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1. Introduction

Next to the logicist project of Frege and Russell of reducing mathematics (or at least arithmetic) wholesale
to logic, Hilbert’s program is the main contribution to the foundation of mathematics of the last century.  Taking as
his motivation the paradoxes of set theory and the revisionist attacks on classical mathematics by such predicativists
as Poincaré and such intuitionists as Brouwer and the later Weyl, Hilbert formulated a new program for the
grounding of arithmetic.  The two basic tenets of the program were finitism and an instrumentalist formalism.
Finitism proceeds from the conviction that certain basic statements of the mathematics of natural numbers, i.e., the
finitistic statements, are firmly grounded in our intuition of finite sequences.  These statements include equaliti es and
inequaliti es between numbers and number terms built using certain finitistic functions (e.g., addition) and are closed
under truth-functional connectives and bounded quantification.  Statements involving unbounded quantification, on
the other hand, are in general not finitistically meaningful.  In particular, a universal statement is only finitistically
meaningful in so far as it serves to convey a hypothetical judgement about arbitrary given numbers, and an existential
statement only in so far as it is understood to consist in the exhibition of a witness or of a constructive method to find
one.  Under this interpretation the quantified statements are not capable of negation, and the principle of the
excluded middle fails for them. But, “no one, though he speak with the tongues of angels, will keep people from
negating arbitrary assertions, forming partial judgements, or using the principle of excluded middle.  What, then,
shall we do?” 1 Hilbert’s solution is to round out the body of finitistic statements by introducing ideal elements.
These ideal elements are given by the τ, and later, the ε functions, which in Hilbert’s system of logic do duty for the
quantifiers.  In order to do this, Hilbert adopts a formalistic stance: Mathematics is to be formalized in an axiomatic
system.  Some formulas of this system, when interpreted, will correspond to finitistic statements—these are the real
statements, all others are ideal.  The axiomatic system in turn consists of formulas (finite strings of symbols) and
derivations  (finite strings of formulas).  Thus, directly or indirectly via arithmetization of syntax, the formal system
is amenable to mathematical investigation on a finitistic basis.  The finitist investigation of formal systems is the
object of metamathematics, and its goal is to establish the consistency of the formal systems.  The particular way
such consistency proofs are to be given establishes much more, namely: the conservativeness of the ideal over the
real statements. This justifies the use of ideal methods in mathematics on a secure, that is finitist, basis.2

Today it is widely held that Gödel’s incompleteness theorem destroys Hilbert’s program.3  For if there were
a finitist consistency proof, to this proof would correspond a derivation in the formal system (using only the real part
of that system) of the formalized statement of consistency.  The possibilit y of such a derivation, is, however,
excluded by the second incompleteness theorem.  Despite this, the program was both fruitful in that it was the initial
motivation for a wide area of mathematical research in proof theory, and interesting in its own right as a
philosophical position.4

In the following, I will concentrate on the first tenet of the program, finitism.  The two aspects thereof are
the finitistic conception of number on the one hand, and finitistic reasoning on the other.  Both have been object of
analysis and criticism in the literature (most notably, by Kitcher 1976 and Tait 1981).  I will t ry to give an overview
of the issues involved and develop some new ideas on both aspects.  A detailed historical treatment, however, is
urgently needed.  Hilbert did change his views between the first formulation of the program in 1922 and the early
1930s due to a number of influences.  These influences include the technical work done by Hilbert’s students, in
particular Ackermann’s attempted consistency proof, but also debates with a number of philosophers (in particular,
Müller and Nelson), and finally the incompleteness theorems.  Our understanding of finitism is incomplete until
these influences are studied and the changes in the philosophical conceptions are analyzed.  Mancosu (1998b) has



- 2 -

emphasized one such important change, namely the shift from taking mathematical intuition to be essentially
empirical to taking it to be a Kantian pure intuition.  In this regard, unpublished material from Hilbert’s and
Bernays’s papers in Göttingen and Zürich would provide sources, and Moore (1997) and Sieg (in press) have taken
first steps in assessing this material.

2. Numbers and numerals

Hilbert and Bernays5 conceived of the finitistic view of numbers in reaction and contrast to the logicist
conception of number, which was supposed to yield a reduction of the number concept to broadly logical concepts.
In Frege’s view, numbers are extensions of certain concepts (For him, extensions of concepts, i.e., classes, are a
logical notion).  Russell took over this conception and tried to avoid the use of classes in Principia by his no-class
theory.6 Hilbert found this reduction of numbers to logical notions circular.  In 1905 he writes:

Arithmetic is often considered to be a part of logic, and the traditional fundamental logical notions
are usually presupposed when it is a question of establishing a foundation for arithmetic.  If we observe
attentively, however, we realize that in the traditional exposition of the laws of logic certain fundamental
arithmetic notions are already used, for example, the notion of set and, to some extent, also that of number.
Thus we find ourselves turning in a circle, and that is why a partly simultaneous development of the laws of
logic and of arithmetic is required if paradoxes are to be avoided.  (Hilbert 1905, 131)

Although around 1917 Hilbert was leaning towards a logicist viewpoint, he later abandoned it.  Bernays
(1930, 243) made the disagreements between logicism and Hilbert’s view very clear, and asserted that Frege’s
definition of cardinal numbers (“Numbers,” Anzahlen) conceals the epistemologically essential characteristics of
mathematics.  Hilbert’s finitistic viewpoint is not concerned with an analysis of the Number concept along the lines
of the Fregean project, but with a methodological program that presents an analysis of a certain minimal mode of
numerical reasoning which is epistemologically grounded and serves to secure higher mathematics.  Like
Wittgenstein’s proverbial ladder, the finitistic viewpoint can be abandoned once it provides this secure foundation.7

Securing higher mathematics through consistency proofs need not and cannot presuppose the logicist general
analysis of Number.  The Fregean analysis requires concepts and their extensions, entities which the finitist cannot
consider; and Russell ’s solution was rejected because of the use of the axiom of reducibilit y.  Hilbert attempts to
account for numerical reasoning in terms of finite sequences, at first introduced as sequences of strokes.  After 1923
Hilbert and Bernays are careful to distinguish between these “ finitistic numbers” and the general concept of number
(in either ordinal or cardinal sense), and usually refer to them as “numerals” (Ziffern).

Hilbert is interested in an account of elementary number theoretic reasoning which satisfies certain
constraints of immediacy, intuitiveness, and certainty.  These requirements of the methodological program translate
into requirements on the subject matter of contentual finitistic arithmetic [inhaltli che finite Arithmetik].  First of all ,
Hilbert wants the numerals to be “concretely” given and surveyable by us.  We have some immediate access to them
which allows us to gain knowledge of finitary number-theoretic facts.  The question now is: What are the numerals
exactly, and how do we have knowledge of them?  It seems clear that Hilbert wants some sort of intuition (in the
Kantian sense) to be the source of knowledge, but is it pure or empirical?  What is Hilbert’s “primitive arithmetical
intuition” and of what do we have an intuition when we engage in contentual arithmetical reasoning?  Contemporary
philosophy of mathematics would put the question in terms such as the following: Are the numerals physical objects?
Mental constructions?  Token or type?  Abstract or concrete?

Some of the most fruitful sources on the topic of Hilbert’s conception of finitism are his 1922 and 1926
papers, his collaborator Bernays’s exchange with Müller (Müller 1923, Bernays 1923), as well as the relevant
sections in Hilbert and Bernays (1934, 1939).  In 1905, Hilbert gives a first account of finitistic number theory in
terms of strokes and equality signs.  We note here that no identification of certain (sequences of) signs with numbers
is made, rather, the sequences of 1’s and =’s are divided into two classes, the class of entities (these are the
sequences of the form “1…1 = 1…1” with equal numbers of  1’s on the left and right) and the class of nonentities;
the former are the true propositions. Hence we have here a finitistic account, not of numbers, but of numerical truth.8

In the 1922 paper, Hilbert presents an explicit account of numbers as signs built up from 1’s and +’s.  He
writes:

The sign 1 is a number.
A sign which begins with 1 and ends with 1, and such that in between + always follows 1 and 1

always follows +, is likewise a number […]
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These number-signs, which are numbers and which completely make up the numbers, are
themselves the objects of our consideration, but have otherwise no meaning of any sort. (Hilbert 1922,
1122)

Just before this paragraph, Hilbert lays out the main conditions that govern these stroke symbols.  They are
“extra-logical concrete objects, which exist intuitively as immediate experience before all thought.”  Furthermore,
they are capable of “being completely surveyed in all their parts, and their presentation, their difference, their
succession (like the objects themselves) must exist for us immediately, intuitively, as something that cannot be
reduced to something else.” 9

Hilbert’s account was criticized by the philosopher Aloys Müller, and some of the points he made were well
taken. Following Müller’s criticism, Hilbert (and Bernays) change the account slightly.

1. The term ‘sign’ connotes having a meaning, but the number-signs are supposed to have no meaning
attached to them.  To avoid ambiguity, Hilbert and Bernays subsequently use the term ‘numeral’ [Ziffer] instead of
‘number-sign.’  For, I suppose, similar reasons, they also cease to use the word ‘number’ in this context, and after
(Hilbert 1922), no identification of numbers with numerals is made.  This is in keeping with my remark above that
Hilbert is not after an analysis of the number concept in general.   Hilbert does, however, give an account of how
numerals function as numbers in the sense of cardinal numbers, Anzahlen.10

2. The particular shape of the signs is immaterial.  Bernays clarifies that what is important is that some
objects of the same type are put together in a (finite) sequence.

[…T]he special shapes “1” and “1 + 1” are inessential.  If we disregarded the connection to habit,
it would even be advisable, in order to emphasize the principle, to take as numerical signs figures of the
type
 ⋅   ⋅   ⋅   ⋅   ⋅   ⋅

(which are thus constituted merely of points).  And, of course, stars, vertical strokes, circles and other
shapes could just as well be chosen instead of points.  One could also take a time sequence, say, of similar
noises, instead of a spatial sequence.

But it is essential that specimens of equal shape be joined in the same sort of arrangement
[Zusammensetzung]. (Bernays 1923, 224)

How can we make sense of all this?  Sometimes Hilbert’s view is presented as if he had claimed that the
numbers are signs on paper.  It is important to stress that this is a misrepresentation, that the numerals are not
physical objects in the sense that truths of elementary number theory are dependent only on external physical facts or
even physical possibiliti es (e.g., on what sorts of stroke symbols it is possible to write down).  Hilbert makes much of
the fact that for all we know, neither the infinitely small nor the infinitely large are actualized in physical space and
time.  Hilbert must certainly hold that the number of strokes in a numeral is at least potentially infinite.  It is also
essential to the conception that the numerals are sequences of one kind of sign, and that they are somehow dependent
on being grasped as such a sequence, that they do not exist independently of our intuition of them. Only our seeing or
using ‘1111’ as a sequence of 4 strokes as opposed to a sequence of 2 symbols of the form ‘11’ makes ‘1111’ into
the numeral that it is.  Would two stones lying side by side count as a numeral of the same kind as 11?  If yes, then
pretty much everything could be a numeral.  Tait has pointed out that one can pass from the any token to another by
a sequence of finitely many tokens, each of which we cannot distinguish from the next.  Since the abilit y to
distinguish the signs is central, he takes this to imply that the numerals cannot be physical tokens.  The obvious
alternative would be that numerals are mental constructions.  However, Bernays denies also this, writing that “ the
objects of intuitive number theory, the number signs, are, according to Hilbert, also not ‘created by thought.’  But
this does not mean that they exist independently of their intuitive construction, to use the Kantian term that is quite
appropriate here.” (Bernays 1923, 226).  Kitcher considers this option as well .  If the numerals were mental
constructions,

it seems that we shall have to accept many 3’s (the array of three strokes I am currently
contemplating, the array you are currently contemplating, the array I contemplated yesterday, etc.). So our
discourse about numbers simpliciter should be replaced with talk about X’s number n at time t.  Arithmetical
knowledge is immediately vulnerable to all kinds of skepticism.  Perhaps ‘My 2 at t plus my 2 at t equals my
4 at t’ holds for some past t (not all , for I have not always been alive, nor always awake).  But what of the
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future?  What of your 2’s to which I am forbidden access?  And what is the status of arithmetic before
anyone ever constructed a stroke-symbol?11

Kitcher’s alternative is to hold that, whatever the numerals are, the strokes on paper or the stroke sequences
I am contemplating represent the numerals. The numerals are given in our representation, but they are not merely
subjective “mental cartoons” (Kitcher’s term).

If we want […] the ordinal numbers as unique objects, free of all i nessential ingredients, we must
take the mere schema of each repetition figure [Wiederholungsfigur] as an object, which requires a very
high abstraction.  We are free, however, to represent these purely formal objects by concrete objects
(“number signs” ); these contain inessential and arbitrarily added properties, which, however, are readily
comprehended as such. (Bernays 1930, 340)

One version of this view would be to hold that the numerals are types of stroke-symbols as represented in
intuition.  This is the interpretation that Tait (1981, 438–39) gives. At first glance, this seems to be a viable reading
of Hilbert.  It takes care of the diff iculties that the reading of numerals-as-tokens (both physical and mental) faces,
and it gives an account of how numerals can be dependent on their intuitive construction while at the same time not
being created by thought. The reasoning that leads Tait to put forward his reading lies in several constraints that
Hilbert and Bernays put on the numerals.  Their shape12 (but not they themselves) is supposed to be independent of
place and time, independent of the circumstances of production, independent of inessential differences in execution,
and capable of secure recognition in all circumstances (Hilbert 1922, 163).  Tait infers from this that identity
between numerals is type identity, and hence, that numerals should be construed as types of stroke symbols.

Types are usually considered to be abstract objects, however, not located in space or time. Taking the
numerals as intuitive representations of sign types might commit us to taking these abstract objects as existing
independently of their intuitive representation.  That numerals are “space- and timeless” is a consequence that
already Müller thought could be drawn from Hilbert’s statements,13 and that was in turn disavowed by Bernays.  The
reason is that a view on which numerals are space- and timeless objects existing independently of us would be
committed to them existing simultaneously as a completed totality, and this is exactly what Hilbert is objecting to.

It is by no means compatible […] with Hilbert’s basic thoughts to introduce the numbers as ideal
objects “with quite different determinations from those of sensible objects,” “which exist entirely
independent of us.”  By this we would go beyond the domain of the immediately certain.  In particular, this
would be evident in the fact that we would consequently have to assume the numbers as all existing
simultaneously.  But this would mean to assume at the outset that which Hilbert considers to be
problematic. (Bernays 1923, 162)

This is not to say that it is incoherent to consider the numbers as being abstract objects, only that the
finitistic viewpoint prohibits such a view.  Bernays goes on to say:

Hilbert’s theory does not exclude the possibilit y of a philosophical attitude which conceives of the
numbers [but not the finitist’s numerals] as existing, non-sensible objects (and thus the same kind of ideal
existence would then have to be attributed to transfinite numbers as well , and in particular to the numbers of
the so-called second number class).  Nevertheless the aim of Hilbert’s theory is to make such an attitude
dispensable for the foundation of the exact sciences. (Bernays 1923, 163)

Another open question in this regard is exactly what Hilbert means by “concrete.”  He very likely does not
use it in the same sense as it is used today, that is, as characteristic of spatio-temporal physical objects in contrast to
“abstract” objects.  In that modern sense, sign types are not concrete.  However, sign types certainly are different
from full -fledged abstracta like pure sets in that all their tokens are concrete. Parsons takes account of this difference
by using the term “quasi-concrete” for such abstracta.  Tait, on the other hand, thinks that even the tokens are not
concrete physical objects, but abstract themselves.

The considerations outlined so far should have convinced the reader by now that the view is not as easily
made sense of as one might be inclined to think on a cursory reading of “On the infinite.” On the one hand, for
instance, the numerals are supposed to be objective, not merely created by thought; on the other hand they are not to
be independent of their intuitive representation.  They need to be concrete and surveyable, but they also cannot be
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physical objects.  The situation is not alleviated by the fact that it is not even clear what Hilbert means by
“ intuition.”  Kitcher argues that it is pure sensuous intuition in the sense of Kant, and that this kind of intuition
cannot meet all of Hilbert’s requirements.  Mancosu (1998b) has shown that Hilbert and Bernays at first held the
intuition involved to be empirical, but later in the 1920s turned to pure intuition as the source of certainty in
elementary contentual arithmetic.

Many of the problems discussed so far arise because Hilbert considers contentual finite mathematics to be
about certain entities, the numerals, and we are puzzled by their epistemological and ontological status. Not only
that, but Niebergall and Schirn (1998) argue that assumptions of infinity are implicitly made by Hilbert’s finitism.  If
they are right, then the question of whether numerals are tokens or types is the least of Hilbert’s problems.  Their
argument depends in part on assuming that Hilbert’s contentual mathematics does have a standard referential
semantics; that, say, “2 + 2 = 4” is true in virtue of the properties of the numerals that “2” and “4” refer to.  What if
we tried to make sense of finite mathematics without assuming standard semantics, without assuming that there are
entities (the numerals “11” and “1111”) that “2” and “4” refer to and which make “2 + 2 = 4” true?

A promising avenue which has been suggested by Kitcher (1976) is that in order to accommodate all of the
finitist’s requirements on numbers, this so-called standard account of mathematical truth must be abandoned.  On the
standard account, statements involving number terms are supposed to be analyzed in the same way as statements
involving physical object terms, i.e., the terms refer and the truth conditions of sentences in which they occur are
given by standard referential semantics.  Benacerraf (1983, 403) argues that the virtue of the standard account is that
it provides a “homogeneous semantical theory in which semantics for the propositions of mathematics parallel the
semantics for the rest of the language.” Such a theory is one of two requirements a theory of mathematical truth must
fulfill , the other is that it “mesh with a reasonable epistemology.”  Given the foundational character of the finitist
viewpoint and its explicit (and only) goal, namely to give an account of truth for (a fragment of) arithmetic which is
secure, it is reasonable to allow the second requirement to be the more important one.  As I will t ry to show, Hilbert
and Bernays can be read as abandoning the standard view in their later writings.14

In many places Hilbert does seem to expound something like the standard account.  For instance, in (Hilbert
1926, 377) he introduces first the numerals, which are supposed to “have no meaning at all by themselves.”
Contentual arithmetic, however, requires, besides the numerals, other signs “ that mean something and serve to
convey information, for example the sign 2 as an abbreviation for the numeral 11.”  There are also passages that
suggests a non-standard reading, both have been mentioned before.  In the early paper from 1905, the numerals are
not introduced as an independent notion, but only in the context of identity statements.  All we are given there are
conditions of when an expression of the form “1…1 = 1…1” should count as a true proposition.  In the response to
Müller’s criticism of Hilbert, Bernays introduces a distinction between the numerals [Zahlzeichen] and the notion of
cardinal number [Anzahl].  He writes:

It should also be noted that the contentual character of the Number [Anzahl] concept is indeed
compatible with the purely figural character of the number signs.  The figures are used as tools for counting,
and by counting one arrives at the determination of cardinal number […]

One here has to recognize that the cardinal numbers are only defined in the context of the entire
Number statement.  For example, it will not be explained what “ the Number five” is, but only what it means
for the Number five to apply to a given totality of things.  (Bernays 1923, 225)

We find two very interesting ideas here.  Bernays suggests a non-standard reading of Number statements
quite explicitly.  His formulation is very close to Russell ’s “meaning in use” of integral sign or class abstraction in
Principia Mathematica.  The other idea is that the numerals are tools for counting.  Hand (1989, 1990) has presented
a non-standard account of finitistic number theory which takes up this idea.  Since in this account truth conditions for
finitistic statements take center stage, let me now turn to a discussion of statements.

3. Statements

We can find in Hilbert’s writings three distinctions of mathematical statements: (1) contentual vs. formal,
(2) finitistic vs. infinitistic, and (3) real vs. ideal.15  Contentual mathematics is comprised of those statements that  we
make based on our intuition of concrete objects.  This includes statements we make about numerals, but also those
about formulas and formal derivations.  These are concrete objects given in intuition, we can come to know about
them directly.  Formal discourse starts where we leave the grounds of intuition and instead proceed from an
axiomatic standpoint, when we deal with a formalized language.  According to Hilbert, all mathematical discourse,
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“mathematics proper,” [die eigentliche Mathematik] is to be formalized and thus becomes a “stock of provable
formulas” (Hilbert 1922, 146).  Whereas contentual mathematics deals with those statements and ways of reasoning
that are justified on finite grounds, formalized mathematics appeals also to completed infinities, uses unbounded
quantification, the unrestricted principle of the excluded middle, etc.  The exact nature of the “ finitistic standpoint” is
subject to debate and historical analysis.16  We find, however, a number of examples in Hilbert’s and Bernays’s
writing of what falls within this standpoint.  First there are the basic equaliti es and inequaliti es in the contentual
sense between  numerals; these are finitistically justified statements.  We are also allowed to introduce certain
computable functions, however, not as functions in the usual sense, i.e., sets of ordered pairs of numbers, but only as
descriptions of methods of construction (see discussion in the next section).  As a mode of reasoning, induction on
propositions with “elementary intuitive content” is finitistically acceptable. 17  We are told which propositions can be
finitistically interpreted.  The most extensive discussion of this is in §2 of Grundlagen I:

For the characterization of the finitistic standpoint we may emphasize some general considerations
concerning the use of logical forms of judgment in finitist thought [logische Urteilsformen im finiten
Denken], which we shall exempli fy in the case of propositions about numerals.18

A universal judgment about numerals can be interpreted finitistically only in a hypothetical sense,
i.e., as a proposition about any given numeral.  Such a judgment pronounces a law which must verify itself
in each given particular case.

An existential sentence about numerals, i.e., a sentence of the form “ there is a numeral n with the
property A(n),” 19 is to be understood finitistically as a “partial judgment,” i.e., as an incomplete
communication of a more specific proposition consisting in either a direct exhibition of a numeral with the
property A(n), or the exhibition of a process to obtain such a numeral,—where part of the exhibition of such
a process is a determinate bound for the sequence of action to be performed.

Those judgments combining a universal proposition with an existential assertion have to be
finitistically interpreted correspondingly.  For instance, a sentence of the form “ for each numeral k with the
property A(k) there is a numeral l, for which B(k, l) holds,” has to be finitistically understood as an
incomplete communication of a process which makes it possible to find, for each given numeral k with the
property A(k), a numeral l which stands in the relation B(k, l) to k.  (Hilbert and Bernays 1934, 32–33)

This discussion is an expansion and clarification of the earlier exposition in “On the infinite”(Hilbert 1926,
377).  It is clear that the negation of a finitistic statement need not be a finitistic statement, more precisely: A
finitistic interpretation for a contentual statement about numerals does not, by itself, yield a finitistic interpretation of
the negation of the statement.  This is what it means that some finitist statements are “ incapable of being negated:”
From the inabilit y, or even impossibilit y, to see that A(k) for each given numeral k, it does not follow that we have a
witness l, or even a bound on such, for ¬A(l).  At this point Hilbert and Bernays propose the formalization of
mathematics and the introduction of ideal elements, i.e., transfinite quantifiers, to retain the simplicity of classical
logic.  (In formalized mathematics, we have real statements (roughly, these are the quantifier-free formulas), which
admit of a contentual interpretation, and the ideal statements, which round out the theory, appeal to the infinite, and
thus do not have a finite, contentual interpretation.)

Now how is the semantics of the basic finitistic statements explained?  Hand (1990) discusses an
iterativistic tendency in Hilbert’s views on this issue.  The basic idea is that we have the capacity to count
intransitively, i.e., to count without counting any thing (in particular, not the natural numbers).  The numerals are, so
to speak, a crutch for us to remember when we are supposed to stop counting.  An equality between numerals is then,
e.g., to be understood as the assertion that in counting the strokes in both strings simultaneously, we will stop at the
same point (in contrast to the view that identity is “ figural correspondence”); an inequality as the statement that we
can count further on one numeral than on another (in contrast to the idea that one numeral extends beyond the other).

I think this view has a certain appeal.  After all , as a matter of developmental and historical fact, the concept
of number had its origins in the human capacity to count.  We count fingers, we count cattle, eventually, we just
count.  The phenomenon of counting without counting any thing, it seems to me, is much better explained as
engaging in an iterative mental procedure than as naming, in succession, the members of the natural number
sequence (whatever those are).  Such a conception, argues Hand, is at work in some places in Hilbert’s finitism.  He
supports his view mainly by textual evidence from Hilbert’s (1905) and (1926).  I believe that there are even stronger
suggestions in this direction in Grundlagen.
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For instance, in “On the infinite,” the numerals are introduced in a very pictorial way, as sequences of
strokes.  A few years later, when even Hilbert is becoming convinced that empirical intuition will not do the trick of
providing arithmetic with a secure and philosophically acceptable footing, Bernays writes:

The ordinal number is in and of itself also not determined as object; it is only a place marker.  We
can objectively standardize it by choosing as a place marker the simplest structure from those that originate
in the form of the succession.  […W]e have an initial thing and a process; the objects are then the initial
thing itself and further the objects one obtains, beginning with the initial thing, through a single or repeated
application of that process.  (Bernays 1930, 244)

In Grundlagen the idea is made more concrete:

In number theory, we have an initial object and a process of succession [Prozeß des
Fortschreitens].  For both we must settle on a particular intuitive representation.  The particular kind of
representation is inessential, but the choice, once made, must be retained throughout the whole of the
theory.  We choose as initial object the numeral 1 and as process of succession the attachment of 1.
 The objects which we obtain from the numeral 1 by applying the process of succession, such as

1, 11, 1111

are figures of the following kind: The start with 1, they end in 1; each 1 which does not already form the
end of the figure is followed by an attached 1.  They are obtained through application of the process of
succession, that is by an assembling [Aufbau] which concretely comes to an end, and this assembling can be
undone by a stepwise disassembling [Abbau].  (Hilbert and Bernays 1934, 20–21)

The idea we are given here is that the object of number theory is an iterative process, and this iterative
process is representable in intuition.  The iterative process is basic; the numerals only help us, so to speak, to keep
track of how far the iteration has proceeded.  This is necessary since a crucial aspect of the iterative process is that it
can be reversed.  This is the basis for induction and recursion in finitistic mathematics.

The import the iterativist account has for semantics is that it no longer requires denotations for the terms of
arithmetic.  The numerals do not stand for anything, they just give us information on how to verify or falsify
arithmetical statements.  Equaliti es between numerals are true, not if the numerals are the same or they have the same
form, but if they both give the same bound on the process of succession. If we can start counting and both numerals
tell us to stop at the same time, they are equal.

4. Finitistic functions

The issue is a littl e more involved when considering more complex arithmetical terms, e.g., sums and
products.  If numbers are controls on iteration, then the functions of arithmetic should be defined by iteration.  A
finitistic function, or more precisely, its definition, is a way of communicating a certain procedure which allows us to
obtain a numeral from certain other numerals.  The operations that this procedure may appeal to are assembling and
disassembling numerals and iterating (previously defined) operations.  This is all that is needed to give truth
conditions for equaliti es between arithmetical terms: Use the definition of the function to obtain an explicit bound on
iteration and we have reduced the question to an equality between numerals.

How much of this is present in Hilbert’s writings?  In Grundlagen, the definition of addition still depends
on the visual image of numerals as sequences of strokes:

If a numeral b corresponds to a part of a, then the rest is again a numeral c; thus we obtain the
numeral a by appending c to b, in the manner in which the 1 which starts c is appended to the 1 in which b
ends according to the process of succession.  We call this kind of composition of numerals addition and use
for it the sign +.  (Hilbert and Bernays 1934, 22)

However, the definition of multiplication agrees much more with the idea of definition of a function by
iteration:
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Multiplication can be defined as follows: a ⋅ b denotes the numeral obtained from b by replacing,
during its construction, always the 1 by the numeral a, so that one first forms a and then appends a instead
of each appending of 1 in the construction of b. (Hilbert and Bernays 1934, 24)

It is clear, however, that the general notion of finitistic function is based on iteration/recursion, and Hilbert
could as well have given an explanation of addition and multiplication in these terms, without appeal to the picture of
sequences of strokes and their geometrical manipulation.  This is evident from the discussion of recursion:

[O]ne point still requires a basic discussion, the method of recursive definition.  Let us see what
this method consists in: A new function symbol, say ϕ, is introduced, and the [corresponding] function is
defined by two equations.  In the simplest case, these equations are of the form:

 ϕ(1) = a
 ϕ(n + 1) = ψ(ϕ(n), n).

Here, a is a numeral and ψ a function which is formed from previously known functions by composition, so
that ψ(b, c) can be computed for given numerals b, c and gives another numeral as value. […]

It is not immediately clear, which sense may be assigned to this method of definition.  For its
elucidation we must first make the notion of function precise.  A function, for us, is an intuitive instruction
on the basis of which to each given numeral another numeral is assigned.  A pair of equations of the above
kind—called a “ recursion”—is to be understood as an abbreviated communication of the following
instruction:

Let m be any numeral.  If m = 1, so let the numeral a be assigned to m.  Otherwise, m has the form
b + 1.  One then writes down schematically:

ψ(ϕ(b), b).

Now if b = 1, so one replaces therein ϕ(b) by a; otherwise b again has the form c + 1, and one then
replaces ϕ(b) by

 ψ(ϕ(c), c).

Again, either c = 1 or c is of the form d + 1.  In the former case one replaces ϕ(c) by a, in the latter case by

 ψ(ϕ(d), d).

Repeating this process in any case terminates.  For the numerals

       b, c, d, …,

which we obtain one after the other, develop through the disassembling of the numeral m, and this must
terminate just like the assembling of m does.  When we arrive at 1 in this process of disassembling, then
ϕ(1) is replaced by a; the sign ϕ does then no longer occur in the resulting figure.  Rather, the only function
symbol occurring, possibly in multiple superposition, is ψ and the innermost arguments are numerals.  Thus
we have arrived at a computable expression; for ψ was supposed to be a function already known.  This
computation must be executed from the inside out, and the numeral thus obtained shall be assigned to the
numeral m.  (Hilbert and Bernays 1934, 25–26)

We see how this conception of computation fits in with the iterativist conception of finitistic truth: An
equation between arithmetical terms is evaluated, by iteration, until we arrive at an equation between numerals.  The
numerals themselves are mnemonic devices, in principle dispensable, for effecting this procedure.  This corresponds
precisely to Hand’s “canonical verifications.”

Recently, Parsons (1998) has taken up the account of finitistic functions from Grundlagen, in particular of
primitive recursion, as successive replacement of terms.  He argues that the account is not strong enough to support
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what he calls Hilbert’s Thesis, namely, that finitistic proofs of propositions yield intuitive knowledge of them. In
particular, he questions the subsidiary thesis that primitive recursion always yields intuitively well -defined functions
(and thus that at least all the primitive recursive functions are intuitively seen to be well -defined).  He claims that
addition and multiplication are intuitively well -defined, but only because they are special cases.  In general, primitive
recursive functions can only be seen to be total using Σ1-induction.  If Parsons is right, then the non-standard
approach based on iteration cannot achieve the intuitive certainty that finitism requires.  Tait, for one, certainly
would disagree with Parsons.  For Tait, primitive recursion is one of the kinds of definition of which it is impossible
to ask for a proof of their well -definedness. Even asking for a demonstration that primitive recursion yields well -
defined functions would thus be misguided.  Parsons even suggests that Hilbert and Bernays not only have not
established Hilbert’s Thesis, but that they cannot.  Any argument that would establish that primitive recursion
preserves intuitive well -definedness should be convertible into a proof that, say, exponentiation is well -defined using
only unproblematic primitive recursive functions.  He concludes that this is impossible, since ∆0-induction is not
strong enough to prove that exponentiation is total.  Results of this kind, however, are very sensitive to syntactic
considerations and vary with the formal system used.  For instance, if Parsons thinks it reasonable to require a proof
of the totality of exponentiation, he should also admit that it is not incoherent to ask for a proof that multiplication is
total using only addition, or even for a proof that addition is well -defined using only the successor function.  Such
proofs are not possible for similar reasons as the impossibilit y of a proof that exponentiation is total using principles
weaker than Σ1-induction (in fact, the relevant statements cannot even be formalized), but surely this does not show
that addition and multiplication cannot intuitively be seen to be well defined.

5. Finitism and PRA

Let me conclude with some remarks on Tait’s claim that the finitistically acceptable functions are exactly
the primitive recursive ones.  There is no question that the primitive recursive functions are finitistic, since they are
all given by recursive definitions of the above kind.  But are they all  the finitistic functions?  Any description of an
iterative procedure that allows us, given a term involving the function symbols introduced, to arrive at a numeral as
“value” of the term, using only iteration and substitution  (in particular, no unbounded search), should count as
finitistic, if the primitive recursive ones do.  The Ackermann function is an example of a function computable in this
way, which is well known not to be primitive recursive.

Tait did consider the issue of the Ackermann function being finitistic, as part of an objection to Kreisel’s
(1960) characterization of finitistic functions as the provably total functions of first-order Peano arithmetic.  The
issue is that Kreisel points out20 that in “On the infinite” (1926) Hilbert explicitly discusses the Ackermann function.
Tait’s argument against the conclusion, based on this fact, that we should regard it as finitistic is that Hilbert
introduces the Ackermann function in the context of a theory of functions of higher types, and these higher types are
certainly not finitistic.  It is true that Hilbert introduces the Ackermann function by recursion on higher types, but it
can also be introduced by nested recursion on two arguments.  If it is correct that all that is needed for a function to
be finitistic is that it be given by a process of recursion which allows the computation of the “value” by successive
rewriting of numerals, then this definition would certainly make the Ackermann function finitistic.  In fact, there is
rather explicit evidence that the Ackermann function was considered to be finitistic, in Grundlagen.  In §7 of the first
volume, Hilbert and Bernays discuss (what is now called) primitive recursive arithmetic.  This is a formal theory, all
of whose statements, however, are real, i.e., finitistically meaningful:

This recursive number theory is close to the intuitive number theory as considered in §2, insofar as
its formulas all admit of a finite contentual interpretation.  This contentual interpretabilit y is a result of the
verifiabilit y of all derivable formulas of recursive number theory, [a fact] which we have already stated.
Indeed, in this area verifiabilit y has the character of a direct contentual interpretation, and it was because of
this that the proof of consistency was so easy to give here.

The difference of recursive number theory vis à vis intuitive number theory consists in its formal
restrictions [formale Gebundenheit]; its only method of concept-formation, aside from explicit definition, is
the schema of recursion, and also the methods of deduction are strictly limited.

We may, however, admit certain extensions of the schema of recursion as well as of the induction
schema, without taking away what is characteristic of the method of recursive number theory.  We shall now
discuss these briefly.  (Hilbert and Bernays 1934, 325 [330], emphasis in the original)
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Hilbert and Bernays then go on to introduce course-of-values recursion, simultaneous recursion (which can
both be reduced to primitive recursion), nested recursion [verschränkte Rekursion], the Ackermann function, and
nested induction, and prove that the Ackermann function is not primitive recursive.  We find the most conclusive
statements in the second volume:

Certain methods of finitistic mathematics which go beyond recursive number theory (in the
original sense) have been discussed in §7 [of volume I of Grundlagen], namely the introduction of functions
by nested recursion [e.g., Ackermann’s function] and the more general induction schemata. (Hilbert and
Bernays 1939, 340 [354], my emphasis)

The original narrow concept21 of a finitistic proposition amounts in the field of number theory to
admitting as finitistic number-theoretic propositions only such propositions which can be expressed in the
formalism of [primitive] recursive number theory, possibly including symbols for certain computable
number-theoretic functions (of one or more arguments), but without use of formula variables, or which
admit a stricter interpretation by a formula of such a form.  (Hilbert and Bernays 1939, 348 [362], my
emphasis)

Elsewhere, we read that “contentual finite arithmetic [is formalized by] recursive number theory” (Hilbert
and Bernays 1939, 214 [224]).22  This remark is made in the context of arithmetization of syntax, and I take its force
to be that the methods used in arithmetization are primitive recursive and hence finitistic, rather than making a
programmatic identification of “ finitistic” with “primitive recursive.”  In a footnote, the reader is referred to the
passage from p. 325 [330] of the first volume quoted above, where the relationship between contentual arithmetic
and recursive arithmetic is discussed.  That passage suggests that Hilbert and Bernays considered finite arithmetic as
partially but not necessarily completely formalized by primitive recursive arithmetic.  It also suggests that the
verifiabilit y of formulas is the criterion of finitistic meaningfulness.  Verifiabilit y here is defined as follows: Every
true equality or inequality between numerals is verifiable.  Every boolean combination of verifiable formulas is
verifiable.  A formula containing free individual variables (but no formula variables or bound variables) is verifiable
if every instance resulting by substituting numerals for the free variables is verifiable (pp. 229 [228], 238 [237]).  A
closed formula containing primitive recursive function symbols is verifiable if the formula resulting from calculating
the primitive recursive terms occurring in it is verifiable (p. 297 [297]).  If the function can be calculated, it is
finitistic?  It is obvious that some restriction must be placed on the notion of calculabilit y involved here.  Without
restrictions, every total general recursive function would be finitistic, and any formula containing symbols for total
recursive functions would be verifiable in that sense.  The restriction would most likely have to do with being able to
see that the calculation process comes to an end, and this is precisely the issue in the question of whether the
Ackermann function should be considered finitistic.  Bernays was aware that there is a substantial difference between
primitive and nested recursion in this respect, and the issue comes up when he proves that primitive recursion can be
replaced by the µ-operator (Hilbert and Bernays 1934, 421–22 [430–31]).23  Much later, he took nested recursions
(in the sense of verschränkte Rekursionen considered in Grundlagen I) to be finitist on the grounds that they could
be computed by a sequence of replacements of terms, the number of which is bounded.  In a letter to Gödel from
1970, he writes:

These nested recursions […] appear to me to be finite in the same sense as the primitive
recursions, i.e., if one regards them as a statement of a computation procedure where one can recognize that
the function defined by the respective process satisfies the recursion equations (for every system of numeral
values [Ziffernwerte] of the arguments).  Indeed, the computation of the value of a function according to a
nested recursion, when the numeral values of the arguments are given, comes down to the application of
several primitive recursions, the number of which is determined by a numeral argument [Ziffernargument].24

It is consistent with Hilbert’s early writings that finitism, as originally conceived in the early 1920s, does not
surpass primitive recursive methods.  In all li kelihood, Hilbert and Bernays did not think they had to address the
issue explicitly.  The Ackermann function had not been discovered when the finitistic standpoint was first
formulated, and in any case it was probably thought initially that primitive recursive methods suff ice for
metamathematics.  I hope to have shown, however, that there is considerable evidence in Grundlagen that Hilbert
and, in particular, Bernays considered finitistic reasoning to go beyond the methods formalized or formalizable in
primitive recursive arithmetic.
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Notes

1. Hilbert (1926, 379).  All page references are to the English translations, where available.  All other translations are
mine.  For references to Grundlagen der Mathematik (Hilbert and Bernays 1934, 1939), page numbers in the
second edition are given in brackets.

2. For a detailed discussion of the instrumentalism expressed here, see Kitcher (1976, 102–105).
3. Detlefsen (1986) disagrees.  For Gödel’s own opinions on the topic, see Sieg (1988, 342) and Giaquinto (1983,

125–26). Gödel's early assessment turns on a (questionable but then prevalent) identification of finitism with
intuitionism and the question whether intuitionist reasoning is formalizable, of which Brouwer was skeptical.

4. For an overview and assessment of the developments spawned by the program, see Sieg (1988) and Simpson
(1988).  For a defense of the plausibilit y of the program in a historical and philosophical context, see Giaquinto
(1983), especially §5.

5. While undoubtedly the ideas underlying the program were Hilbert's, in their details the views are in large part due
to Hilbert’s collaborator Bernays.  One of Bernays’ main contributions to the program was philosophical
clarification of Hilbert’s ideas; Bernays, in contrast to Hilbert, had philosophical training (see Mancosu 1998a,
Section 4) for an outline of Bernays’s contributions).

6. For a discussion of this effort, see Chihara (1973, Chapter 1).
7. This methodological point is made clear in a letter from Bernays to Rosza Péter, probably from 1940 (Bernays

Papers, ETH Zürich Library/WHS, Hs. 975:3473).
8. See Hilbert (1905, 131–32).  In a course at Göttingen, Hilbert went even further in the development of this idea,

see Peckhaus (1990, Chapter 3).
9. Hilbert (1922, 1121), repeated almost verbatim in Hilbert (1926, 376)
10. This account is based on our abilit y to put finite collections of objects into one-to-one correspondences with the

strokes making up a numeral.  This abilit y accounts for the usefulness of contentual number theory.  The account is
indicated in passing by Bernays (1923, 225) and is developed in detail by Hilbert and Bernays (1934, 28–29).

11. Kitcher: (1976, 107–8).  Frege (1884, §27) advanced essentially the same criticism against Schloemilch.
12. “Figures [i.e., numerals] are not shapes, they have a shape” Bernays (1923, 159).
13. “These objects must be […] space- and timeless […]’’ (Müller 1923, 158)
14. Benacerraf (1983) also finds a non-standard account in Hilbert’s view of mathematics.  That account, however,

does not concern the contentual mathematics we are interested in, but formalized mathematics.  According to
Benacerraf, Hilbert’s account of formalized mathematics is non-standard since unbounded quantifiers—since they
are finitistically meaningless—are not evaluated according to standard semantics, but based on the derivabilit y of
sentences containing them from axiom systems that have been shown to be consistent.

15. For a discussion of these distinctions, see Sinaceur (1993).
16. Hilbert and Bernays acknowledge that they have not drawn the distinction precisely: “ [W]e have introduced the

expression ‘f initistic’ [finit] not as a sharply delineated term, but only as the name of methodical guideline, which
enables us to recognize certain kinds of concept-formations and ways of reasoning as definitely finitistic and others
as definitely not finitistic.  This guideline, however, does not provide us with a precise demarcation between those
[concept-formations and ways of reasoning] which accord with the requirements of the finitistic method and those
that do not.’’ (Hilbert and Bernays 1939, 347–48 [361])

17. Aussagen mit elementar anschaulichem Inhalt.  I propose to read this as: propositions which permit a finitistic
interpretation (see below).  See Bernays (1922, 169–70) for the distinction between the form of induction
discussed here, “ the narrower form of induction,” and the full schema of induction on arbitrary formulas.  This
distinction is essential for the rebuttal, by Hilbert, of Poincaré’s and Becker’s charge of circularity in Hilbert’s
theory.  For this, see Mancosu (1998b).

18. I take the word “exempli fy” to imply that the same forms of judgment also apply to other finitistically acceptable
concept-formations, e.g., functions defined by recursion.

19. Hilbert uses old German type for meta-language variables for numerals (lower case) and propositions/formulas
(upper case).  Boldface is used here.

20. “For instance, Tait refers to [Hilbert 1926] as a source concerning Hilbert’s notion of a finitist proof, goes on to
say ‘ it is diff icult perhaps to determine what Hilbert really had in mind’ and argues that Ackermann’s enumeration
of the primitive recursive functions is not finitist.  But whatever else may be in doubt, Hilbert’s own notion as used
in (1926) certainly includes Ackermann’s function since it is explicitly mentioned!”  (Kreisel 1970, 514, n. 43).  In
a recent talk (“Some remarks about finitism,” 13 December 1998, Reflections Symposium, Stanford), Tait argued
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in detail that the use of the Ackermann function in Hilbert (1926) (in Hilbert’s attempted proof of the continuum
hypothesis) was not meant to be finitistic.

21. “Original concept of finitism” in contrast to some slight extensions that are discussed subsequently, in particular,
admission of implications with a universal antecedent and inductions with premises of such a form.  The passage
occurs in the context of considering the question of whether there are finitistic principles which go beyond number
theory Z.

22. This passage was pointed out by Tait in the talk cited in note 20.
23. For a discussion of nested recursion and the issues coming up in computing functions defined by nested

recursion, see Tait (1961).
24. Bernays to Gödel, 7 January 1970.  Bernays Papers, ETH Zürich Library/WHS, Hs. 975:1745.
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