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Abstract. The paper proposes a new formal approach to vagueness and
vague sets taking inspirations from Pawlak’s rough set theory. Following
a brief introduction to the problem of vagueness, an approach to concep-
tualization and representation of vague knowledge is presented from a
number of different perspectives: those of logic, set theory, algebra, and
computer science. The central notion of the vague set, in relation to the
rough set, is defined as a family of sets approximated by the so called
lower and upper limits. The family is simultaneously considered as a fam-
ily of all denotations of sharp terms representing a suitable vague term,
from the agent’s point of view. Some algebraic operations on vague sets
and their properties are defined. Some important conditions concerning
the membership relation for vague sets, in connection to Blizard’s mul-
tisets and Zadeh’s fuzzy sets, are established as well. A classical outlook
on a logic of vague sentences (vague logic) based on vague sets is also
discussed.

1 Introduction

Logicians and philosophers have been interested in the problem area of vague
knowledge for a long time, looking for some logical foundations of a theory
of vague notions (terms) constituting such knowledge. Recently vagueness and,
more generally - imperfection, has become the subject of investigations of com-
puter scientists interested in the problems of AI, in particular, in the problems
of reasoning on the basis of imperfect information and in the application of com-
puters to support and represent such reasoning in the computer memory (see
e.g. Parsons [15]).

Imperfection is considered in a general information-based framework, where
objects are described by an agent in terms of attributes and their values. Bonis-
sone and Tong [5] indicated three types of imperfections relating to information:
incompleteness, uncertainty and imprecision. Incompleteness arises from the ab-
sence of a value of an attribute for some objects. Uncertainty arises from a lack
of information; as a result, an object’s attribute may have a finite set of values
rather than a single value. Imprecision occurs when an attribute’s value can-
not be measured with adequate precision. There are also other classifications of
imperfect information (e.g. S lowiński, Stefanowski [26]).



Marcus [12] thought of imprecision more generally. He distinguished e.g. such
types of imprecision as vagueness, fuzziness and roughness. Both fuzziness and
roughness are mathematical models of vagueness.

Fuzziness is closely related to Zadeh’s fuzzy sets [28]. In fuzzy set theory,
vagueness is described by means of a specific membership relation. Fuzziness
is often identified with vagueness, however, Zadeh [29] noted that vagueness
comprises fuzziness. Roughness is connected with Pawlak’s rough sets [19].

Classical, set-theoretical sets (orthodox sets) are not sufficient to deal with
vagueness. Non-orthodox sets - rough sets and fuzzy sets - are used in two dif-
ferent approaches to vagueness (Pawlak [22]): while Zadeh’s fuzzy set theory
represents a quantitative approach, Pawlak’s rough set theory represents a qual-
itative approach to vagueness.

Significant results obtained by computer scientists in the scope of impreci-
sion and vagueness: the Zadeh’s fuzzy set theory [28], the Shafer’s theory of
evidence [24] and the Pawlak’s rough sets theory [19], [21] greatly contributed
to actualization and intensification of research into vagueness.

This paper is an extended version of a previous article by the same authors [4].
It proposes a new approach to vagueness taking into account the main ideas of
roughness. Roughness considered as a mathematical model of vagueness is here
replaced by an approach to vagueness in which vague sets, defined in this paper,
play the role of rough sets. Vague sets are connected with vague knowledge and,
at the same time, are understood as denotations of vague notions. The paper
also attempts to lay logical foundations to the theory of vague notions (terms)
and thus brings an essential contribution to research in this area.

The structure of the paper is as follows. In Section 2, we introduce the notion
of unit information (unit knowledge) and vague information (vague knowledge).
The central notion of the vague set, inspired by the Pawlak’s notion of a rough
set, is defined in Section 3. Section 4 is devoted to the problem of multiplicity of
an object’s membership to a vague set. In Section 5 some operations on vague sets
and their algebraic properties are given. A view on the logic of vague concepts
(terms) is discussed in Section 6. The paper ends with Section 7 which delivers
some final remarks.

2 Unit Knowledge and Vague Knowledge

In the process of cognition of a definite fragment of reality, the cognitive agent
(a man, an expert, a group of men or experts, a robot) attempts to discover
information contained in it or, more adequately, about its objects. Each fragment
of reality recognized by the agent can be interpreted as the following relational
structure:

< = 〈U ,R1,R2, . . . ,Rn〉,

where U , the universe of objects of reality <, is a nonempty set, and Ri, for
i = 1, 2, . . . , n, is the set of i-ary relations on U . One-ary relations are regarded
as subsets of U and understood as properties of objects of U , and multi-argument



relations as relationships among its objects. Formally, every k-ary relation of Rk

is a subset of Uk.
We assume that reality < is objective with respect to cognition. Objective

knowledge about it consists of pieces of unit information (knowledge) about
objects of U in relation to all particular relations of Rk (k = 1, 2, . . . , n).

We introduce the notion of knowledge and vague knowledge in accordance
with some conceptions of the second co-author of this paper ([27]).

Definition 1. Unit information (knowledge) about the object o ∈ U with
respect to the relation R ∈ Rk (k = 1, 2, . . . , n) is the image

−→
R (o) of the object

o with respect to the relation R1.

Discovering unit knowledge about objects of reality < is realized through
asking questions including certain aspects, called attributes, of the objects of
the universe U . Then, we usually choose a finite set U ⊆ U as the universe
and we put it forward as a generalized attribute-value system Σ, also called an
information system (cf. Codd [6]; Pawlak [16], [18], [19]; Marek and Pawlak [13]).
Its definition is as follows:

Definition 2. Σ is an information system iff it is an ordered system

Σ = 〈U,A1, A2, . . . , An〉,

where U ⊆ U , card(U) < ω and Ak (k = 1, 2, . . . , n) is the set of k-ary attributes
understood as k-ary functions, i.e.

∀a∈Ak
a : Uk → Va,

where Va is the set of all values of the attribute a.

Example 1. Let us consider the following information system: S = 〈S, A1, A2〉,
where S = {p1, p2, . . . , p5} is a set of 5 papers and A1 = {IMPACT FACTOR
(IF ), QUOTATIONS (Q)}, A2 = {TOPIC CONNECTION (TC)}. The at-
tribute IF is a function which assigns to every paper p ∈ S an impact factor of
the journal, in which p was published. We assume that VIF = [0, 100]. The value
of the attribute Q for any paper p ∈ S is the number of quotations of p. We
assume that VQ = {0, 1, 2, . . . , 2000}. We also assume that TC assigns to every
pair of papers a quotient of the number of common references by the number of
all references, and that VTC = [0, 1].

The information system S can be clearly presented in the following tables:

1 −→R (o) =

{
R, if o ∈ R,
∅, otherwise.

for R ∈ R1.

−→
R (o) = {〈x1, . . . , xi−1, xi+1, . . . , xk〉 : 〈x1, . . . , xi−1, o, xi+1, . . . , xk〉 ∈ R}

for R ∈ Rk (k = 2, . . . , n).



IF Q
p1 0.203 125
p2 0.745 245
p3 0.498 200
p4 0.105 150
p5 1.203 245

TC p1 p2 p3 p4 p5

p1 1 3/10 0 6/7 0
p2 3/10 1 0 0 4/17
p3 0 0 1 0 1/12
p4 6/7 0 0 1 0
p5 0 4/17 1/12 0 1

Every attribute of the information system Σ and every value of this attribute
explicitly indicates a relation belonging to the so-called relational system de-
termined by Σ. The unit information (knowledge) about an object o ∈ U
should be considered with respect to relations of the system.

Definition 3. <(Σ) is a system determined by the information system Σ
iff

<(Σ) = 〈U, {Ra,W : a ∈ A1, ∅ 6= W ⊆ Va}, . . . , {Ra,W : a ∈ An, ∅ 6= W ⊆ Va}〉,

where Ra,W = {(o1, o2, . . . , ok) ∈ Uk : a((o1, o2, . . . , ok)) ∈ W}
for any k ∈ {1, 2, . . . , n}, a ∈ Ak.

Let us see that
⋃
{Ra,{v} : a ∈ A1, v ∈ Va} = U , i.e. the family {Ra,{v} : a ∈

A1, v ∈ Va} is a covering of U .
It is easy to see that

Fact 1 The system Σ uniquely determines the system <(Σ).

Example 2. Let S be the above given information system. Then the system deter-
mined by the system S is <(S) = 〈U,RA1 , RA2〉, where RA1 = {RIF,S}∅6=S⊆VIF

∪
{RQ,S}∅6=S⊆VQ

and RA2 = {RTC,S}∅6=S⊆VT C
.

For any attribute a of the system S and any i, j ∈ R we adopt the following
notation:

Sj
i = {v ∈ Va : i ≤ v ≤ j}, Sj = {v ∈ Va : v ≤ j}, Si = {v ∈ Va : i ≤ v}.

Then, in particular, we can easily state that: RIF,S0.5
0.1

= {p1, p3, p4}, RIF,S0.7 =
{p2, p5}, RIF,S0.3 = {p1, p4}, RQ,S150

150
= RQ,{150} = {p4}, RQ,S200 = {p2, p3, p5}

and RTC,{1/12} = {(p3, p5), (p5, p3)}, RTC,{1} = {(pi, pi)}i=1,...,5.

The notion of knowledge about the attributes of the system Σ depends on the
cognitive agent discovering the fragment of reality Σ. According to Skowron’s
understanding of the notion of knowledge determined by any unary attribute (cf.
Pawlak [17], Skowron et al. [25], Demri, Orlowska [8] pp.16–17), we can adopt
the following generalized definition of the notion of knowledge Ka about any
k-ary attribute a :

Definition 4. Let Σ be the information system and a ∈ Ak (k = 1, 2, . . . , n).
Then



(a) Ka = {((o1, o2, . . . , ok), Va,u) : u = (o1, o2, . . . , ok) ∈ Uk},
where Va,u ⊆ P (Va), Va,u is the family of all sets of possible values of the
attribute a for the object u from the viewpoint of the agent and P (Va) is the
family of all subsets of Va.

(b) The knowledge Ka of the agent about the attribute a and its value for the
object u is
(0) empty if card(

⋃
Va,u) = 0,

(1) definite if card(
⋃

Va,u) = 1,
(> 1) imprecise, in particular vague, if card(

⋃
Va,u) > 1.

Let us observe that vague knowledge about some attribute of the information
system Σ is connected with the assignation of a vague value to the object u.

Example 3. Let us consider again the information system S = 〈S, A1, A2〉. The
agent’s knowledge KIF ,KQ,KTC about the attributes of the information system
S can be characterized by means of the following tables:

VIF,p VQ,p

p1 {S0.2, S0.3, S0.25} {S100, S150, S90, S80}
p2 {S0.5, S0.7, S0.8} {S180, S200, S250, S240}
p3 {S0.5, S0.6, S0.4} {S170, S230, S180, S150}
p4 {S0.1, S0.2, S0.15} {S100, S90, S10, S140}
p5 {S0.7, S1.5, S1.0} {S270, S150, S240, S200}

VTC,(p,p′) p1 p2 p3 p4 p5

p1 {S1
1} {S0.3, S0.5} {S0.1, S0.2} {S0.5, S0.8} {S0.1, S0.2}

p2 {S0.3, S0.5} {S1
1} {S0.1, S0.2} {S0.1, S0.2} {S0.3, S0.4}

p3 {S0.1, S0.2} {S0.1, S0.2} {S1
1} {S0.1, S0.2} {S0.3, S0.1}

p4 {S0.5, S0.8} {S0.1, S0.2} {S0.1, S0.2} {S1
1} {S0.1, S0.2}

p5 {S0.1, S0.2} {S0.3, S0.4} {S0.3, S0.1} {S0.1, S0.2} {S1
1}

From Definitions 1 and 3 we arrive at:

Fact 2 Unit information (knowledge) about the object o ∈ U with respect to a
relation R of the system <(Σ) is the image

−→
R (o) of the object o with respect to

the relation R, from the viewpoint of the agent.

Contrary to the objective unit knowledge
−→
R (o) about the object o of U in

the reality < with regard to its relation R, the subjective unit knowledge about
the object o of U in the reality <(Σ) depends on an attribute of Σ determining
the relation R and its possible values from the viewpoint of the knowledge of an
agent discovering <(Σ). The subjective unit knowledge

−→
R (o) from the agent’s

viewpoint depends on the agent’s ability to solve the following equation:

−→
R (o) = x, (e)

where x is an unknown quantity.



Solutions of (e) for a k-ary relation R should be images of the object o with
respect to k-ary relations Ra,W from <(Σ), where ∅ 6= W ⊆ Va. Let us note
that for each unary relation R solutions of (e) are unary relations Ra,W , where
∅ 6= W ∈ Va,o.

A solution of the equation (e) can be correct - then the agent’s knowledge
about object o is exact . If the knowledge is inexact , then at least one solution
of (e) is not an image of the object o with respect to the relation R.

Definition 5. Unit knowledge about the object o ∈ U in <(Σ) with respect to
its relation R is

(0) empty iff the equation (e) does not have a solution for the agent (the agent
knows nothing about the value of the function

−→
R for the object o),

(1) definite iff the equation (e) has exactly one solution for the agent (either
the agent’s knowledge is exact – the agent knows the value of the function

−→
R

for the object o – or he accepts only one, but not necessarily accurate, value
of the function),

(> 1) imprecise iff the equation (e) has at least two solutions for the agent (the
agent allows at least two possible values of the function

−→
R for the object o).

From Definitions 4 and 5 we arrive at:

Fact 3 Unit knowledge about the object o ∈ U in <(Σ) with respect to its relation
R is

(0) empty if the agent’s knowledge Ka about the attribute a and its value for
the object o is empty,

(1) definite if the agent’s knowledge Ka about the attribute a and its value for
the object o is definite,

(> 1) imprecise if the agent’s knowledge Ka about the attribute a and its value
for the object o is imprecise.

When the unit knowledge of the agent about the object o is imprecise, then
most often we replace the unknown quantity x in (e) with a vague value.

Example 4. Consider the relation R = RQ,S200 within the previous system <(S),
i.e. the set of all papers of S that have been quoted in at least 200 papers. The
unit knowledge about the paper p5 with respect to R can be the following vague
information: −→

R (p5) = VALUABLE , (e1)

where VALUABLE is an unknown, indefinite, vague quantity.
Then the agent refers to the paper p5 non-uniquely, assigning to him dif-

ferent images
−→
R (p5) of the paper p5 with respect to the relation R that are

possible from his point of view. Then the equation (e1) usually has, for him,
at least two solutions. From Example 3, it follows that each of these relations:
RQ,S270 , RQ,S150 , RQ,S240 , RQ,S200 can be a solution of (e1).



3 Vague Sets and Rough Sets

Let <(Σ) be the system determined by the information system Σ. In order to
simplify our considerations in the subsequent sections of the paper, we will limit
ourselves to the unary relation R (property) – a subset of U of the system <(Σ).

Definition 6. Unit knowledge about the object o in <(Σ) with respect to R
is inexact iff the equation (e) has the form:

−→
R (o) = X, (ine)

where X is an unknown quantity from the viewpoint of the agent, and (ine) has
for him at least one solution and at least one of the solutions is not an image−→
R (o).

The equation (ine) can be called as the equation of inexact knowledge of the
agent. All solutions of (ine) are unary relations in the system <(Σ).

Definition 7. Unit knowledge about the object o in <(Σ) with respect to R
is vague iff the equation (ine) has the form:

−→
R (o) = VAGUE, (ve)

where VAGUE is an unknown quantity and (ve) has at least two different solu-
tions for the agent.

The equation (ve) can be called the equation of vague knowledge of the agent.

Fact 4 Vague unit knowledge is a particular case of inexact unit knowledge.

Definition 8. The family of all solutions (sets) of (ine), respectively (ve), is
called the vague set for the object o determined by R, respectively the
proper vague set for the object o determined by R.

Example 5. The family of all solutions of (e1) from Example 4 is a vague set Vp5

for the paper p5 determined by RQ,S200 and Vp5 = {RQ,S270 , RQ,S150 , RQ,S240 ,
RQ,S200}.

Vague sets, thus also proper vague sets, determined by a set R are here some
generalizations of sets approximated by representations (see Bonikowski [3]).
They are non-empty families of unary relations from <(Σ) (such that at least
one of them includes R) and sub-families of the family P (U) of all subsets of
the set U , determined by the set R. They have the greatest lower bound (the
lower limit) and the least upper bound (the upper limit) in P (U) with respect
to inclusion. We will denote the greatest lower bound of any family X by X.
The least upper bound of X will be denoted by X. So, we can note

Fact 5 For each vague set V determined by the set (property) R

V ⊆ {Y ∈ P (U) : V ⊆ Y ⊆ V}.



The idea of vague sets was conceived upon Pawlak’s idea of rough sets [19],
who defined them by means of the operations of lower approximation: and
upper approximation: , defined on subsets of U . The lower approximation of a
set is defined as a union of indiscernibility classes of a given relation in U2 which
are included in this set, whereas the upper approximation of a set is defined as
a union of the indiscernibility classes of the relation which have a non-empty
intersection with this set.

Definition 9. A rough set determined by a set R ⊆ U is a family P of all sets
satisfying the following condition:

P = {Y ∈ P (U) : Y = R ∧ Y = R}2

Let us observe that because R ⊆ R ∈ P, the family P is a non-empty family
of sets such that at least one of them includes R (cf. Definition 8). By analogy
to Fact 5, we have

Fact 6 For each rough set P determined by the set (property) R

P ⊆ {Y ∈ P (U) : R ⊆ Y ⊆ R}.

It is obvious that

Fact 7 If V is a vague set and X = V and X = V for any X ∈ V, then V is
a subset of a rough set determined by any set of V.

For every rough set P determined by R we have: P = R and P = R. We can
therefore consider the following generalization of the notion of the rough set:

Definition 10. A non-empty family G of subsets of U is called a generalized
rough set determined by a set R iff it satisfies the following condition:

G = R and G = R.

It is easily seen that

Fact 8 Every rough set determined by a set R is a generalized rough set deter-
mined by R.

Fact 9 If V is a vague set and there exists a set X ⊆ U such that X = V and
X = V, then V is a generalized rough set determined by the set X.

2 Some authors define a rough set as a pair of sets (lower approximation, upper ap-
proximation)(cf. e.g. Iwiński [10], Pagliani [14]).



4 Multiplicity of membership to a vague set

For every object o ∈ U and every vague set Vo, we can count the multiplicity
of membership of o to this set .

Definition 11. The number i is the multiplicity of membership of the object o
to the vague set Vo iff o belongs to i sets of Vo (i ∈ N).

The notion of multiplicity of an object’s membership to a vague set is closely
related to the so-called degree of an object’s membership to the set .

Definition 12. Let Vo be a vague set for the object o and card(Vo) = n. The
function µ is called a degree of membership of o to Vo iff

µ(o) =


0, if the multiplicity of membership of o to Vo equals 0,
k
n , if the multiplicity of membership of o to Vo equals k (0 < k < n),
1, if the multiplicity of membership of o to Vo equals n.

Example 6. The degree of the membership of the paper p5 to the vague set Vp5

(see Example 5 ) is equal to 3/4.

It is clear that

Fact 10 1. Any vague set is a multiset in Blizard’s sense [1].
2. Any vague set is a fuzzy set in Zadeh’s sense [28] with µ as its membership

function.

5 Operations on Vague Sets

Let us denote by V the family of all vague sets determined by relations in the
system <(Σ). In the family V we can define a unary operation of the negation ¬
on vague sets, a union operation ⊕ and an intersection operation � on any two
vague sets.

Definition 13. Let V1 = {Ri}i∈I and V2 = {Si}i∈I be vague sets determined
by the sets R ⊆ U and S ⊆ U , respectively. Then

(a) V1 ⊕V2 = {Ri}i∈I ⊕ {Si}i∈I = {Ri ∪ Si}i∈I ,
(b) V1 �V2 = {Ri}i∈I � {Si}i∈I = {Ri ∩ Si}i∈I ,
(c) ¬V1 = ¬{Ri}i∈I = {U \Ri}i∈I .

The family V1⊕V2 is called the union of the vague sets V1 and V2 determined
by the relations R and S. The family V1 �V2 is called the intersection of the
vague sets V1 and V2 determined by the relations R and S. The family ¬V1 is
called the negation of the vague set V1 determined by the relation R.

Theorem 1. Let V1 = {Ri}i∈I and V2 = {Si}i∈I be vague sets determined by
the sets R and S, respectively. Then



(a) V1 ⊕V2 = V1 ∪V2 and V1 ⊕V2 = V1 ∪V2,

(b) V1 �V2 = V1 ∩V2 and V1 �V2 = V1 ∩V2,

(c) ¬V1 = U \V1 and ¬V1 = U \V1.

Theorem 2. The structure B = (V,⊕,�,¬,0,1) is a Boolean algebra, where
0 = {∅} and 1 = {U}.

We can easily observe that the above-defined operations on vague sets differ
from Zadeh’s operations on fuzzy sets, from standard operations in any field of
sets and, in particular, from the operations on rough sets defined by Pomyka la
[23] and Bonikowski [2]. The family of all rough sets with operations defined in
the latter two works is a Stone algebra.

6 On Logic of Vague Terms

How to solve the problem of logic of vague terms, logic of vague sentences (vague
logic) based on the vague sets characterized in the previous sections? Answering
this question requires a brief description of the problem of language representa-
tion of unit knowledge.

On the basis of our examples, let us consider two pieces of unit information
about the paper p5, with respect to the set R of all papers that have been quoted
in at least 200 papers:

first, exact unit knowledge
−→
R (p5) = {p2, p3, p5}, (ee)

next, vague unit knowledge:
−→
R (p5) = VALUABLE . (e1)

Let p5 be the designator of the proper name a, R – the denotation (extension)
of the name-predicate P (‘a paper that has been quoted in at least 200 papers’),
and the vague name-predicate V (‘a paper which is valuable’) — a language
representation of the vague quantity VALUABLE. Then a representation of the
first equation (ee) is the logical atomic sentence

a is P (re)
and a representation of the second equation (e1) is the vague sentence

a is V. (re1)
In a similar way, we can represent, respectively, (ee) and (e1) by means of a

logical atomic sentence:
aP or P (a), (re′)

where P is the predicate (‘has been quoted in at least 200 papers’ ), and by means
of a vague sentence

aV or V (a), (re′1)
where V is the vague predicate (‘is valuable’ ).

The sentence (re1) (res. the sentence (re′1)) is not a logical sentence, but it
can be treated as a sentential form, which represents all logical sentences, in
particular the sentence (re) (respectively sentence (re′)) that arises by replacing



the vague name-predicate (res. vague predicate) V by allowable sharp name-
predicates (res. sharp predicates), whose denotations (extensions) constitute the
vague set Vp5 being the denotation of V and, at the same time, the set of
solutions of the equation (e1) from the agent’s point of view.

By analogy, we can consider every atomic vague sentence in the form V (a),
where a is an individual term and V — its vague predicate, as a sentential form
with V as a vague variable run over all denotations of sharp predicates that can
be substituted for V in order to get precise, true or false, logical sentences from
the form V (a). Then, the scope of the variable V is the vague set Vo determined
by the designator o of the term a.

All the above remarks lead to a ‘conservative’, classical approach in searching
for logic of vague terms or vague sentences, here referred to as vague logic (cf.
Fine [9], Cresswell [7]). It is easy to see that all counterparts of laws of classical
logic are laws of vague logic, even if for the fact that vague sentences have an
interpretation in Boolean algebra B of vague sets (see Theorem 2).

We can distinguish two directions in seeking such a logic:

1a) all counterparts of tautologies of classical sentential calculus that are
obtained by replacing sentence variables with atomic expressions of this logic (in
the form V(x)), representing vague atomic sentences (sentential functions in the
form V (a)), are tautologies of vague logic,

1b) all counterparts of tautologies of classical predicate calculus that can be
obtained by replacing predicate variables with vague predicate variables, repre-
senting vague predicates, are tautologies of vague logic;

2) vague logic should be a finite-valued logic, in which a value of any vague
sentence V (a) represented by its vague atomic expression (in the form V(x)) is
the multiplicity of membership of the designator o of a to the vague set Vo being
the denotation of V , and the multiplicities of membership of the designators
of the subjects of any composed vague sentence, represented by its composed
vague formula, to the denotation (a vague set) corresponding to this sentence is
a function of the multiplicities of membership of every designator of the subject
of its atomic component to the denotation of its vague predicate.

It should be noticed that sentential connectives for vague logic should not
satisfy standard conditions (see Malinowski [11]). For example, an alternative of
two vague sentences V (a) and V (b) can be a ‘true’ vague sentence (sentential
form) despite the fact that its arguments V (a) and V (b) are neither ‘true’ or
‘false’ sentential forms, i.e. in certain cases they represent true sentences, and in
some other cases they represent false sentences. It is not contrary to the state-
ment that all vague sentential forms which we obtain by a suitable substitution
of sentential variables (resp. predicate variables) by vague sentences (resp. vague
predicates) in laws of classical logic always represent true sentences. Thus they
are laws of vague logic.



7 Final Remarks

1. The concept of vagueness was defined in the paper as an indefinite, vague
quantity or property corresponding to the knowledge of an agent discovering
a fragment of reality, and delivered in the form of the equation of inexact
knowledge of the agent. A vague set was defined as a set (family) of all
possible solutions (sets) of this equation and although our considerations
were limited to the case of unary relations, they can easily be generalized to
encompass any k-ary relations.

2. The idea of vague sets was derived from the idea of rough sets originating
in the work of Zdzis law Pawlak, whose theory of rough sets takes a non-
numerical, qualitative approach to the issue of vagueness, as opposed to the
quantitative interpretation of vagueness provided by Lotfi Zadeh.

3. Vague sets, like rough sets, are based on the idea of a set approximation by
two sets called the lower and the upper limits of this set. These two kinds of
sets are families of sets approximated by suitable limits.

4. Pawlak’s approach and the approach discussed in this paper both make
a reference to the concept of a cognitive agent’s knowledge about the ob-
jects of the reality being investigated (see Pawlak [20]). This knowledge is
determined by the system of concepts that is determined by a system of
their extensions (denotations). When the concept is vague, its denotation,
in Pawlak’s sense, is a rough set, while in the authors’ sense – a vague set
which, under some conditions, is a subset of the rough set.

5. In language representation, the equation of inexact, vague knowledge of the
agent can be expressed by means of vague sentences containing a vague pred-
icate. Its denotation (extension) is a family of all scopes of sharp predicates
which, from the agent’s viewpoint, can be substituted for the vague predi-
cate. The denotation is, at the same time, the vague set of all solutions to
the equation of the agent’s vague knowledge.

6. Because vague sentences can be treated as sentential forms whose variables
are vague predicates, all counterparts of tautologies of classical logic are laws
of vague logic (logic of vague sentences).

7. Vague logic is based on classical logic but it is many-valued logic, because
its sentential connectives are not extensional.
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