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Turing Machines and Semantic Symbol Processing 
Why Real Computers Don't Mind Chinese Emperors 

Richard Yee 

Debate over the computer metaphor of mind appears endless.  At issue is the 
prospect of a computer ever having what could properly be considered a mind.  
Many proponents of the view that computers could have minds are persuaded in 
large part by the power of information processing.  The essence of mind seems 
to lie in the processing of various forms of information including goals, 
perceptions, plans, and actions.  Moreover, the theory of computation provides 
powerful support for the view that any sufficiently complete scientific theory of 
the mind, e.g., a theory relating neurological processes to psychological ones, 
would be computable.  This essentially reflects the view that the Church-
Turing thesis covers mind-brain processes. If human minds were understood in 
sufficient detail, then it would certainly be possible, in principle at least, to build 
computers that have real minds. 
 In contrast, many critics view computers as mere mindless automatons.  
In the rote execution of a program, how could a computer ever come in contact 
with any intrinsic meaning in its actions?  How could a computer's symbols ever 
represent anything to the computer?  Because the ability to process symbols 
semantically is a key mental trait, the formal symbol processing that a 
computer performs could never be sufficient to endow it with a mind. 
 The resulting debate between proponents and critics often revolves 
around the possibility of a computer's having any of a number of key mental 
qualities including consciousness, understanding, semantics, intentionality, 
qualia, creativity, and insight.  Most such phenomena currently have no 
completely satisfying or agreed-upon characterizations (cf. Sloman, 1985).  
However this lack does not inhibit the formulation of arguments and refutations 
that reflect personal intuitions rooted in diverse backgrounds and biases.  It is 
therefore inevitable that divergent and strongly held views should arise over 
many central questions, and equally inevitable that recurring attempts should be 
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made to convince the other side of the compelling force of one's own intuitions.  
Few are ever swayed, of course, and the debate rages on. 
 Disagreement over poorly defined mental phenomena is one thing, but 
too often what divides proponents and critics are their differing intuitions about 
computers, programs, and computation.  For example, consider a computer 
running a program, which produces some computation of interest.  In analyzing 
this phenomenon, do the key philosophical questions center on the program or 
on the computer?  Which entity has primary responsibility for the computation?  
If it should happen that proponents focus on programs while critics focus on 
computers, then the ensuing debate might be vigorous indeed, being fueled by 
arguments that are largely at cross-purposes.  Such a situation, however, should 
not be tolerated for long because, unlike mental phenomena, computers, 
programs, and computation should have reasonably precise definitions. 
 Unfortunately, in most cases the pivotal concept:  computer is not 
precise.  The common meaning of the term denotes programmable machines 
such as personal computers, workstations, and mainframes.  Such machines are 
physical instances of universal Turing machines (UTM's).  Often, however, 
the term is used to indicate any Turing machine (TM), not just universal ones.  
Although in many contexts the distinction between UTM's and non-universal 
TM's is not stressed, in the debate over the “computer metaphor” of mind, the 
distinction is crucial. 
 Countless critiques of the idea that mind is computable stem from the 
view that “computers” are only formal symbol processors.  While such a view 
might hold for UTM's, it does not hold for all TM's.  Shifting the debate to a 
more rigorous basis—i.e., focusing upon Turing machines proper rather than 
upon “computers” or “formal systems”—has devastating consequences for two 
of the most widely known critiques of the computer metaphor:  Searle's Chinese 
room argument (Searle, 1980) and the family of arguments based upon Gödel's 
Incompleteness theorems (e.g., Nagel & Newman, 1958; Lucas, 1961; Rucker, 
1982; Penrose 1989; Tymoczko, 1990).  The Chinese room argument only 
attacks UTM's, which constitute an exceptional subclass of all TM's.  The 
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“Gödelian” arguments attack formal systems, which correspond to static TM's, 
again, a peculiar restriction of the full TM model. 
 One thus finds that the failure to address Turing machines directly has 
bred volumes of unproductive debate.  Both critics and proponents have 
engaged in disputes over differing “machine intuitions.”  Critics have 
formulated attacks upon TM-surrogates:  UTM's and formal systems, while 
proponents have often responded by defending TM's in essence, but they have 
done so only implicitly—leaving the critics with their surrogate machine 
intuitions intact.  A more profitable course in examining issues of mind and 
computation would be for both sides to address explicitly only full-fledged 
Turing machines, the real computers. 

I 
Minds and Turing Machines 

To analyze arguments in the debate, it is first necessary to define clearly the 
questions at issue.  Unfortunately, even this step entails some confusion.  
Probably the best-known position in support of the computer metaphor of mind 
is the one dubbed by Searle as strong AI (Searle, 1980).  Searle describes this 
position as holding that a suitably programmed computer must have a mind—in 
the same sense in which humans have minds—if the computer exhibits the right 
inputs and outputs (Searle, 1980, 1987, 1990, 1992).  This characterization is 
problematic, but the fault is not necessarily Searle's, at least not entirely (see 
Searle, 1992, Chapter 9, p. 200, and Footnote 2).  Often the AI community itself 
has been too imprecise in articulating its own claims. 
 One problem with this common view of strong AI is that it conflates 
two independent propositions.  The core assertion of strong AI is that mind is 
computable, i.e., a mind could result from the actions of a physically instantiated 
Turing machine.  A second proposition holds that the Turing test (Turing, 
1950) is an adequate means for awarding the label has-a-mind to a computing 
machine.  In other words, this second proposition holds that probing a system 
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exclusively through its “linguistic” input-output behavior can provide sufficient 
information to justify the attribution of true mental processes to the system (e.g., 
Dennett, 1990). 
 Clearly, these two propositions—corresponding to Turing's most 
celebrated contributions—are independent.  A position on one does not entail a 
position on the other.  In particular, it would be possible to argue against the 
adequacy of the Turing test while maintaining the view that mind is computable 
by Turing machines.  Although many supporters of strong AI also support the 
Turing test, it would be somewhat of a peripheral issue if TM's could never have 
minds in the first place.  Hence, it is important keep these two propositions 
separate. 
 This article is concerned solely with arguments impacting the first 
proposition, namely, that some type of Turing machine could truly possess a 
mind.  This is will be stated as follows: 

Mind is a computation producible by a Turing machine.  (P1) 

Proposition P1 expresses the essence of the computer metaphor of mind.  If P1 
is true, then there is a non-empty class of Turing machines that, when physically 
instantiated, would have (or could develop) minds in the same sense in which 
humans have (or develop) minds.  This is exactly analogous to saying that 
addition could result from a real TM.  Hence, P1's claim is that, like addition, 
mental phenomena are computations that some subclass of TM's could perform. 
 P1 does not entail any position, pro or con, regarding the Turing test.  
Even more importantly, it does not refer to computers, programs, formal 
systems, or universal Turing machines.  P1 does not refer to computers because 
the term connotes two related but significantly different concepts:  Turing 
machines and universal Turing machines.  P1 does not refer to programs 
because programs are merely descriptions of TM's.  It does not refer to formal 
systems because, unlike TM's, formal systems do not provide for receiving 
inputs from external sources.  Finally, P1 does not single out UTM's because, 
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contrary to their name, “universal” machines constitute only a subclass of all 
TM's—those that are universally programmable.1  
 Given P1, attention may turn to possible arguments against it.  The 
following sections examine two such arguments:  Searle's Chinese room and 
arguments from Gödel's Incompleteness theorems.  When viewed in light of P1 
and the theory of computation, the flaws of each argument become apparent. 
Although the theory of computation exposes the flaws, it does not necessarily 
address the original intuitions of critics who would likely persist in their 
contention that computation is inevitably devoid of semantic understanding. 
Therefore, Section III presents a basic account of why TM's can process 
symbols non-formally.  Section IV concludes with a view toward further 
investigation of semantic symbol processing in Turing machines. 

II 
Attacks on Turing machines? 

Since there are two prominent arguments that purportedly refute strong AI, it is 
natural to examine how each pertains to P1.  A straightforward analysis will 
show that the Chinese room (CR) argument (Searle, 1980) has no direct bearing 
on P1 because the CR fails to address the entire class of TM's.  The second 
argument is actually a family of arguments centered around Gödel's 
Incompleteness theorems (e.g., Lucas, 1961; Penrose, 1989).  Although 
somewhat more complicated to analyze, it will be seen that Gödelian arguments 
are similarly flawed in that they attack only static formal systems, which are an 
inadequate substitute for dynamic TM's.  Both arguments thus fail due to 
erroneous identifications between TM's and “equivalent constructs” that turn out 
to be non-equivalent for the purposes of answering philosophical questions 
about minds and computation. 

                                                           
1 Moreover, strict UTM's are uninteresting from the point of view of mental processing 

for a number of reasons.  In particular, they are among those TM's that cannot re-program 
themselves, i.e., they cannot learn. 
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2.1:  The Chinese Room Versus Programmed Computers:  Searle claims that 
the Chinese room (CR) argument refutes strong AI.  Does it refute P1?  Briefly, 
the CR argument is as follows.  Inside a room is a human U (Searle), a program 
P, and Chinese input symbols cin which are composed into strings.  Figure 1(a) 
depicts this situation.  U can understand no Chinese and is only able to process 
the inputs cin according to program P.  We may assume that the 

 
Figure 1:  The Chinese room is a UTM.  U does not understand Chinese, but 
what about TP? 

CR can convincingly pass a Turing test, and then ask whether it follows that the 
Chinese symbols are being understood inside the room.  At no time can U 
understand the meanings of the symbols cin.  Furthermore, argues Searle, there 
is nothing else about the room which could understand them.  The only other 
entity, program P, could be eliminated by having U “memorize” it.  Doing so 
would still not enable U to understand the  symbols cin.  Thus, the meanings of 
the symbols are never understood inside the room. 
 One conclusion drawn from this argument is that the Turing test is 
inadequate as a test of understanding:  the appearance of understanding need not 
imply its existence.  As noted, however, this issue is not of current concern.  A 
second conclusion is that no “programmed computer” could understand its input 
symbols because computers always do exactly what U does in the room:  follow 
rules for syntactically manipulating symbols without connecting them to any 
semantic content.  Because the semantic processing of symbols is central to 
mental functioning, this establishes that computers could not have minds. 
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Figure 2:  Two types of Turing machines.  Part (a) shows a UTM U with input z 
composed of a program P and a nominal input x.  Part (c) is an instance of the 
TM described by P.  Part (b) is a view of U as the machine TP 

TM's, UTM's and Programs:  To understand this argument's relationship to 
P1, it might be useful to review some aspects of so-called “universal” 
computations.  Figure 2 illustrates the relationships between UTM's, programs, 
and TM's.  Fig. 2(a) shows that the total input to every UTM U consists of two 
parts:  a program P and a nominal input x.  P is a description of some Turing 
machine TP (shown in Fig. 2(c)).  U interprets program P as rules for processing 
the nominal input x.  The output of this process, y, is the same as the output of 
TP running directly on x.  Figure 2(b) illustrates the typical operation of a 
programmed computer in which the program portion of U’s input is held 
constant while the nominal inputs are varied.  In this manner U is able to 
simulate the overall input-output behavior of TP. 
 It is important to keep in mind the exact sense in which U is 
“universal.”  U, like every other TM, computes one specific function.  In 
general, then, U and TP are two different TM's that compute two different 
functions.  U maps input z = 〈 P, x 〉 to the output y, while TP maps x to y.  Only 
by restricting attention to U's nominal input x (as in Fig. 2(b)) does one observe 
the reproduction of TP's input-output behavior.  Internally, U operates in a very 
specific fashion which centers on properly interpreting program P, a portion of 
input z.  Nominal input x is processed only via the instantiation of TP, not by U 
directly.  Hence, to generate TP's output on input x, it is sufficient for U to 
process x purely formally. A UTM, therefore, is simply a TM that treats a 
portion of its input as a body of rules for formally manipulating the remaining 
portion of its input. 
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 Consider, for example, the differences between a simple calculator that 
can perform only addition and a general purpose computer running a program 
that describes the calculator.  There is no software-hardware distinction for the 
calculator.  The calculator itself embodies an algorithm for performing addition.  
One could never remove the calculator's “program” without losing the whole 
machine.  The computer, on the other hand, embodies a universal algorithm, 
which is nothing more than an algorithm for interpreting and executing rules.  It 
is clearly not an algorithm for addition.  To the computer, a calculator program 
is just an input, which could be completely replaced without affecting the 
computer itself.  To find out how it would “actually feel” to add numbers, one 
should consult the calculator because the computer cannot add—it can only 
instantiate other TM's. 
 When a computer runs a program, there are at least two identifiable 
computations, the universal one and that of the TM described by the program, 
both of which are simultaneously implemented on a single hardware system.  It 
is sometimes said that the program's TM is a “virtual machine,” but the truth is 
that both computations have precisely the same ontological status.  Each 
corresponds to a particular mathematical, or logical, description of the physical 
system.  Thus, neither computation could be considered more or less “real” than 
the other.2   
 To investigate computational processes properly, therefore, it is 
advisable to attend only to the processes themselves, ignoring UTM-computers 
altogether.  Unless strictly-universal computations happen to be the objects of 
interest, UTM's need never enter the picture.  They are nothing more than 
middlemen whose own computations divert attention from the computations that 
they instantiate.  UTM's are mathematical curiosities and engineering 

                                                           
2 This is the formal justification for one-half of the Systems Reply to the Chinese room 

argument. That is, the theory of computation establishes that there are two computations in the CR.  
Hence, the possibility exists that the second computation, the one described by program P, is 
actually understanding the Chinese input symbols.  To conclude the second half, that the Chinese is 
definitely being understood, one would either need to believe in the Turing test, or need to know 
whether the program's TM does what Chinese brains do (N.B., not minds). 
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conveniences, but when it comes to questions about minds and computation 
they are philosophical quicksand. 
 
The Chinese Room Revisited:  The Chinese room argument asserts that 
executing a program is not sufficient to produce a mind (e.g., Searle, 1992, p. 
200).  Suppose this conclusion were correct.  Would P1 have been scathed?  
The programmed entity U in the CR is exactly a “computer,” i.e., a UTM.  Thus, 
at best, the CR only establishes that UTM's can never understand the meanings 
of their (nominal) input symbols.  On the other hand, P1 asserts only that some 
TM's may have such mental qualities.  Thus, even if one granted the argument's 
claims with respect to UTM-computers, there would remain plenty of non-
universal TM's for which P1 might still hold. 
 

 
Figure 3:  UTM’s are a proper subset of all TM’s.  Even if mind were not a 
universal computation, it does not follow that it is not in some other Turing-
computable class. 
 
 Figure 3 illustrates this point, which can be formalized as follows.  
Consider the following assertion: 

Property P is true of every computer. (2) 

This statement is ambiguous, and should be replaced by one of the following: 
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P is true of every Turing machine.  (3a) 
P is true of every universal Turing machine. (3b)  

Statement (3a) is much stronger than (3b).  Because UTM's are a proper subset 
of the set of all TM's, (3a) logically implies (3b), but not conversely.  In general, 
it would be fallacious to form a conclusion like (3a) from arguments that only 
establish its (3b) equivalent.  Although the CR argument only addresses UTM's 
running programs, it seems to have been widely interpreted as a demonstration 
that no TM could understand the meaning of its input symbols.  Clearly, 
however, such a deduction would be erroneous.  P1 is thus immune from any 
straightforward application of the Chinese room argument. 
 What does this analysis say about questions of syntax-versus-
semantics?  The preceding comments do not dispute Searle's most basic 
claim—shared by Harnad (Harnad, 1990)—which is that formal manipulation of 
symbols is significantly different from the semantic understanding of symbols 
required for minds.  Analysis of the CR argument simply shows that it does not 
address the symbol processing abilities of all (indeed, of most) TM's because the 
CR examines the internal processing only of programmable UTM's.  On this 
point, the universality of UTM's is immaterial because it does not extend below 
the input-output level, and the argument assumes that performance there looks 
like the true understanding of Chinese.  To establish that all TM's are as numb to 
certain input symbols as U, one would need an argument that specifically 
addresses the internal processing of all TM's.  However, Section III, below, 
presents arguments to the contrary, showing that TM's are capable of processing 
symbols in a non-formal fashion. 
 
The Mind-Brain Analogy:  Searle points out that the strong AI position is 
often characterized by drawing an analogy between minds and brains 
on the one hand, and programs and computers, or software and 
hardware, on the other, i.e., mind:brain::program:computer, or 
mind:brain::software:hardware (Searle, 1980, 1987, 1992).  If this analogy is 
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indeed pervasive, it would not be surprising.  Computers and programs are two 
of the most conspicuous icons of our time.  The Chinese room argument is 
intended to refute this analogy, but such a refutation is unnecessary because the 
analogy itself is not apt. 
 Translated into more precise terms, the analogy reads that mind is to 
brain as the description of a TM is to a UTM, i.e., mind:brain:: 
TM-description:UTM.  This borders on the nonsensical.  Even if one could 
make sense of it, there is little point in trying.  Turing machines, not simply 
UTM's, are the objects of interest.  The proper analogy to consider, therefore, is 
the one derived from P1: 

mind:brain::computation:Turing-machine. 

Could a Turing machine have a mind in the same way that brains have minds? 
 
2.2:  Gödelian Truth Versus Formal Systems:  The view that Turing 
machines are merely formal processors, blind to the meanings of their symbols, 
also underlies critiques based on Gödel's Incompleteness theorems (e.g., Nagel 
& Newman, 1958; Lucas, 1961; Rucker, 1982; Penrose, 1989; Tymoczko, 
1990).  All such arguments are based on Gödel's proof that formal systems 
have limitations, which in a certain manner, translate into limitations on Turing 
machines.  Gödel proved that any formal system F, sufficient for Peano 
arithmetic, has a well-formed statement G(F) that is clearly seen to be true but is 
not derivable using only F's axioms and transformation rules.  This fact is used 
as the basis for arguing that certain human powers of thought cannot be 
reproduced by any formal system or any equivalent TM. 
 The essence of this argument is a “proof” that runs generally as 
follows.  Suppose that human thought H were producible by some formal 
system F, i.e., H = F.  Since F must be sufficient for Peano arithmetic, there 
must be a statement G(F) which is true but which F cannot prove via its axioms 
and derivation rules.  Nevertheless, through “mathematical insight” humans H 



Turing Machines and Semantic Symbol Processing 

48 

can see that G(F) is true.  Thus, H can prove something unprovable by F, 
showing that H≠F:  human thought is not producible by any formal system. 
 The key to this argument is the idea that, thanks to Gödel, humans 
could always outmaneuver any formal system F.  This is done by forming F's 
Gödel statement G(F) and recognizing its truth.  Note that knowing of the 
existence of some Gödel statement G(F) is not the same as knowing that a 
particular statement w is in fact F's Gödel statement, i.e., that w = G(F).  
Gödelian arguments assert that humans are actually capable of establishing the 
truth of particular statements G(F) for systems F that are alleged to be 
equivalent to human thought. 
 Many point out that such an assumption seems unfounded:  if human 
thought were in fact producible by a formal system, it would undoubtedly be 
enormously complex, and there is no principled reason to believe that humans 
could produce its Gödel statement (e.g., Hofstadter, 1979; Rucker, 1982).  
Others point to related problems regarding the consistency of formal systems, 
which is necessary for applying Gödel's results (e.g., Putnam, 1960; Bowie, 
1982; Chalmers, 1990; Davis, 1990; Mortensen, 1990).  Although such 
refutations might have merit, they have not won over many Gödelian critics 
(e.g., Lucas, 1961; Penrose, 1990; Tymoczko, 1990).  Perhaps these refutations 
do not directly confront the central Gödelian intuition which is something akin 
to the sense that “I can easily see a truth that provably cannot be derived by 
any formal system.”  A more direct response to this intuition comes in two parts.  
The first points out that humans are not really so clever.  The second points out 
that TM's could also outmaneuver formal systems, if they were given a fair 
chance. 
 
Naked Formal Systems:  What enables humans to produce Gödel statements 
for formal systems?  Gödel has shown us the key:  it is simply necessary to 
construct a particular self-referential statement about a given system.  Surely, 
humans could reproduce Gödel's “trick” for any given formal system, especially 
if it were not extremely complex.  Let us test this assertion on a very simple 
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formal system A:  Peano arithmetic.  Of course, it would be too easy to derive 
G(A) if A were specified using the usual alphabet of mathematical symbols such 
as ‘×’ for multiplication or ‘∃’ for ‘there exists’.  Instead, let us encode the 
symbols for A using arbitrarily chosen Chinese characters:  for example, we 
could replace the symbol ‘∃’ with the Chinese symbol for ‘horse’.  Call this 
Chinese encoding of Peano arithmetic AC. 
 Now imagine being given AC with knowledge of neither the encoding 
nor even the fact that AC represents Peano arithmetic.  How could one formulate 
G(AC) and be convinced of its truth?  Worse still, suppose one were given an 
encoded form of a system, F, more complicated than AC?  It is absurd to think 
that anyone could be certain of both forming and recognizing the truth of the 
Gödel statements for formal systems under such circumstances.  Although some 
might feel that the intended interpretations of the symbols should be provided 
with the systems, such information is external to any formal system.  It is 
information about the relationship between the given formal system and another 
system—ultimately the “system” of human experience. 
 The point of this example is simply that humans could only 
outmaneuver a formal system via Gödel's technique if they were provided with 
meanings for the symbols of the formal system.  Only in such a case could 
anyone construct meaningful statements (let alone true ones) without relying on 
the system's axioms and transformation rules.  This fact is so obvious, it is easily 
missed.  It is easy to assume that being given a formal system F further entails 
being given an interpretation, Interp(F), that assigns meanings to F's symbols. 
 
Semantic Clothing:  Given a semantic interpretation for the symbols of a 
system F, it does indeed seem possible to derive a Gödel statement G(F), at 
least in principle.  But if humans require Interp(F) in order to form the Gödel 
statement, it would be unfair to withhold this information from F, the system 
humans claim to be outmaneuvering.  F should also be given Interp(F).  But 
now this highlights a crucial difference between formal systems and TM's. 
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Formal systems do not accept inputs from external sources, whereas TM's 
clearly do. 
 To illustrate the crucial role of inputs, consider the following fallacious 
argument.  I claim that my image can never be captured in any mere photograph.  
Suppose that, to prove me wrong, you were to take a picture of me.  To 
convince me that you have indeed captured my true image you must give me the 
photograph.  I will then point out that this photograph fails to reflect the obvious 
fact that I am holding a photograph.  Clearly, I can outmaneuver any alleged 
photograph of me because no photograph can portray its own image.  I therefore 
conclude that although photographs might reflect certain likenesses, they can 
never fully capture my true image.  I can always identify a fatal discrepancy in 
any photograph that is given to me (cf. Lucas, 1961; Hofstadter, 1979). 
 The fact that a person could derive a Gödel statement for system F, 
given an interpretation of its symbols, Interp(F), does not prove that F was not 
an accurate account of the person at the time before Interp(F) was provided. In 
other words, if person H were characterized by formal system F at time t, i.e. if 
H = F, then providing H with Interp(F) at time t+1, would thereby change H 
into F+ = F + Interp(F).  F+ has new axioms that may entail G(F), so it would 
not contradict Gödel's theorems for F+ to derive G(F).  Furthermore, the 
derivation of G(F) would in no way imply that H ≠ F at time t.  There would 
only be a contradiction if H could prove G(F) without being given Interp(F). 
 Gödelian arguments now face the following dilemma.  Either (a) 
humans must be capable of establishing the truth of Gödel statements for formal 
systems whose symbols are utterly meaningless (to the persons in question), or 
(b) it must be proved that no formal system F+ can derive G(F), where F+ = F 
+ Interp(F) is a formal system F augmented with a suitable interpretation of its 
own symbols.  The first case is impossible because the “self-evident truth” of 
any Gödel statement requires knowing the meanings of the symbols in question.  
Establishing the second case, which is not covered by Gödel's theorems, would 
require a new proof.  However, there is good reason to doubt that such a proof 
exists because Gödel has shown us how to construct G(F) from a suitable 
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interpretation of system F's symbols.  It is far from obvious that Gödel's process 
of using Interp(F) could not be automated—at least to the same extent that 
humans are capable of performing it. 
 As Penrose points out (Penrose, 1989, p. 111-112), there is nothing 
particularly sacred about the truth of the Gödel statement G(F).  F's axioms are 
also “obviously true” but not derivable within F.  Hence, there is no more magic 
required in seeing the truth of G(F) than there is in seeing the truth of F's 
axioms.  To be validated, both the axioms and G(F) must be interpreted rather 
than formally derived.  In both cases the interpretation process begins by 
associating meanings with F's symbols.  These meanings are essentially 
correspondences between the symbols and entities in some other system, e.g., a 
person's knowledge and beliefs about the world.  The truths of the axioms and 
Gödel statement are then ascertained by determining “truth” in the other system. 
 
Learning Machines:  The fallacy of Gödelian arguments lies in equating 
dynamic Turing machines with “static snapshots,” i.e., formal systems.  Turing 
machines can interact with external sources of information and, through such 
interactions, change themselves.  Formal systems, on the other hand, are 
inputless engines for generating a body of theorems.  In short, Turing machines 
can learn, whereas formal systems cannot (cf. Arbib, 1987, Section 8.5). 
 Although most computer programs (Turing machines) that people 
encounter retain their functionality from one use to the next, making them 
equivalent to fixed formal systems, not all TM's need be so “faithful.”  Given 
inputs, TM's may literally re-program themselves, becoming different machines 
with new behaviors and abilities.  In particular, it is entirely possible that a TM, 
given an interpretation of its own program, could produce the Gödel statement 
for that program.  There would be no violation of Gödel's theorems because the 
input interpretation would have first changed the machine—just as it would for 
humans. 
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III 
Formal Symbol Processing Versus Turing Machines 

Are the flaws in the Chinese room and Gödelian arguments mere mathematical 
technicalities?  Fundamentally, both arguments are motivated by the same 
intuition:  automatic computation is an inherently meaningless activity, whereas 
the very essence of mind lies in subjective awareness and the certainty that 
thought processes are intrinsically meaningful.  The CR and Gödelian 
arguments are simply vehicles that attempt to establish concretely this key 
difference between computational and mental symbol processing.  An essential 
question, therefore, is whether every Turing machine necessarily processes 
information in a fashion that is inherently meaningless to the machine. 
 To some it may seem obvious that all TM's are simply formal symbol 
processors.  If this is so, then it should be easy to prove.  The first requirement is 
to define the difference between formal and non-formal types of symbol 
processing.  The phrases symbol processing or symbol manipulation are 
sometimes used as if the processing of symbols were necessarily formal, but 
this is obviously not true.  For example, in the CR if U were literate in Chinese, 
then the processing of the input symbol for ‘horse’, say, would not necessarily 
be formal.  The reason is that, in interpreting the symbol, it would become 
possible to access U's personal information about horses, information not 
contained in the symbol itself.  If U believed that horses are bigger than bread-
boxes, for example, this information could play a role in determining U's output. 
 For the processing of input symbol αi to be strictly formal, outputs may 
depend only on objective information intrinsic to αi itself. This is usually 
considered information describing αi's shape (literally its form) because that 
information allows the symbol to be distinguished from other potential symbols.  
The processing of αi would be non-formal if (a) the processor were to associate 
the symbol with subjective information, not intrinsic to αi's shape, and (b) such 
information were allowed to influence the course of subsequent processing and, 
ultimately, the outputs. 
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Turing Machines and their Transition Functions:  To determine whether all 
Turing machines are restricted solely to formal symbol processing, one must 
consider the details of how a TM processes its input symbols.  A Turing 
machine T is a mathematical object denoted  

T = ( S, Γ,δ), where 
 
S = { s0, . . . , sN } is a set of internal control states, which 
includes the start state s0 but not the halt state H 
Γ = { α1, . . . , αM, γ1, . . . , γP} is a set of tape symbols 
containing the subset  
 Σ = α1, . . . , αM, the set of input tape symbols; 
δ : S × Γ → (S ∪ {H}) × Γ × { Left, Right} is the transition 
function. 

T has an infinite tape each of whose cells may contain a single symbol from Γ, 
and it has a read-write tape head which accesses exactly one cell at a time and 
which can be moved one cell to the left or right on each application of the δ 
transition function.  The δ function is the heart of a TM.  For example, when 
machine T is in control state sp and is reading symbol αi, δ(sp, αi) = (sq, γj, 
Left) indicates that T writes γj on the tape, moves the tape head one square to 
the left, and changes to control state sq.  This is how a TM processes symbols. 
 Is this strictly a formal process?  To be so, one must guarantee that the 
determination of (sq, γj, Left) from (sp, αi) entailed no association of 
information with αi that is not intrinsic to the symbol itself.  But this is 
impossible to guarantee.  It is entirely possible that in the δ transition, the 
processing of symbol αi involved an association with stored information, which 
in turn influenced the decision to produce the resulting machine configuration 
(sq, γj, Left). 
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Figure 4:  A non-formal δ transition on symbol αi.  The new machine 
configuration depends on information about αi that is not an intrinsic property 
of the symbol.  

 Figure 4 illustrates how such a non-formal δ transformation might 
occur.  During the transition process the symbol αi is interpreted yielding, in 
particular, the fact that αi is bigger than a bread-box.  This information in turn 
influences the ultimate transition to the new machine configuration.  Thus, the 
transition was not solely dependent on formal properties of the symbol αi.  It 
also depended on information internal to the machine and on the ability to 
associate αi with portions of that information. 
 
Simulated Turing Machines: Weak Equivalence:  Why are UTM's formal 
symbol processors while other types of TM's need not be?  A UTM is able to 
process input symbols on a purely formal basis because it is given the δ-table of 
the TM that it is suppose to simulate.  That is, when a UTM, U, simulates 
another TM, T, U is given a table describing the complete input-output behavior 
of T's δ function.  U then performs a weakly equivalent (Pylyshyn, 1984) 
simulation of T's δ function.  Weakly equivalent computations need only 
maintain input-output or black-box equivalence:  given the same inputs yield the 
same outputs.  Stronger equivalence entails not only input-output equivalence, 
but also some degree of equivalence in the manner in which outputs are 
produced from inputs.  Thus, strong equivalence requires some degree of 
algorithmic equivalence.3 

                                                           
3Pylyshyn (1984) points out that the notion of strong equivalence has many levels 

depending upon the level of abstraction at which one describes an algorithm. 
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 For U to perform a strongly equivalent simulation of T, U would not 
only have to recreate T's δ function's input-output behavior; it would have to do 
so “in the same way” as T.  Suppose that the creation of T's δ-table entailed the 
interpretation of some input symbol.  This interpretive process would be 
completely hidden from U because only the result would appear in T's δ-table.  
As far as U is concerned a δ-table is a completely opaque input-output 
representation of another TM's δ computation. 
 For a UTM, however, such strong equivalence is never necessary.  U 
need only mimic T only insofar as necessary to recreate T's global input-output 
behavior.  Because U has T's δ-table, it is never necessary for U to also recreate 
the process by which the contents of the table were determined.  It is sufficient 
for U to look up the answer—a completely formal process.  Thus, a weakly 
equivalent simulation of T's δ function will always be sufficient, and, therefore, 
U may always treat the input symbols as formal objects only. 
 On the other hand, when a non-universal machine for T is constructed, 
there is no δ-table.  The δ transitions are transitions between physical states of 
the machine in accordance with the logical states of T's algorithm, to which they 
correspond.  It is impossible to guarantee that, during these transitions, an input 
signal does not become associated with stored information about its meaning.  
Such an association is entirely possible.  This analysis strongly suggests that P1 
is immune, not only to the Chinese room and Gödelian arguments, but to any 
argument founded on the claim that TM's are incapable of non-formal symbol 
processing. 
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Conclusions 

The failure of the Chinese room and Gödelian arguments to refute P1 does not, 
of course, establish its truth.  However, most criticisms of the computability of 
mind are reactions against the process of “merely following an algorithm,” i.e., 
against the rote manipulation of symbols according to a fixed set of instructions.  
This view of computation is strongly reinforced by UTM-computers and formal 
systems, both of which faithfully interpret rules and apply them to uninterpreted 
data.  The sole purpose of such activity is to produce a genuine instance of some 
other TM.  Therefore, such computations cannot exhibit key mental traits such 
as the pursuit of internally determined goals or adaptation through learning from 
input-output experiences. Understandably, this is a prevalent view of 
computation, but it is misplaced.  It is accurate only with respect to UTM's and 
other non-adaptive TM's. 
 Full-fledged Turing machines are not so limited.  The true computer 
metaphor of mind is the Turing machine metaphor of brain.  The correct 
proposition to consider is whether human mental processes are within some 
class of Turing machine computations, not simply the universal ones, or ones 
otherwise prohibited from input-generated learning.  General types of TM's are 
immune from the arguments put forth by critics whose intuitions are based upon 
surrogate TM's.  In particular, it is not true that TM's are incapable of processing 
symbols in a subjective and dynamically evolving manner. 
 A Turing machine is governed by its internal programming which may 
change over time.  A TM can be endowed with specific goals.  It can receive 
inputs from an environment, and its outputs can affect its environment.  A TM 
can remember input-output experiences, and it can form generalizations.  A TM 
can associate inputs with current memories and generalizations, enabling it to 
produce novel outputs.  It can develop predictive or causal models of 
phenomena in its environment, including models of itself.  In short, a TM can 
learn to control its environment in an effort to satisfy its internal goals. 
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 There are many reasons for believing that the control processes of 
biological machines—including the minds of human brains—are instances of 
Turing machine computations.  These views stem, not from a failure to 
appreciate the power and intricacy of human thought, but from an appreciation 
of the power and intricacy of Turing machine computations.  Attacking or 
defending the semantic powers of UTM's or formal systems is a waste of time.  
The semantic powers of Turing machines are what matter.  A more productive 
exchange of views, therefore, might focus on developing correct intuitions 
regarding Turing machines, as well as determining what it would take for their 
computations to be considered truly meaningful.4 
 
 
 
Department Of Computer Science 
University of Massachusetts at Amherst 
Amherst, Massachusetts 

                                                           
4 Special thanks go to Sharad Saxena for many useful and interesting discussions of these 

issues.  I also thank Neil Stillings, Andrew Barto, David Banach, Kevin Staley, John Moore, and 
Lance Williams for comments on drafts of this work. 
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