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ABSTRACT
The present paper intends to report two results. It is shown that the 
formula P ( x ) = ∀y∀z [ ¬G ( x, y ) → ¬M ( z ) ] provides the logic underlying 
gauge symmetry, where M denotes the predicate of being massive. For 
the logic of spontaneous symmetry breaking, by Higgs mechanism, we 
have P ( x ) = ∀y∀z [ G ( x, y ) → M ( z ) ]. Notice that the above two formulas 
are not logically equivalent. The results are obtained by integrating four 
components, namely, gauge symmetry and Higgs mechanism in 
quantum field theory, and Gödel's incompleteness theorem and Tarski's 
indefinability theorem in mathematical logic. Gödel numbering is the key 
for arithmetic modeling applied in this paper.
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1　Introduction

The standard model of particle physics is a well-developed and well-documented theoretical 
framework. Gauge field theory is the main language used in this standard model[1]. Gauge symmetry 
is an essential systematic property of gauge theoretic modeling, and spontaneous symmetry 
breaking by Higgs mechanism is the key methodology to supplement the standard model[2]. The 
standard model, with and without Higgs mechanism, has successfully reached a number of 
systematic conclusions. Nonetheless, the metalogic underlying these conclusions has not been 
spelled out, and still remains unclear.

This paper aims to spell out the meta-logical properties underlying the systematic conclusions 
reached by the standard model of particle physics. Two results will be reported. The first result is 
about the underlying metalogic of gauge symmetry, showing that the notion of massiveness is 
indefinable. This result is obtained by integrating the techniques used by Gödel ’ s incompleteness 
theorem[3] and Tarski ’ s indefinability theorem[5]. The second result is about spontaneous symmetry 
breaking. Gödel numbering will be introduced, as it is the key to the first-order characterization of 
Lagrangian. The necessary backgrounds of Gödel ’ s theorem and Tarski ’ s theorem are given in the 
appendix.

2　Gödel numbering and first-order characterization

Mathematical language always deals with symbols, formulas, and derivations. For a mathematical 
framework, even though its base domains (such as real or complex fields) are uncountable infinities 
(i.e., the continuum), the number of symbols used to denote variables, functions, operators, etc., is 
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infinite but countably many. Thus, we can have an effective procedure to mechanically assign a 
unique odd number, in order, to each and every symbol in order, called Gödel number. For a given 
symbol e, its Gödel number can be written as g (e) , which can be seen as a function or an odd 
number. A formula is a finite string of symbols, written as

L = e1e2……en

The Gödel number of a formula can be calculated by

g (L) = qg(e1 )
1 qg(e2 )

2 ……qg ( )en

n

Where qi is the first i prime numbers in its natural order, and g (ei ) is the Gödel number of the ith 

symbol in the formula L. A derivation is a finite sequence of formulas, written as
Der (L) ≡< u1 ,u2,……,um >

The Gödel number of a derivation can be calculated by
g [ (Der (L) ] = qg(u1 )

1 qg(u2 )
2 …qg(ui )

i …qg(um )
m

Where g(ui ) is the Gödel number of the ith formula in the derivation sequence. The Gödel num‐
ber of any given formula or derivation always turns out to be an even number, which is also a com‐
posite number.

The above method is called Gödel numbering[3]. The beauty and power of Gödel numbering is 
that, based on the fundamental theorem of arithmetic (i.e., the unique decomposition theorem of 
primes), from a given Gödel number we can uniquely recapture the original derivation, the original 
formula, or the original symbol used in the context.

Note that logic has nothing to do with the content. So that the first-order characterization of the 
Lagrangian only requires three conditions. First, the Lagrangian can be represented by a Gödel 
number. Second, any given derivation of a particular kind and its Gödel number can be used 
interchangeably. Third, it allows to introduce new predicates or function terms.

3　Gauge Particles and the Indefinability of Massiveness

This section will proceed as follows. First, the general conclusion reached from physics is 
summarized as a statement. Second, we state the Indefinability Theorem of Massiveness, followed 
by the sketch of its proof. And third, some comments on this theorem are provided.

Statement of physics: The standard model of particle physics is the composite of three gauge-
symmetry groups: U (1) × SU (2) × SU (3). The gauge symmetry implies that all the gauge particles, 
including gauge fermions and gauge bosons, are massless.

The Indefinability Theorem of Massiveness: Under the first-order characterization of the standard 
model, massiveness is indefinable within its gauge theoretic modeling. In other words, the predicate 
“being massive”, denoted by M, has no model; i.e., the model of massive predicate is null.

In the following, we sketch the proof of this theorem. Let L be the Lagrangian of a particle,

L = -
1
4

FμvF μv + (Dμφ)†Dμφ - μ2(φ†φ) + λ (φ†φ) 2
(1)

There is no explicit mass term in this Lagrangian, and sometimes we say it is a massless 
Lagrangian exchangeably. Let the Gödel number of L be g (L) = i. Now we assume there was a 
derivation (a transformation) from L to Lm, where Lm is a Lagrangian with mass terms (or call it a 
massive Lagrangian.) Denote such a derivation by Der (L,Lm ). This derivation would have a Gödel 
number, g [ Der (L,Lm ) ] = j, and the end formula Lm would have its Gödel number g (Lm ) = k.

Now we can introduce an arithmetic relation, G ( i, j ), which by the definition of expressibility can 
be expressed by the term G ( i, j ). In addition, we introduce a new predicate of “being massive”, 
denoted by M. Then we consider the formula below.
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P ( x ) = ∀y∀z [ ¬G ( )x, y → ¬M ( z ) ] (2)

Substituting the variables by the corresponding Gödel numbers introduced above, we have
S ( i, j, k ) = ¬G ( i, j ) → ¬M (k ) (3)

By the statement of physics, there is no such a derivation from L to Lm. Hence, G ( i, j ) is actually 
false; since G ( i, j ) is expressible by G ( i, j ) , we then have ¬G ( i, j ) from the definition of expressibility 
Then by propositional logic, we can infer that ¬M (k ) . Now assume for contradiction that M had a 
model:

X = {k | k = g (Lm ) , and Lm satisfies M } (4)

Then, because Lm was supposed to be massive, we would have that k ∈ X; while by ¬M (k ), we 
would have k ∉ X. This is a contradiction. In other words, X must be a null model of M, meaning that 
the massiveness is indefinable within the gauge theoretic language adopted by the standard model 
of particle physics. QED.

4　Higgs Mechanism and Definability of Massiveness

Higgs mechanism is responsible for causing local gauge symmetry spontaneously to be broken. 
Because local symmetry involves gauge field, which is massless when the local symmetry is 
unbroken, spontaneous local gauge symmetry breaking will make gauge field massive. There are 
many massless Lagrangians, and we can also make up many massive Lagrangians; which can be 
connected to which depends on whether a derivation available. This should be the meaning of 
definability for being massive.

Higgs mechanism can be characterized by making four points. First, to force a complex scalar 
field be a real field by letting the imaginative part to be zero, and the resulting real scalar field is 
seen as a ground state, or a vacuum. Second, to introduce another real scalar field, called Higgs field, 
which causes the fluctuation of the ground state; it is a kind of perturbation. Third, as the result of 
perturbation, the local symmetry will be broken, and produce a massless field, called Goldstone 
field. Fourth,  the Goldstone field will be annihilated and it somehow returns back to make the 
gauge field massive. And finally, the mass terms with gauge field usually eventually are constituted 
by potential parameters and coupling constants. As Ooguri[4] points out, Higgs mechanism does not 
tell us what is mass, it derives mass as if it exists. The theorem below shows the logic of Higgs 
mechanism.

P ( x ) = ∀y∀z [ D ( x, y )→ M ( z ) ] (5)

Note that this formula is not logically equivalent to (1). We sketch proof in the following. To restate 
the notations used in previous section, let the Gödel number of L be g (L) = i, g [ Der (L,Lm ) ] = j, and 
g (Lm ) = k. D ( x, y ) expresses the binary relation d(L, Lm ) ] if Der (L,Lm ) ] holds. Substituting the 

variables by the corresponding Gödel numbers introduced above, we have
S ( i, j, k ) = D ( i, k )→ M ( j ) (6)

Note that different from (2), here Gödel numbers k and j have switched the places, reflecting our 
view that the mass term is defined by a derivation. Then by propositional logic, we can infer that 
M ( j ) . Now assume that M had a model

X = { j | j = g [ Der (L, Lm ) ] } (7)

Many documented results in physics proved that this model is not null. To complete the 
existential proof, we provide an example below, of which the derivation is partly taken from 
Aitchison[1]. This example is about Higgs field itself, which is straightforward, and for reader ’ s 
convenience, it is spelled out step by step without any omission. During the derivation, the key 
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formulas are numbered by (Hi), definitions are numbered by (Dj), and step formulas are not 
numbered. Notations and definitions are listed below.

φ = ρeiθ (D1)

φ† = ρe-iθ (D2)

Dμφ = (∂ μ - i eAμ )φ (D3)

Dμφ† = (∂ μ + i eAμ )φ (D4)

ρ =
1

2
(v + χ ) , v =

μ2

λ
(D5,D6)

Bμ ≡ Aμ -
1
e

∂ μ , M = v e (D7,D8)

Consider a massless Langrangian:

L = -
1
4

FμνF μν + (Dμφ)†Dμφ + μ2φ†φ - λ (φ†φ) 2
(H1)

Dμφ = (∂ μ - i eAμ ) φ

φ = ρeiθ , φ† = ρe-iθ , φ†φ = ρe-iθ ρeiθ = ρ2e0 = ρ2

Dμφ = (∂ μ - i eAμ ) ρeiθ = ∂ μ(ρeiθ ) - i ρeAμeiθ = eiθ∂ μ ρ + ρ∂ μ(eiθ ) - i ρeAμeiθ

                                                       = eiθ∂ μ ρ + eiθ iρ∂ μ θ - i ρeAμeiθ = eiθ [ ∂ μ ρ + i ρ(∂ μ θ - eAμ ) ]

(Dμφ)†Dμφ = e-iθeiθ [ ∂ μ ρ + i ρ(∂ μ θ - eAμ ) ] [ ∂ μ ρ - i ρ(∂ μ θ - eAμ ) ]

           = [ ∂ μ ρ + i ρ(∂ μ θ - eAμ ) ] [ ∂ μ ρ - i ρ(∂ μ θ - eAμ ) ]

                                                            = (∂ μ ρ)2 + ρ2(∂ μ θ - eAμ )2

μ2φ†φ = μ2 ρ2

λ (φ†φ) 2
= λ( ρ2 )2 = λρ4

(H1)⇒L = -
1
4

FμνF μν + ρ2(∂ μ θ - eAμ )2 + (∂ μ ρ)2 + μ2 ρ2 - λρ4 = πr 2 λρ4 (H2)

Since (∂ μ ρ)2 = [ ∂ μ
1

2
(v + χ ) ]2 =

1
2

[ ∂ μ (v + χ ) ]2 =
1
2

(∂ μv + ∂ μχ )2

               =
1
2

(∂ μ
μ2

λ
+ ∂ μχ )2 =

1
2

(0 + ∂ μχ )2 =
1
2

(∂ μχ )2

Bμ ≡ Aμ -
1
e

∂ μ

ρ2(∂ μ - eAμ )2 = ρ2 [ e (Aμ -
1
e

∂ μ) ]2 = ρ2e2B2

ρ2 = [
1

2
(v + χ ) ]2 =

1
2

(v + χ )2 =
1
2

v 2 + vχ +
1
2
χ 2

ρ2e2B2 = ( 1
2

v 2 + vχ +
1
2
χ 2 )e2B2 =

1
2

v 2e2B2 + e2vχB2 +
1
2

e2χ 2B2

                                                 =
1
2

M2B2 + e2vχB2 +
1
2

e2χ 2B2

(H2) ⇒ L = -
1
4

FμνF μν +
1
2

M2B2 + e2vχB2 +
1
2

e2χ 2B2 +
1
2

(∂ μχ )2 + μ2 ρ2 - λρ4 (H3)

Since      μ2 ρ2 = μ2 (
χ + v

2
)2 =

1
2

μ2 (χ + v )2

                           =
1
2

μ2(χ 2 + v 2 + 2χv ) =
1
2

μ2χ 2 +
1
2

μ2v 2 + μ2χv
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                                    =
1
2

μ2χ 2 +
1

2λ
μ4 + μ2 μ2

λ
χ =

1
2

μ2χ 2 +
1

2λ
μ4 + μ3χ

1

λ

-λρ4 = -λ(
v + χ

2
)4 = -

λ
4

(v + χ )4 = -
λ
4

[(v + χ )2 ]2

               = -
λ
4

(χ 2 + v 2 + 2χv )2 = -
λ
4

[ (χ 2 + v 2 ) + 2χv ]2

     = -
λ
4

[ (χ 2 + v 2 )2 + 4χv ( χ 2 + v 2 ) + 4χ 2v 2 ]

            = -
λ
4 (χ 4 + v 4 + 2χ 2v 2 + 4vχ 3 + 4χv 3 + 4χ 2v 2 )

              = -
μ4

4λ
-

λ
4
χ 4 -

1
2

μ2χ 2 - μ3χ
1

λ
- λ μχ 3 - μ2χ 2

μ2 ρ2 - λρ4 =
1
2

μ2χ 2 +
1

2λ
μ4 + μ3χ

1

λ
-

μ4

4λ
-

λ
4
χ 4 -

1
2

μ2χ 2 - μ3χ
1

λ
- λ μχ 3 - μ2χ 2

                                   =
μ4

4λ
-

λ
4
χ 4 - λ μχ 3 - μ2χ 2

(H3) ⇒ L = -
1
4

FμνF μν +
1
2

M2B2 + e2vχB2 +
1
2

e2χ 2B2+
1
2

(∂ μχ )2 +
μ4

4λ
-

λ
4
χ 4 - λ μχ 3 - μ2χ 2 (H4)

Notice the second term on the right side of the equation, the free gauge field B2 is with a mass 
term M2. H4 is a massive Lagrangian. Thus, for this derivation, we observe that Der(L, Lm) holds; 
therefore, for j=g[Der(L, Lm)], j∈X. In other words, since its model X is satisfiable, the mass predicate 
M is definable. QED.

5　General discussion

Quantum field theory has successfully generated a number of general conclusions. It seems 
meaningful to disclose the logical forms of these conclusions. The formal representation of these 
conclusions would also enable us to address formal issues of these metalogical properties. Gödel 
numbering method seems useful as well as powerful to look at these issues from formal arithmetic 
perspectives. The results are obtained by integrating the twin theorems by Gödel and Tarski, which 
are briefly introduced in Appendix.
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Appendix      Twin theorems of Gödel and Tarski

We assume readers are familiar with the first order logic (PL), the first order theory (N N ), and the arithmetic theory 

(N). Intuitive natural numbers used in N are given by n, and the corresponding enumerers used in NN are denoted by 

bold n. Enumerers are constructed by starting from the empty set ∅ and the so-called successor function, such that 

∅ =0, {∅} =1, {∅ , {∅}} =2, and so forth. In the following, we introduce Gödel's theorem first, and Tarski's theorem 

second.

Definition of Expressibility: If P(a1, … , an) holds in N, then P(a1, …, an) is provable in NN. If R(a1, … , an) does not hold in 

N, then ¬P(a1, …, an) is provable in NN.

Definition of Consistency: For any given formula "L" in NN, either L is provable, or else ¬L is provable, but not both.

For a given formula "L", denote its proof by Bew(L). Assume g(L) = i and g(Bew(L)) =j, where i and j are Gödel numbers. 

We introduce a relation G(i, j) in N, and define a function term G(i, j) in NN. Gödel constructed a formula, P(x)= ∀y¬G(x, y), 

in which x is a free variable. Let g[P(x)] = i, by substituting x with i, we can use, S = P(i) = ∀y¬G(i, y). This is a so-called self-

reflection sentence. 

Gödel First Theorem: Neither S nor ¬S is provable in NN.

We now briefly sketch a proof. First, we prove that S is not provable. Assume for contradiction that S is provable, 

then it must have a proof, write Bew(S), let g(Bew(L)) = j and g(S) = i, so that G(i, j) in N. By the expressibility, G(i, j) must 

be provable in NN; but S said that for any j, ¬G(i, j). This contradiction shows that the assumption is impossible. Hence, S 

is not provable in NN.

Second, we prove that ¬S is unprovable in NN.. Assume for contradiction that ¬S is provable. Then by consistency, S is 

unprovable, so that for any j, g(Bew(S)) ≠ j. Hence, for any j, G(i, j) does not hold in N; by the expressibility, ¬G(i, j), for any j. 

As such, by ω_consistency, we have ∀y¬G(i, y), which means S is provable in NN. This contradicts to the assumption that 

S is unprovable. Thus ¬S is unprovable in NN. QED.

The above result shows that the consistency of NN is independent of NN. Now let us speculate about what S expresses. 

S is a self-reflection sentence, it says that S is unprovable, and we have just proved it above; thus, S is true, but not 

provable in NN, which by definition means that NN is incomplete. This is the well-known Gödel Incompleteness Theorem. 

We now turn to Tarski's indefinability theorem.

Definition of Definability: Let g(P(x)) = m, and g(P(m)) =n, we can hold a binary relation d(m, n) in N. Accordingly, we 

say D(m, n) is definable in NN, meaning D(m, n) has a model, which is not null.

Tarski introduced a new predicate of being true, denoted by T, and he constructed a sentence below:

A( x ) = ∀y [ D ( )x, y → ¬T ( y ) ]

Let g(A(x)) = m, substituting x by m, we have:

B (m) = ∀y [ D ( )m, y → ¬T ( y ) ]
Let g[B (m)] = n, we have d(m, n) which holds in N; hence, D(x, y) is definable in NN. Then, by standard logic, we can 

infer ¬T(y). Now we show that T is not definable, meaning its model is null. Denote B (m) by L. If L is pre-assumed as 

true, denote it by Lt, and write Lg = g(L). As such, we may assume for contradiction that T had a model X:

X = { Lg|X ⊨L, i.e., Lt is presupposed to be true under X }
Since Lg= g(Lt), i.e., Lg is the Gödel number of B (m). By the definition of d(m, n),we have d(m, Lg), hence D(m, Lg) is 

definable in NN. However, recalling the logical structure of B (m), which is a universally quantified conditional statement, 

we may infer ¬T(Lg), i.e., Lt is not true in model X; hence, Lg ∉ X, which shows that X may only be null. In other words, 

since T has no model, the truth predicate function is arithmetically indefinable.
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