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1. Introduction

Next to the logicist projed of Frege and Rus=ll of reducing mathematics (or at least arithmetic) wholesale
to logic, Hilbert’s program is the main contribution to the foundation of mathematics of the last century. Taking as
his motivation the paradoxes of set theory and the revisionist attadks on classcd mathematics by such predicdivists
as Poincaré and such intuiti onists as Brouwer and the later Weyl, Hilbert formulated a new program for the
grounding of arithmetic. The two basic tenets of the program were finiti sm and an instrumentali st formali sm.
Finitism proceeds from the conviction that certain basic statements of the mathematics of natural numbers, i.e., the
finitistic statements, are firmly grounded in our intuiti on of finite sequences. These statements include egualiti es and
inequaliti es between numbers and number terms built using certain finiti stic functions (e.g., addition) and are dosed
under truth-functional connedives and baunded quantification. Statements involving urbounded quantification, on
the other hand, are in general not finiti sticdly meaningful. In particular, a universal statement is only finitisticaly
meaningful in so far asit servesto convey a hypotheticd judgement about arbitrary given numbers, and an existential
statement only in so far asit is understoodto consist in the exhibiti on of awitnessor of a mnstructive method to find
one. Under thisinterpretation the quantified statements are not capable of negation, and the principle of the
excluded middle fail s for them. But, “no one, though he spegk with the tongues of angels, will kegp people from
negating arbitrary assertions, forming partial judgements, or using the principle of excluded middie. What, then,
shall we do?'* Hilbert's lution isto round out the body of finitistic statements by introducing ided elements.
Theseided elements are given by the T, and later, the € functions, which in Hilbert's system of logic do duty for the
quantifiers. Inorder to dothis, Hilbert adopts aformalistic stance Mathematicsisto be formalized in an axiomatic
system. Some formulas of this g/stem, when interpreted, will correspond to finiti stic statements—these ae the real
statements, all othersareideal. The aiomatic system in turn consists of formulas (finite strings of symbals) and
derivations (finite strings of formulas). Thus, diredly or indiredly via aithmetization of syntax, the formal system
is amenable to mathematicd investigation on afinitistic basis. The finitist investigation of formal systemsisthe
objea of metamathematics, and its goal is to establish the cnsistency of the formal systems. The particular way
such consistency proofs are to be given establi shes much more, namely: the conservativenessof the ided over the
red statements. This justifies the use of ided methods in mathematics on a seaure, that is finitist, basis.

Today it iswidely held that Godel’ s incompl etenesstheorem destroys Hil bert’s program.® For if there were
afiniti st consistency prodf, to this proof would correspond a derivation in the formal system (using only the red part
of that system) of the formali zed statement of consistency. The posshbility of such aderivation, is, however,
excluded by the second incompletenesstheorem. Despite this, the program was bath fruitful in that it was theinitial
motivation for awide aeaof mathematicd reseach in proof theory, and interestingin itsown right asa
phil osophicd position.*

In the following, | will concentrate on the first tenet of the program, finitism. The two aspeds thereof are
the finiti stic conception of number on the one hand, and finiti stic reasoning on the other. Both have been objed of
analysis and criticism in the literature (most notably, by Kitcher 1976and Tait 1981). | will try to give an overview
of theissuesinvolved and develop some new ideas on both aspeds. A detail ed historicd treament, however, is
urgently needed. Hilbert did change his views between the first formulation of the programin 1922and the ealy
19305 due to a number of influences. These influences include the technicad work done by Hilbert’s gudents, in
particular Ackermann's attempted consistency proof, but also debates with a number of phil osophers (in particular,
M{ller and Nelson), and finally the incompl etenesstheorems. Our understanding of finitism isincomplete until
these influences are studied and the dhanges in the philosophicd conceptions are analyzed. Mancosu (1998H has



emphasized one such important change, namely the shift from taking mathematicd intuition to be esentially
empiricd to takingit to be aKantian pure intuition. In this regard, unpublished material from Hilbert’s and
Bernays's papers in Géttingen and Zirich would provide sources, and Moore (1997 and Sieg (in pres9 have taken
first stepsin asesdng this material.

2. Numbers and numerals

Hil bert and Bernays® conceived of the finitistic view of numbersin readion and contrast to the logicist
conception of number, which was supposed to yield areduction of the number concept to broadly logica concepts.
In Frege' s view, numbers are extensions of certain concepts (For him, extensions of concepts, i.e., classs, are a
logicd notion). Rus<ll took over this conception and tried to avoid the use of classesin Principia by his no-class
theory.® Hil bert found this reduction of numbersto logica notions circular. In 1905he writes:

Arithmetic is often considered to be apart of logic, and the traditional fundamental logicad notions
are usually presupposed when it is a question of establi shing a foundation for arithmetic. If we observe
attentively, however, we redizethat in the traditional exposition of the laws of logic catain fundamental
arithmetic notions are dready used, for example, the notion of set and, to some etent, also that of number.
Thuswe find ourselvesturningin a drcle, and that iswhy a partly simultaneous devel opment of the laws of
logic and of arithmetic isrequired if paradoxes are to be avoided. (Hilbert 1905 131)

Althougharound 1917Hil bert was leaning towards alogicist viewpoint, he later abandoned it. Bernays
(193Q 243 made the disagreaments between logicism and Hil bert’s view very clea, and asserted that Frege's
definition of cardinal numbers (“Numbers,” Anzahlen) conceds the gistemologicdly essential charaderistics of
mathematics. Hil bert’sfinitistic viewpaint is not concerned with an analysis of the Number concept along the lines
of the Fregean projed, but with amethoddogicd program that presents an analysis of a cetain minima mode of
numerica reasoning which is epistemol ogicdly grounded and servesto seaure higher mathematics. Like
Wittgenstein's proverbial ladder, the finiti stic viewpoint can be @andoned onceit provides this ®aure foundation.”
Seauring higher mathematics through consistency proofs need not and cannot presuppose the logicist general
analysis of Number. The Fregean analysis requires concepts and their extensions, entiti es which the finiti st cannot
consider; and Russall’s lution was rejeded because of the use of the axiom of reducibility. Hilbert attemptsto
acount for numerica reasoning in terms of finite sequences, at first introduced as quences of strokes. After 1923
Hil bert and Bernays are caeful to dstingush between these “finiti stic numbers’ and the general concept of number
(in either ordinal or cardinal sense), and usualy refer to them as “numerals’ (Ziffern).

Hilbert isinterested in an acount of elementary number theoretic reasoning which satisfies certain
constraints of immediacgy, intuitiveness and certainty. These requirements of the methoddogicd program translate
into regquirements on the subjed matter of contentual finitistic arithmetic [inhdltli che finite Arithmetik]. First of all,
Hil bert wants the numerals to be “concretely” given and surveyable by us. We have some immediate accesto them
which all ows us to gain knowledge of finitary number-theoretic fads. The question now is: What are the numerals
exadly, and how do we have knowledge of them? It seems clea that Hil bert wants some sort of intuition (in the
Kantian sense) to be the source of knowledge, but isit pure or empiricd? What is Hilbert’s “primitive aithmeticad
intuition” and of what do we have an intuition when we engage in contentual arithmeticd reasoning? Contemporary
phil osophy of mathematics would put the question in terms such as the following: Are the numerals physicd objeds?
Mental constructions? Token or type? Abstrad or concrete?

Some of the most fruitful sources on the topic of Hil bert’s conception of finitism are his 1922and 1926
papers, his collaborator Bernays's exchange with Mller (MUller 1923 Bernays 1923, aswell as the relevant
sedionsin Hilbert and Bernays (1934 1939. In 1905 Hilbert gives afirst account of finiti stic number theory in
terms of strokes and equality signs. We note here that no identification of certain (sequences of) signs with numbers
is made, rather, the sequences of 1'sand ='s are divided into two classs, the dassof entiti es (these ae the
sequences of theform “1...1 =1...1" with equal numbers of 1'son theleft and right) and the dassof nonentities;
the former are the true propasitions. Hence we have here afinitistic acount, not of numbers, but of numericd truth.?

In the 1922 raper, Hilbert presents an explicit acount of numbers as sgns built up from1'sand +'s. He
writes:

Thesign1isanumber.
A signwhich begins with 1 and ends with 1, and such that in between + always follows 1 and 1
always foll ows +, is likewise anumber [...]



These number-signs, which are numbers and which completely make up the numbers, are
themselves the objeds of our consideration, but have otherwise no meaning of any sort. (Hilbert 1922
11229

Just before this paragraph, Hil bert lays out the main conditi ons that govern these stroke symbols. They are
“extrarlogicd concrete objeds, which exist intuitively asimmediate experiencebefore dl thought.” Furthermore,
they are cgable of “being completely surveyed in all their parts, and their presentation, their difference, their
successon (like the objeds themselves) must exist for usimmediately, intuitively, as omething that cannot be
reduced to something else.”®

Hil bert’s acount was criti cized by the phil osopher Aloys Miiller, and some of the points he made were well
taken. Following Muller’ s criticism, Hil bert (and Bernays) change the acount dightly.

1. Theterm ‘sign’ connotes having a meaning, but the number-signs are supposed to have no meaning
attached to them. To avoid ambiguity, Hil bert and Bernays subsequently use the term ‘numeral’ [Ziffer] instead of
‘number-sign.” For, | suppase, similar reasons, they also cease to use the word ‘number’ in this context, and after
(Hilbert 1922, no identification of numbers with numeralsismade. Thisisin kegingwith my remark above that
Hil bert is not after an analysis of the number concept in general. Hilbert does, however, give an acount of how
numerals function as numbers in the sense of cardinal numbers, Anzahlen.'

2. The particular shape of the signsisimmaterial. Bernays clarifies that what isimportant isthat some
objeds of the same type ae put together in a (finite) sequence

[...T]he speda shapes“1” and “1 + 1” areinesential. |If we disregarded the mnnedion to habit,
it would even be alvisable, in order to emphasizethe principle, to take a numericd signs figures of the
type

oooood

(which are thus constituted merely of points). And, of course, stars, verticd strokes, circles and ather
shapes could just aswell be dhosen instead of points. One could also take atime sequence, say, of similar
noises, instead of a spatial sequence

But it isessential that speamens of equd shape be joined in the same sort of arrangement
[Zusammensetzung]. (Bernays 1923 224)

How can we make sense of al this? Sometimes Hilbert’s view is presented as if he had claimed that the
numbers are signson paper. It isimportant to stressthat this is a misrepresentation, that the numerals are not
physicd objedsin the sense that truths of elementary number theory are dependent only on external physicd fads or
even physicd posshiliti es (e.g., on what sorts of stroke symbalsit is passble to write down). Hilbert makes much of
the fad that for all we know, neither the infinitely small nor the infinitely large ae adualized in physicd space ad
time. Hilbert must certainly hold that the number of strokesin anumeral is at least potentially infinite. It isalso
essential to the conception that the numeral's are sequences of one kind of sign, and that they are somehow dependent
on being gasped as such a sequence, that they do not exist independently of our intuition of them. Only our seengor
using ‘1112 asasequenceof 4 strokes as oppcsed to a sequence of 2 symboals of theform ‘11 makes‘1117 into
the numeral that it is. Would two stones lying side by side wunt as anumeral of the samekind as 11? If yes, then
pretty much everything could be anumeral. Tait has pointed out that one can passfrom the any token to another by
a sequence of finitely many tokens, ead of which we cannot distinguish from the next. Sincethe aility to
distingush the signsis central, he takes this to imply that the numerals cannot be physicd tokens. The obvious
alternative would be that numerals are mental constructions. However, Bernays denies also this, writing that “the
objeds of intuitive number theory, the number signs, are, acarding to Hilbert, also not ‘creaed by thought.” But
this does not mean that they exist independently of their intuitive @nstruction, to use the Kantian term that is quite
appropriate here.” (Bernays 1923 226). Kitcher considersthis option aswell. If the numerals were mental
constructions,

it seamsthat we shall have to accept many 3's (the aray of threestrokes | am currently
contemplating, the aray you are arrently contemplating, the aray | contemplated yesterday, etc.). So our
discourse éout numbers simpliciter should be replaced with talk about X's number n at timet. Arithmeticd
knowledge isimmediately vulnerable to all kinds of skepticism. Perhaps‘My 2 att plusmy 2 at t equals my
4 a t' holdsfor some past t (not all, for | have not always been alive, nor aways awake). But what of the
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future? What of your 2'sto which | am forbidden access? And what is the status of arithmetic before
anyone ever constructed a stroke-symbol 2

Kitcher's alternative is to hold that, whatever the numerals are, the strokes on paper or the stroke sequences
| am contemplating represent the numerals. The numerals are given in our representation, but they are not merely
subjedive “mental cartoons’ (Kitcher'sterm).

If wewant [...] the ordinal numbers as unique objeds, freeof all i nesential ingredients, we must
take the mere schema of ead repetiti on figure [Wiederholungsfigur] as an objed, which requires avery
high abstradion. We ae free however, to represent these purely formal objeds by concrete objeds
(“number signs”); these contain inessential and arbitrarily added properties, which, however, are readily
comprehended as such. (Bernays 193Q 340

One version of thisview would be to hold that the numerals are types of stroke-symbols as represented in
intuition. Thisistheinterpretation that Tait (1981, 438—39 gives. At first glance, this ansto be aviable reading
of Hilbert. It takes care of the difficulties that the reading of numerals-as-tokens (both physicd and mental) faces,
and it gives an acunt of how numerals can be dependent on their intuitive cnstruction while & the same time not
being creaed by thought. The reasoning that leads Tait to put forward hisreadingliesin several constraints that
Hil bert and Bernays put on the numerals. Their shape' (but not they themselves) is sippaosed to be independent of
place ad time, independent of the drcumstances of production, independent of inessential diff erencesin exeaution,
and cgpable of seaure recognitionin al circumstances (Hilbert 1922 163). Tait infers from this that identity
between numeralsis type identity, and hence, that numerals sould be mnstrued as types of stroke symbals.

Types are usually considered to be @strad objeds, however, not located in spaceor time. Taking the
numerals as intuiti ve representations of signtypes might commit usto taking these estrad objeds as existing
independently of their intuiti ve representation. That numerals are “space and timeless' isa mnsequence that
adready Miiller thought could be drawn from Hilbert’s satements,™ and that was in turn disavowed by Bernays. The
reason isthat a view on which numerals are space and timelessobjeds existing independently of us would be
committed to them existing simultaneoudly as a completed totality, and thisis exadly what Hilbert is objedingto.

It is by no means compatible [...] with Hilbert’s basic thoughts to introduce the numbers as ided
objeds “with quite different determinations from those of sensible objeds,” “which exist entirely
independent of us.” By thiswe would go beyond the domain of the immediately certain. In particular, this
would be evident in the fad that we would consequently have to assume the numbers as all existing
simultaneously. But this would mean to assume & the outset that which Hil bert considersto be
problematic. (Bernays 1923 162)

Thisisnot to say that it isincoherent to consider the numbers as being abstrad objeds, only that the
finitistic viewpoint prohibits sich aview. Bernays goes on to say:

Hil bert’ s theory does not exclude the posshility of a phil osophicd attitude which conceves of the
numbers [but not the finitist’s numerals] as existing, non-sensible objeds (and thus the same kind of ided
existencewould then have to be dtributed to transfinite numbers as well, and in particular to the numbers of
the so-cdl ed second number clasg. Neverthelessthe am of Hilbert’s theory isto make such an attitude
dispensable for the foundation of the exad sciences. (Bernays 1923 163

Another open question in thisregard is exadly what Hilbert means by “concrete.” He very likely does not
useit in the same sense asit is used today, that is, as charaderistic of spatio-temporal physicd objedsin contrast to
“abstrad” objeds. Inthat modern sense, signtypes are not concrete. However, signtypes certainly are diff erent
from full -fledged abstrada like pure sets in that all their tokens are concrete. Parsons takes acoourt of this diff erence
by using the term “quasi-concrete” for such abstrada. Tait, on the other hand, thinks that even the tokens are not
concrete physicd objeds, but abstrad themselves.

The considerations outlined so far should have mnvinced the reader by now that the view is not as easily
made sense of as one might be inclined to think on a aursory reading of “On the infinite.” On the one hand, for
instance, the numerals are supposed to be objedive, not merely creded by thought; on the other hand they are not to
be independent of their intuiti ve representation. They need to be @mncrete and surveyable, but they also cannot be



physicd objeds. The situation isnot alleviated by the fad that it is not even clea what Hil bert means by
“intuition.” Kitcher arguesthat it is pure sensuous intuition in the sense of Kant, and that this kind of intuition
cannot med all of Hilbert’s requirements. Mancosu (19981 has own that Hil bert and Bernays at first held the
intuition involved to be empiricd, but later in the 192Gs turned to pure intuiti on as the source of certainty in
elementary contentual arithmetic.

Many of the problems discussed so far arise because Hil bert considers contentua finite mathematics to be
about certain entiti es, the numeral's, and we ae puzzed by their epistemologicd and ontologicd status. Not only
that, but Niebergall and Schirn (1998 argue that assumptions of infinity are implicitly made by Hilbert’ s finitism. 1f
they areright, then the question of whether numerals are tokens or typesisthe least of Hilbert’s problems. Their
argument depends in part on assuming that Hil bert’ s contentual mathematics does have astandard referential
semantics; that, say, “2 + 2 = 4" istruein virtue of the properties of the numeralsthat “2” and “4” refer to. What if
we tried to make sense of finite mathematics without assuming standard semantics, without asauming that there ae
entities (the numerals“11” and “1117") that “2” and “4” refer to and which make “2 + 2 = 4” true?

A promising avenue which has been suggested by Kitcher (1976 isthat in order to acoommodate dl of the
finitist’s requirements on numbers, this ©-cdled standard account of mathematica truth must be @andoned. On the
standard acount, statements involving number terms are supposed to be analyzed in the same way as gatements
involving physicd objed terms, i.e., the terms refer and the truth conditi ons of sentencesin which they occur are
given by standard referential semantics. Benacaraf (1983 403) argues that the virtue of the standard acoourt is that
it provides a“homogeneous ssmanticd theory in which semantics for the propasiti ons of mathematics parall el the
semantics for the rest of the language.” Such atheory is one of two requirements a theory of mathematicd truth must
fulfill, the other isthat it “mesh with areasonable gistemology.” Given the foundational charader of the finiti st
viewpoint and its explicit (and only) goal, namely to give an account of truth for (afragment of) arithmetic whichis
seaure, it isreasonable to al ow the second requirement to be the more important one. As| will try to show, Hil bert
and Bernays can be real as abandoning the standard view in their later writings.*

In many places Hil bert does seem to expound something like the standard ac@urt. For instance, in (Hil bert
1926 377) heintroducesfirst the numerals, which are supposed to “have no meaning at all by themselves.”
Contentual arithmetic, however, requires, besides the numerals, other signs “that mean something and serveto
convey information, for example the sign 2 as an abbreviation for the numeral 11.” There ae dso passges that
suggests a non-standard reading, both have been mentioned before. In the ealy paper from 1905 the numerals are
not introduced as an independent notion, but only in the mntext of identity statements. All we ae given there ae
conditi ons of when an expresson of theform*“1...1 =1...1" should count as a true propasition. In the response to
Miller’s criticism of Hilbert, Bernaysintroduces a distinction between the numeral s [Zahlzeichen] and the notion of
cadina number [Anzahl]. He writes:

It should also be noted that the contentual charader of the Number [Anzahl] concept isindeed
compatible with the purely figural charader of the number signs. The figures are used as todls for courting,
and by courting one arives at the determination of cardinal number [...]

One here has to reagnizethat the cadinal numbers are only defined in the context of the entire
Number statement. For example, it will not be explained what “the Number five” is, but only what it means
for the Number five to apply to a given totality of things. (Bernays 1923 225

We find two very interesting ideas here. Bernays s1ggests a non-standard reading of Number statements
quite explicitly. Hisformulation isvery close to Russll’s “meaningin use” of integral signor classabstradion in
Principia Mathematica. The other ideaisthat the numerals are todls for counting. Hand (1989 1990 has presented
anon-standard acount of finiti stic number theory which takes up thisidea Sincein thisacount truth conditi ons for

finitistic statements take center stage, let me now turn to a discusdon of statements.
3. Statements

We can find in Hil bert’ s writi ngs threedistinctions of mathematicd statements: (1) contentual vs. formal,
(2) finitistic vs. infinitistic, and (3) red vs. ided.*® Contentual mathematics is comprised of those statements that we
make based on our intuition of concrete objeds. Thisincludes gatements we make éout numerals, but also those
about formulas and formal derivations. These ae mncrete objeds given in intuition, we can come to know about
them direaly. Formal discourse starts where we leave the grounds of intuition and instead proceed from an
axiomatic standpant, when we ded with aformalized language. Accordingto Hil bert, all mathematicd discourse,



“mathematics proper,” [die @gentliche Mathematik] isto be formalized and thus beaomes a “ stock of provable
formulas’ (Hilbert 1922 146). Whereas contentual mathematics deds with those statements and ways of reasoning
that arejustified on finite grounds, formalized mathematics appeds also to completed infiniti es, uses unbounded
guantification, the unrestricted principle of the excluded middle, etc. The exad nature of the “finitistic standpant” is
subjed to debate and historicd analysis.*® We find, however, a number of examplesin Hilbert's and Bernays's
writing of what fall swithin this gandpaint. First there ae the basic equaliti es and inequaliti es in the mntentual
sense between numerals; these aefinitisticdly justified statements. We ae dso allowed to introduce cetain
computable functions, however, not as functions in the usual sense, i.e., sets of ordered pairs of numbers, but only as
descriptions of methods of construction (seediscusgon in the next sedion). Asamode of reasoning, induction on
propasiti ons with “elementary intuitive cntent” is finitisticaly accetable. '’ We ae told which propasitions can be
finitisticadly interpreted. The most extensive discusgon of thisisin 82 d Grundagen I:

For the charaderization of the finiti stic standpant we may emphasize some general considerations
concerning the use of logicd forms of judgment in finiti st thought [logische Urteil sformen im finiten
Denken], which we shall exemplify in the case of propoasitions about numerals.'®

A universal judgment about numerals can be interpreted finitisticadly only in a hypotheticd sense,
i.e., asapropasition about any given numeral. Such ajudgment pronounces a law which must verify itself
in ead gven particular case.

An exstential sentence about numerals, i.e., a sentence of the form “there isa numera n with the
property A(n),”*°isto be understoodfinitisticdly asa“partial judgment,” i.e., as an incomplete
communication of a more spedfic propasition consisting in either a dired exhibition of a numeral with the
property A(n), or the exhibition of a processto oltain such a numeral,—where part of the exhibition of such
aprocessis a determinate bound for the sequence of adion to be performed.

Those judgments combining auniversal propasition with an existential assertion have to be
finitisticaly interpreted correspondingly. For instance, a sentence of the form “for ead numeral k with the
property A(k) thereisanumeral |, for which B(k, 1) holds,” hasto be finitisticdly understood as an
incomplete communicdion of a processwhich makesit posdble to find, for ead gven numeral k with the
property A(k), anumera | which standsin therelation B(k, 1) to k. (Hilbert and Bernays 1934 32-33

Thisdiscusson is an expansion and clarification of the eailier exposition in “On the infinite”(Hilbert 1926
377). Itisclea that the negation of afinitistic statement need not be afiniti stic statement, more predsely: A
finitistic interpretation for a cntentual statement about numerals does not, by itself, yield a finiti stic interpretation of
the negation of the statement. Thisiswhat it means that some finiti st statements are “incapable of being regated:”
From the inability, or even imposshility, to seethat A(k) for ead gven numeral k, it does not foll ow that we have a
witnessl, or even abound on such, for =A(l). At this point Hilbert and Bernays propose the formali zation of
mathematics and the introduction of ided elements, i.e., transfinite quantifiers, to retain the simpli city of classcd
logic. (Informalized mathematics, we have red statements (roughy, these ae the quantifier-freeformulas), which
admit of a contentual interpretation, and the ided statements, which round out the theory, apped to the infinite, and
thus do not have afinite, contentual interpretation.)

Now how is the semantics of the basic finiti stic statements explained? Hand (1990 discusses an
iterativistic tendency in Hilbert’s views on thisissie. The basic ideaisthat we have the cgaaty to count
intransitively, i.e., to count without counting any thing (in particular, not the natural numbers). The numerals are, so
to spea, a autch for usto remember when we ae suppaosed to stop courting. An equality between numeralsis then,
e.g., to be understood as the as<ertion that in cournting the strokes in both strings smultaneously, we will stop at the
same paint (in contrast to the view that identity is “figural correspondence”); an inequality as the statement that we
can count further on one numeral than on another (in contrast to the ideathat one numeral extends beyond the other).

| think thisview has a cetain apped. After al, asamatter of developmental and historicd fad, the ancept
of number had its origins in the human capadty to court. We count fingers, we curt cattle, eventually, we just
count. The phenomenon of counting without counting any thing, it seemsto me, is much better explained as
engaging in an iterative mental procedure than as naming, in successon, the members of the natural number
sequence (whatever those a€). Such a mnception, argues Hand, is at work in some placesin Hilbert’ s finitism. He
supparts his view mainly by textual evidencefrom Hilbert's (1905 and (1926. | believe that there ae even stronger
suggestions in thisdiredion in Grundagen.



For instance, in “On theinfinite,” the numerals are introduced in a very pictorial way, as squences of
strokes. A few yeas later, when even Hil bert is becoming convinced that empiricd intuition will not do the trick of
providing arithmetic with a seaure and phil osophicdly acceptable footing, Bernays writes:

The ordinal number isin and o itself also not determined as objed; it isonly a placemarker. We
can objedively standardizeit by choosing as a place marker the simplest structure from those that originate
in the form of the succesgon. [...W]ehave ainitial thing and a process the objeds are then the initi al
thingitself and further the objeds one obtains, beginning with the initial thing, througha single or repeaed
applicaion of that process (Bernays 1930 244)

In Grundagen the ideais made more concrete:

In number theory, we have an initial objed and a processof successon [Prozefd des
Fortschreitens]. For both we must settle on a particular intuitive representation. The particular kind of
representation isinesential, but the dhoice, once made, must be retained throughout the whole of the
theory. We dhoase asinitial objed the numeral 1 and as processof succesgon the gtachment of 1.

The objeds which we obtain from the numeral 1 by applying the processof successon, such as

1,11, 1111

are figures of the following kind: The start with 1, they end in 1; ead 1 which does not already form the
end df the figureisfollowed by an attached 1. They are obtained through appli cation of the processof
successon, that is by an aseembling [Aufbad which concretely comesto an end, and this asseembling can be
undone by a stepwise disassembling [Abbay. (Hilbert and Bernays 1934 20-2J)

Theideawe ae given hereisthat the objed of humber theory is an iterative process and thisiterative
processis representable in intuition. The iterative processis basic; the numerals only help us, so to spe, to keep
tradk of how far the iteration hes proceeded. Thisisnecessary since a cucial asped of the iterative processis that it
can bereversed. Thisisthe basisfor induction and reaursion in finiti stic mathematics.

Theimport the iterativist acount has for semanticsis that it no longer requires denotations for the terms of
arithmetic. The numerals do not stand for anything, they just give usinformation on how to verify or falsify
arithmeticd statements. Equaliti es between numerals are true, not if the numerals are the same or they have the same
form, but if they both gve the same bound on the processof successon. If we can start counting and bah numerals
tell usto stop at the same time, they are equal.

4. Finitistic functions

Theisaueisalittl e more involved when considering more mmplex arithmeticd terms, e.g., sums and
products. If numbers are controls on iteration, then the functions of arithmetic should be defined by iteration. A
finitistic function, or more predsely, its definition, isaway of communicaing a cetain procedure which allows us to
obtain anumeral from certain other numerals. The operations that this procedure may apped to are assembling and
disaseembling numerals and iterating (previously defined) operations. Thisisall that is needed to give truth
conditi ons for equaliti es between arithmeticd terms: Use the definiti on of the function to oktain an explicit bound on
iteration and we have reduced the question to an equality between numerals.

How much of thisis present in Hilbert’s writings? In Grundagen, the definition of addition till depends
on the visual image of numerals as quences of strokes:

If anumeral b correspondsto a part of a, then the rest is again a numeral c; thus we obtain the
numeral a by appending c to b, in the manner in which the 1 which starts ¢ is appended to the 1 in which b
ends acording to the processof successon. We cdl thiskind of compaosition of numerals addtion and use
for it thesign+. (Hilbert and Bernays 1934 22)

However, the definition of multi pli cation agrees much more with the ideaof definition of afunction by
iteration:



Multi pli cation can be defined as follows: a [b denotes the numeral obtained from b by replaang,
during its construction, alwaysthe 1 by the numeral a, so that one first forms a and then appends a insteal
of ead appending of 1 in the cnstruction of b. (Hilbert and Bernays 1934 24)

It is clea, however, that the general notion of finitistic function is based on iteration/reaursion, and Hil bert
could aswell have given an explanation of addition and multi pli cation in these terms, without apped to the picture of
sequences of strokes and their geometricd manipulation. Thisis evident from the discusson of reaursion:;

[O]ne paint still requires a basic discusson, the method o reaursivedefinition. Let us £ewhat
this method consistsin: A new function symbadl, say ¢, isintroduced, and the [corresponding] functionis
defined by two equations. In the simplest case, these equations are of the form:

¢(1) =

a
¢(n+1) = Y(o(n), n).

Here, aisanumera and Y afunction which is formed from previously known functions by compasiti on, so
that Y(b, c) can be mmputed for given numerals b, ¢ and gives another numeral asvalue. [...]

It is not immediately clear, which sense may be asdgned to this method o definition. For its
elucidation we must first make the notion of function predse. A function, for us, is an intuitive instruction
on the basis of which to ead gven numeral another numeral isasdgned. A pair of equations of the ebove
kind—cdled a“reaursion’—isto be understood as an ablreviated communication of the following
instruction:

Let m be any numeral. If m =1, so let the numeral a be assgned to m. Otherwise, m has the form
b + 1. Onethen writes down schematicdly:

W((b), b).

Now if b =1, so onereplacestherein ¢(b) by a; otherwise b again hasthe form ¢ + 1, and one then
replaces ¢(b) by

W($(0), ).

Again, either c=1 or cisof theformd + 1. Intheformer case one replaces ¢(c) by a, in the latter case by

W(9(d), d).
Repeaing this processin any case terminates. For the numerals
b,cd, ...,

which we obtain one &ter the other, develop throughthe disassembling o the numeral m, and this must
terminate just like the assmbling of m does. When we arive a 1 in this processof disassmbling, then
¢(1) isreplacal by a; the sign$ does then no longer occur in the resulting figure. Rather, the only function
symboal occurring, posshbly in multi ple superpasition, is  and the innermost arguments are numerals. Thus
we have arived at a computable expresdon; for ) was supposed to be afunction already known. This
computation must be exeauted from the inside out, and the numeral thus obtained shall be assgned to the
numeral m. (Hilbert and Bernays 1934 25—-29

We seehow this conception of computation fits in with the iterativist conception of finitistic truth: An
equation between arithmeticd terms is evaluated, by iteration, urtil we arive & an equation between numerals. The
numerals themselves are mnemonic devices, in principle dispensable, for effeding this procedure. This corresponds
predsely to Hand’s “canonicd verifications.”

Recantly, Parsons (1998 has taken up the acount of finiti stic functions from Grundagen, in particular of
primiti ve reaursion, as successve replacement of terms. He agues that the acount is not strong enoughto suppart



what he cdls Hilbert’s Thesis, namely, that finitistic proofs of propasitions yield intuitive knowledge of them. In
particular, he questions the subsidiary thesis that primiti ve reaursion always yields intuitively well -defined functions
(and thusthat at least all the primitive reaursive functions are intuiti vely seen to be well-defined). He daims that
addition and multi pli cation are intuiti vely well -defined, but only because they are spedal cases. In general, primitive
reaursive functions can only be seen to be total using ;-induction. If Parsonsisright, then the non-standard
approach based on iteration cannot achieve the intuitive catainty that finitism requires. Tait, for one, certainly
would disagreewith Parsons. For Tait, primitive reaursion is one of the kinds of definition of which it isimpaossble
to ask for aproof of their well-definedness Even asking for a demonstration that primitive reaursion yields well -
defined functions would thus be misguided. Parsons even suggests that Hil bert and Bernays not only have not

establi shed Hilbert’s Thesis, but that they cannot. Any argument that would establi sh that primitive reaursion
preserves intuiti ve well -definedness $ould be mnvertibleinto a proof that, say, exponentiation is well-defined using
only unproblematic primitive reaursive functions. He ancludes that thisisimpossble, since Ag-induction is not
strong enoughto prove that exponentiation istotal. Results of thiskind, however, are very sensitive to syntadic
considerations and vary with the formal system used. For instance, if Parsons thinksit reasonable to require aproof
of the totality of exponentiation, he should also admit that it is not incoherent to ask for a proof that multiplication is
total using only addition, or even for a proof that addition is well -defined using only the successor function. Such
proofs are not posdble for similar reasons as the imposshility of a proof that exponentiation istotal using principles
weaker than Z;-induction (in fad, the relevant statements cannot even be formalized), but surely this does not show
that addition and muilti pli cation cannot intuitively be seen to be well defined.

5. Finitism and PRA

Let me conclude with some remarks on Tait’s claim that the finitisticdly acceptable functions are exadly
the primitive reaursive ones. Thereisno question that the primiti ve reaursive functions are finiti stic, sincethey are
al given by reaursive definiti ons of the ébove kind. But are they all the finitistic functions? Any description of an
iterative procedure that all ows us, given aterm involving the function symbals introduced, to arrive & anumeral as
“value” of the term, using only iteration and substitution (in particular, no unbounded seach), should count as
finitistic, if the primitive reaursive ones do. The Ackermann function is an example of afunction computable in this
way, which iswell known not to be primitive reaursive.

Tait did consider the isaue of the Ackermann function being finitistic, as part of an objedion to Kreisel’s
(1960 charaderization of finitistic functions as the provably total functions of first-order Peano arithmetic. The
isaueisthat Kreisel points out?® that in “On the infinite” (1926 Hil bert explicitly discusses the Ackermann function.
Tait’s argument against the cnclusion, based on thisfad, that we should regard it as finitistic is that Hil bert
introduces the Ackermann function in the mntext of a theory of functions of higher types, and these higher types are
certainly not finitistic. 1t istrue that Hil bert introduces the Ackermann function by reaursion on higher types, but it
can also beintroduced by nested reaursion on two arguments. If it iscorred that all that is needed for afunction to
be finitistic is that it be given by a processof reaursion which all ows the computation of the “value” by successve
rewriting of numerals, then this definition would certainly make the Ackermann function finitistic. Infad, thereis
rather explicit evidencethat the Ackermann function was considered to be finitistic, in Grundagen. In 87 d the first
volume, Hilbert and Bernays discuss(what is now cdled) primitive reaursive aithmetic. Thisisaformal theory, all
of whose statements, however, are real, i.e,, finitisticdly meaningful:

Thisreaursive number theory is close to the intuitive number theory as considered in 82, insofar as
its formulas all admit of a finite cntentual interpretation. This contentual interpretability isaresult of the
verifiability of al derivable formulas of reaursive number theory, [afad] which we have drealy stated.
Indeed, in this areaverifiability has the dharader of adired contentual interpretation, and it was because of
this that the proof of consistency was © easy to give here.

The difference of reaursive number theory vis a visintuitive number theory consistsin its formal
restrictions [formale Gebundenheit]; its only method o concept-formation, aside from explicit definition, is
the schema of reaursion, and also the methods of deduction are strictly limited.

We may, however, admit certain exensions of the schema of reaursion as well as of the induction
schema, without taking away what is charaderistic of the method d reaursive number theory. We shall now
discussthese briefly. (Hilbert and Bernays 1934 325[33(), emphasisin the original)



Hil bert and Bernays then go on to introduce @urse-of-values reaursion, simultaneous reaursion (which can
both be reduced to primitive reaursion), nested reaursion [verschréankte Rekursion], the Ackermann function, and
nested induction, and prove that the Ackermann function is not primitive reaursive. We find the most conclusive
statements in the second volume:

Certain methods of finiti stic mathematics which go keyondreaursive number theory (in the
original sense) have been discussed in 87 [of volume | of Grundagen], namely the introduction of functions
by nested reaursion [e.g., Ackermann's function] and the more general induction schemata. (Hil bert and
Bernays 1939 340[354], my emphasis)

The original narrow concept? of afiniti stic propasition amounts in the field of number theory to
admitti ng as finiti stic number-theoretic propasitions only such propasiti ons which can be expressed in the
formali sm of [primitive] reaursive number theory, passbly including symbols for certain computable
number -theoretic functions (of one or more arguments), but without use of formula variables, or which
admit a stricter interpretation by aformula of such aform. (Hilbert and Bernays 1939 348[362, my
emphasis)

Elsewhere, we read that “contentual finite aithmetic [isformalized by] reaursive number theory” (Hilbert
and Bernays 1939 214[224)).% This remark is made in the mntext of arithmetization of syntax, and | take its force
to be that the methods used in arithmetization are primitive reaursive and hencefiniti stic, rather than making a
programmatic identificaion of “finitistic” with “primitive reaursive.” In afootnote, the reader isreferred to the
passage from p. 325[33( of the first volume quoted above, where the relationship between contentual arithmetic
and reaursive aithmetic isdiscused. That passage suggests that Hil bert and Bernays considered finite aithmetic as
partially but not necessarily completely formalized by primitive reaursive aithmetic. It also suggests that the
verifiability of formulasisthe aiterion of finiti stic meaningfulness Verifiability here is defined as foll ows: Every
true eguality or inequality between numeralsis verifiable. Every bodean combination of verifiable formulasis
verifiable. A formula mntaining freeindividual variables (but no formula variables or bound variables) is verifiable
if every instance resulting by substituting nunerals for the freevariablesis verifiable (pp. 229[22§, 238[237]). A
closed formula containing primiti ve reaursive function symbolsis verifiable if the formula resulting from caculating
the primitive reaursive terms occurring in it is verifiable (p. 297[297]). If the function can be cdculated, it is
finitistic? It is obvious that some restriction must be placeal on the notion of cdculability involved here. Without
restrictions, every total general reaursive function would be finiti stic, and any formula containing symbols for total
reaursive functions would be verifiable in that sense. The restriction would most likely have to dowith being able to
seethat the cdculation processcomes to an end, and thisis predsely the isaue in the question of whether the
Ackermann function should be considered finitistic. Bernays was aware that there is a substantial difference between
primitive and nested reaursion in this resped, and the issie cmes up when he proves that primitive reaursion can be
replace by the p-operator (Hil bert and Bernays 1934 421-22[430—31).% Much later, he took nested reaursions
(in the sense of verschrankte Rekursionen considered in Grundagen |) to be finiti st on the grounds that they could
be computed by a sequence of replacements of terms, the number of which isbounded. In aletter to Gddel from
1970 he writes:

These nested reaursions | ...] appea to meto be finite in the same sense & the primitive
reaursions, i.e., if one regards them as a statement of a computation procedure where one can reagnize that
the function defined by the respedive process sitisfies the reaursion equations (for every system of numeral
values [Ziffernwerte] of the aguments). Indeed, the computation of the value of afunction acwordingto a
nested reaursion, when the numeral values of the aguments are given, comes down to the gpli cation of
several primitive reaursions, the number of which is determined by anumeral argument [ Ziffernargument].2*

It is consistent with Hil bert’s ealy writi ngs that finitism, as originally conceived in the ealy 1920s, does not
surpassprimitive reaursive methods. In all li kelihood, Hilbert and Bernays did not think they had to addressthe
issue explicitly. The Ackermann function had not been discovered when the finiti stic standpaint was first
formulated, and in any case it was probably thought initialy that primiti ve reaursive methods aufficefor
metamathematics. | hope to have shown, however, that there is considerable evidencein Grundagen that Hil bert
and, in particular, Bernays considered finiti stic reasoning to go beyond the methods formalized or formalizable in
primiti ve reaursive aithmetic.
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Notes

1. Hilbert (1926 379). All page references are to the English trandlations, where available. All other trandations are
mine. For referencesto Grundagen der Mathematik (Hilbert and Bernays 1934 1939, page numbersin the
seoond edition are given in bradkets.

2. For adetail ed discusson of the instrumentali sm expressed here, seeKitcher (1976 102—-105.

3. Detlefsen (1986 disagrees. For Gddel’s own opinions on the topic, seeSieg (1988 342) and Giaquinto (1983
125-26. Godd's ealy assessment turns on a (questionable but then prevalent) identification of finitism with
intuiti onism and the question whether intuiti onist reasoning is formali zable, of which Brouwer was skepticd.

4. For an overview and assessment of the developments pawned by the program, seeSieg (1988 and Simpson
(1989. For adefense of the plausibility of the program in a historicd and phil osophicd context, see Giagquinto
(1983, espedally §5.

5. Whil e undoubtedly the ideas underlying the program were Hil bert's, in their detail s the views are in large part due
to Hilbert’s collaborator Bernays. One of Bernays main contributions to the program was phil osophicd
clarification of Hilbert'sideas; Bernays, in contrast to Hil bert, had phil osophicd training (seeMancosu 1998,
Sedion 4) for an outline of Bernays's contributions).

6. For adiscusson of this effort, seeChihara (1973 Chapter 1).

7. Thismethoddogicd point is made dea in aletter from Bernays to Rosza Péter, probably from 1940(Bernays
Papers, ETH Zirich Library/WHS, Hs. 9753473.

8. SeeHilbert (1905 131-33. Ina wurse & Gottingen, Hil bert went even further in the development of thisidea
seePedkhaus (199Q Chapter 3).

9. Hilbert (1922 1121), repeaed almost verbatim in Hilbert (1926 376)

10. Thisacmunt is based on our ability to put finite clledions of objedsinto one-to-one arrespondences with the
strokes making yp anumeral. This ability accounts for the usefulnessof contentual number theory. The acount is
indicated in passng by Bernays (1923 225) and is developed in detail by Hilbert and Bernays (1934 28-29.

11 Kitcher: (1976 107-8. Frege (1884 827) advanced esentialy the same aiti cism against Schloemil ch.

12 “Figures|[i.e., numerals] are not shapes, they have a shape” Bernays (1923 159).

13. “These objeds must be[...] space and timeless|...]” (Miller 1923 158

14. Benaceraf (1983 also finds a non-standard acoount in Hil bert’s view of mathematics. That account, however,
does not concern the contentual mathematics we aeinterested in, but formalized mathematics. According to
Benacaraf, Hilbert’s acount of formali zed mathematics is non-standard since unbounded quantifiers—sincethey
are finitisticdly meaningless—are not evaluated acording to standard semantics, but based on the derivability of
sentences containing them from axiom systems that have been shown to be consistent.

15. For adiscusson of these distinctions, seeSinacaur (1993.

16. Hilbert and Bernays adnowledge that they have not drawn the distinction predasely: “[W]e have introduced the
expresson ‘finitistic’ [finit] not as a sharply delineaed term, but only as the name of methodica guideline, which
enables usto recognize cetain kinds of concept-formations and ways of reasoning as definitely finitistic and athers
as definitely not finitistic. This guideline, however, does not provide us with a predse demarcation between those
[concept-formations and ways of reasoning] which acard with the requirements of the finiti stic method and those
that donot.” (Hilbert and Bernays 1939 347-48[361])

17. Aussagen mit elementar anschadichem Inhdt. | propcseto rea this as: propasitions which permit afinitistic
interpretation (seebelow). SeeBernays (1922 169-70Q for the distinction between the form of induction
discus=ed here, “the narrower form of induction,” and the full schema of induction on arbitrary formulas. This
digtinctionis essential for the rebuttal, by Hil bert, of Poincaré' s and Bedker's charge of circularity in Hilbert's
theory. For this, sseMancosu (1998H).

18. | take the word “exemplify” to imply that the same forms of judgment also apply to ather finitisticadly acceptable
concept-formations, e.g., functions defined by reaursion.

19. Hilbert uses old German type for meta-language variables for numerals (lower case) and propasitions/formulas
(upper case). Boldfaceis used here.

20. “For instance, Tait refersto [Hilbert 1926 as a source @ncerning Hilbert’s notion of afinitist proof, goes on to
say ‘it isdifficult perhapsto determine what Hilbert redly had in mind’ and argues that Ackermann’s enumeration
of the primitive reaursive functionsis not finitist. But whatever else may be in doubt, Hil bert’s own notion as used
in (1926 certainly includes Ackermann's function sinceit is explicitly mentioned!” (Kreisel 1970 514, n. 43). In
arecent talk (“ Some remarks about finitism,” 13 Decaember 1998 Refledions Symposium, Stanford), Tait argued
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in detail that the use of the Ackermann function in Hilbert (1926 (in Hilbert’s attempted proof of the continuum
hypothesis) was not meant to be finitistic.

21. “Original concept of finitism” in contrast to some dight extensions that are discussed subsequently, in particular,
admisdon of implicatiions with a universal anteceadent and inductions with premises of such aform. The passage
occursin the mntext of considering the question of whether there ae finiti stic principles which go beyond number
theory Z.

22. This passage was pointed out by Tait in the talk cited in note 20.

23. For adiscusson of nested reaursion and the isaues coming up in computing functions defined by nested
reausrsion, seeTait (1961).

24. Bernaysto GOdel, 7 January 197Q Bernays Papers, ETH Zirich Library/WHS, Hs. 9751745
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