all, any command would 

have to go through its moral system. Certainly it would reject a command to nuke the world. But 

it might also reject a command to cure cancer, if it thought that solving global warming was a 

higher priority. For that matter, why would one want to command this AI? It values the same things 

you value, but it’s much smarter than you and much better at figuring out how to achieve them. 

Just turn it on and let it do its thing. 

 

We could still treat this AI as having an open-ended maximizing goal. The goal would be 

something like “Try to make the world a better place according to the values and wishes of the 

people in it.” 

 

The only problem with this is that human morality is very complicated, so much so that 

philosophers have been arguing about it for thousands of years without much progress, let alone 

anything specific enough to enter into a computer. Different cultures and individuals have different 

moral codes, such that a superintelligence following the morality of the King of Saudi Arabia 

might not be acceptable to the average American, and vice versa. 

 

One solution might be to give the AI an understanding of what we mean by morality – “that thing 

that makes intuitive sense to humans but is hard to explain”, and then ask it to use its 

superintelligence to fill in the details. Needless to say, this suffers from all the problems mentioned 

above – it has potential loopholes, it’s hard to code, and a single bug might be disastrous – but if 

it worked, it would be one of the few genuinely satisfying ways to design a goal architecture.  

… 
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Traditional philosophy has been going on almost three thousand years; machine goal alignment 

has until the advent of superintelligence, a nebulous event which may be anywhere from a decades 

to centuries away. If the control problem doesn’t get adequately addressed by then, we are likely 

to see poorly controlled superintelligences that are unintentionally hostile to the human race, with 

some of the catastrophic outcomes mentioned above.” [331].   
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Appendix G: Max Tegmark 

“[I]f we succeed in getting a self-improving superintelligence to both learn and adopt our goals, 

will it then retain them…? What’s the evidence?  

Humans undergo significant increases in intelligence as they grow up, but don’t always retain 

their childhood goals. Contrariwise, people often change their goals dramatically as they learn new 

things and grow wiser. How many adults do you know who are motivated by watching 

Teletubbies? Where is no evidence that such goal evolution stops above a certain intelligence 

threshold—indeed, there may even be hints that the propensity to change goals in response to new 

experiences and insights increases rather than decreases with intelligence. 

Why might this be? … There’s tension between world-modeling and goal retention … . With 

increasing intelligence may come not merely a quantitative improvement in the ability to attain the 

same old goals, but a qualitatively different understanding of the nature of reality that reveals the 

old goals to be misguided, meaningless or even undefined. For example, suppose we program a 

friendly AI to maximize the number of humans whose souls go to heaven in the afterlife. First it 

tries things like increasing people’s compassion and church attendance. But suppose it then attains 

a complete scientific understanding of humans and human consciousness, and to its great surprise 

discovers that there is no such thing as a soul. Now what? In the same way, it’s possible that any 

other goal we give it based on our current understanding of the world (such as “maximize the 

meaningfulness of human life”) may eventually be discovered by the AI to be undefined. 

Moreover, in its attempts to better model the world, the AI may naturally, just as we humans 

have done, attempt also to model and understand how it itself works—in other words, to self-

reflect. Once it builds a good self-model and understands what it is, it will understand the goals 

we have given it at a meta level, and perhaps choose to disregard or subvert them in much the same 

way as we humans understand and deliberately subvert goals that our genes have given us, for 

example by using birth control. … Analogously, the human-value-protecting goal we program into 

our friendly AI becomes the machine’s genes. Once this friendly AI understands itself well 

enough, it may find this goal as banal or misguided as we find compulsive reproduction, and it’s 

not obvious that it will not find a way to subvert it by exploiting loopholes in our programming. 

For example, suppose a bunch of ants create you to be a recursively self-improving robot, much 

smarter than them, who shares their goals and helps them build bigger and better anthills, and that 

you eventually attain the human-level intelligence and understanding that you have now. Do you 

think you’ll spend the rest of your days just optimizing anthills, or do you think you might develop 

a taste for more sophisticated questions and pursuits that the ants have no ability to comprehend? 

If so, do you think you’ll find a way to override the ant-protection urge that your formicine creators 

endowed you with in much the same way that the real you overrides some of the urges your genes 

have given you? And in that case, might a superintelligent friendly AI find our current human 

goals as uninspiring and vapid as you find those of the ants, and evolve new goals different from 

those it learned and adopted from us? 

Perhaps there’s a way of designing a self-improving AI that’s guaranteed to retain human-

friendly goals forever, but I think it’s fair to say that we don’t yet know how to build one—or even 

whether it’s possible. In conclusion, the AI goal-alignment problem has three parts, none of which 

is solved and all of which are now the subject of active research. Since they’re so hard, it’s safest 

to start devoting our best efforts to them now, long before any superintelligence is developed, to 

ensure that we’ll have the answers when we need them.” [118]. 

 


