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Abstract: In the context of discovery-oriented hypothesis testing research, behavioral 

scientists widely accept a convention for false positive (α) and false negative error 

rates (β) proposed by Jacob Cohen, who deemed the general relative seriousness of 

the antecedently accepted α = 0.05 to be matched by β = 0.20. Cohen’s convention 

not only ignores contexts of hypothesis testing where the more serious error is the β-

error. Cohen’s convention also implies for discovery-oriented hypothesis testing 

research that a statistically significant observed effect is four times more probable to 

be a mistaken discovery than for a statistically significant true observed effect to be 

independently replicable. In the long run, Cohen’s convention thus is epistemically 

harmful to the development of a progressive science of human behavior, making its 

acceptance crucial in explaining the replication crisis in behavioral science. The 

balance between α- and β-errors generally ought to be struck using both epistemic 

and practical considerations. Yet epistemic considerations alone imply that making a 

genuine contribution to the body of knowledge in behavioral science requires error 

rates that are not only small but also symmetrical.  

 

Keywords: α- and β-error rates; false positive and false negative test results; 

inductive risk; null hypothesis significance testing; type I and type II error; utility 

  



Draft version as of 20221125 (aar)  2 

 

Cohen’s convention and the body of knowledge in behavioral science 

Aran Arslan1 and Frank Zenker2*  

1 Department of Philosophy, Bogazici University, 34342, Bebek, Istanbul; ORCID: 

0000-0002-3014-6532 

2 Nankai University, College of Philosophy, Tianjin, P.R. China, ORCID: 0000-

0001-7173-7964; *corresponding author: fzenker@gmail.com  

 

1. Introduction 

As a review of the best behavioral science journals would show, researchers engaged 

in discovery-oriented hypothesis testing have conventionally accepted the false 

positive and false negative error rates proposed, in 1965, by Jacob Cohen. In 1988, 

Cohen argued as follows for this convention: 

 

“It is proposed here as a convention that, when the investigator has no 

other basis for setting the desired power value [the (1−β)-error rate], the 

value .80 be used. This means that β is set at .20. […] This arbitrary but 

reasonable value is offered for several reasons (Cohen, 1965, pp. 98-9). 

The chief among them takes into consideration the implicit convention for 

α of .05. The β of .20 is chosen with the idea that the general relative 

seriousness of these two kinds of errors is of the order of .20 / .05, i.e., that 

Type I errors are of the order of four times as serious as Type II errors.” 

(Cohen, 1988, 56; italics added) 

 

 In previous work, Cohen (1970) had specified the focal notion of ‘general 

relative seriousness’ as the costliness of errors.  

 

“The author has proposed a convention for desired power of .80 (Cohen, 

1965, 1969). It is suggested for use when no other value is suggested by 

the ad hoc demands of the research, and for methodological surveys and 

the like. Taken together with the α = .05 convention, it suggests the stance 

that Type I errors are about four times as “costly” as Type II errors, i.e., β / 

α = .20 / .05 = 4.” (Cohen, 1970, 825) 
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 In 1992, Cohen would further specify ‘costly’ as the cost of the sample 

collection process. As before, he held that “a materially smaller value than [β =] .80 

would incur too great a risk of a Type II error.” Additionally, he now claimed that a 

“materially larger value [than β = .20] would result in a demand for [the sample size] 

n that is likely to exceed the investigator’s resources” (Cohen, 1992, 156).  

Our primary aim is to clarify the conditions under which the ‘general relative 

seriousness of errors’ renders Cohen’s convention reasonable, respectively when it 

becomes unreasonable. Our secondary aim is to show that the wide acceptance of 

Cohen’s convention is crucial in explaining the replication crisis in behavioral 

science (Ioannidis, 2005; Open Science Collaboration, 2015).  

Beginning with a review of Cohen’s convention (Sect. 2), we interpret the 

“general relative seriousness of errors’ along two dimensions. Preferentially 

minimizing the inductive risk of an α-error rate in discovery-oriented hypothesis 

testing researcher can be epistemically warranted, whereas the (negative) utility 

associated with a false hypothesis test result can practically warrant to preferentially 

minimize the β-error rate (Sect. 3). An individual researcher’s seemingly reasonable 

preference for asymmetrical error rates in discovery-oriented research, however, is 

in collectively harmful, for the probability that a genuine discovery will replicate is 

in the long run four times lower than the probability of a making a mistaken 

discovery (Sect. 4). A genuine contribution to the body of knowledge in behavioral 

science, therefore, requires error rates that are not only small but also symmetrical 

(Sect. 5).  

 

2. Discoveries, Cohen’s convention, and the body of scientific knowledge 

2.1 Discovery-oriented hypothesis testing research 

In behavioral science as elsewhere, an evidence-based decision to maintain or reject 

a hypothesis in view of measurement scores that are sampled from some population 

of interest is subject to various kinds of error. The measurement scores associated 

with behavioral responses can hence be related only indirectly to empirical 

hypotheses by an intermediate use of statistical inference procedures as tools. Use of 

these procedures thus implies an ontological transformed of raw measurement scores 

(“observations”) into probability density distributions (“observed data”). 

Although the Bayesian hypothesis testing paradigm (Fienberg, 2016) does 

increasingly gain in prominence, the default statistical paradigm in behavioral 
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science remains null hypothesis significance testing (NHST) (Gigerenzer, 1987; 

2004; Morrison & Henkel, 1970). In NHST, researchers compare data (D) to a null 

hypothesis (H0) stating a zero-correlation or zero effect between focal variables. 

Additionally, D can be compared to an alternative hypothesis (H1) stating an effect 

or correlation that is non-zero (directional hypothesis) or of some definite strength 

(point hypothesis). In both cases, researchers who seek to contribute a discovery to 

scientific knowledge rely on a criterion for rejecting the H0 that is given as the p-

value of data in view of the H0, p(D, H0), falling below the statistical significance 

level (p = 0.05).  

A progressive science of human behavior must ultimately aim at fallible 

knowledge of the likelihood (Edwards, Lindman & Savage, 1963; Edwards, 1972) of 

a theoretically predicted hypothesis given new data, L(Hx | D), where x = 0,1. Notice 

that the likelihood ratio LRH1/H0 is equivalent to the Bayes factor, BFH1/H0, in case 

the prior probabilities of two rivaling hypotheses are uninformative and non-

distributed (Witte & Zenker, 2017; Krefeld-Schwalb, Witte & Zenker, 2018). All 

that NHST can provide, however, is the probability of already observed data in view 

of Hx, P(D, Hx). This probability provides an evidence-based warrant to reject Hx if 

observed data are inconsistent with it, respectively to maintain Hx if observed data 

are consistent with it. Whereas an evidence-based warrant to accept Hx because new 

data confirm it does require the likelihood that NHST precisely cannot provide.  

The decision (not) to reject Hx is associated with two types of errors. A true 

hypothesis under test may be mistakenly rejected or a false hypothesis under test 

may be mistakenly maintained. Rejecting the H0 thus entails maintaining the H1, and 

vice versa. In the Neyman-Pearson version of NHST (Neyman & Pearson, 1967)—

itself an advancement of Fisher’s (1956) version, which considers only P(D, H0)—

the long-run chance of rejecting a true H0 is called the α-error rate (false positive 

error; Type I error) and the long run chance of maintaining a false H0 is called the β-

error rate (false negative error; Type II error). Depending on whether the H0 or the 

H1 is consistent with data, then, a hypothesis test has four possible outcomes (Table 

1). 
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Table 1 

Confusion matrix for the possible outcomes of a hypothesis test 

 

 H0 is maintained H0 is rejected 

H0 is true 
correct decision  

or test result 

α-error rate  

Type I error 

false positive error 

H0 is false 

β-error rate 

Type II error 

false negative error 

correct decision 

or test result 

 

 

2.2 Cohen’s convention 

Forwarded against the background of the Neyman-Pearson version of NHST, 

Cohen’s convention can be stated as follows: 

 

(1) The consequences of a false positive test result, i.e., the mistaken 

rejection of a true H0 hypothesis (α-error), are more serious than the 

consequences of a false negative test result, i.e., the mistaken 

acceptance of a false H0 hypothesis (β-error). 

 

Consequently: 

 

(2) When reporting statistically significant test results, the ratio of the 

long-run chance of committing α- and β-errors can, in the absence 

of other considerations, be set asymmetrically in favor of the α-

error.  

 

According to Cohen, (2) follows from (1) because “the notion that failure to 

find something is less serious than finding something that is not there accords with 

the conventional scientific view” (Cohen, 1977; 1988, 56). Failure to find something 

can be explained either as a failed discovery (not finding something that is there) or 
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as a null result (there being nothing to be found). By contrast, finding something that 

is not there is singularly explainable as a mistaken discovery.  

Although Cohen is silent on how the relative seriousness of α- and β-errors 

ought to be evaluated, he states that α-errors are about four times as serious as β-

errors (ibid.). His specific proposal thus is that researchers who antecedently accept 

α = 0.05 default on β = 0.20. Advocating the conventional acceptance of an error 

rate ratio of α / β = 0.05 / 0.20 = 1 / 4, therefore, is to advocate that the probability of 

mistakenly rejecting a true H0-hypothesis (α-error) be set to one-fourth of the 

probability of mistakenly maintaining a false H0-hypothesis (β-error).  

Cohen presumably recognized that the relative seriousness of a β-error may 

exceed that of an α-error in particular contexts (see Sect. 4.) Whether he found these 

contexts negligible one cannot know because other than by eventually pointing to 

resource restrictions, he does not explain what “other basis for setting the desired 

power value” (Cohen, 1988, 56) an investigator ought to have. Of course, his 

proposal to default on α / β = 0.05 / 0.20 must somehow relate to the ‘general 

relative seriousness’ of errors. But this notion he does not fully explain either. 

 

2.3 The general relative seriousness of errors 

To develop this explanation, we can metaphorically refer to the literature where a 

discovery is published as ‘the body of scientific knowledge’. A major assumption in 

NHST is that this body cannot be harmed (nor improved) if researchers maintain the 

H0 in response to obtaining a statistically insignificant hypothesis test result, P(H0, 

D) > α. The very same assumption also explains the praxis of selectively publishing 

statistically significant hypothesis test, i.e., a publication bias pro discoveries. 

Regardless of whether the H0 is maintained given a null result or a missed discovery 

(β-error), therefore, statistically insignificant test results are unlikely to enter the 

body of scientific knowledge, thus making no difference to it.1  

 
1 Although the praxis of selective publishing did recently begin to change, that 

statistically insignificant hypothesis test results hence remain hard to access (file 

drawer problem; Rosenthal, 1979) entails that researchers cannot easily correct the 

meta-analytical estimated population effect sizes that discovery-based meta-analyses 

consequently tend to overestimate (Rothstein, Sutton & Borenstein, 2005). Selective 
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In the context of discovery-oriented research, maintaining the H0 can thus be 

compared to a safe bet. Whereas if a false positive test result (α-error) is published, 

then what enters the body of scientific knowledge is a mistaken discovery, one that 

must be thought to “linger” until subsequent research corrects it. The seriousness of 

a mistaken discovery entering the body of scientific knowledge thus points to the 

epistemic risk of being misled by a falsity. In discovery-oriented hypothesis testing 

research, therefore, a mistaken discovery entering the body of scientific knowledge 

is a more serious error than a missed discovery (β-error).  

Cohen, we may assume, would hence have reasoned that researchers are 

epistemically justified to prefer maintaining a false H0 over rejecting a true H1. At 

the same time, Cohen would have reasoned that, if β > 0.20, then too many missed 

discoveries do in the long run fail to contribute to the body of scientific knowledge. 

Thus, like the seriousness of including in the body of scientific knowledge what is 

not there (α-error) being justified epistemically, so would β = 0.20, namely by the 

seriousness of otherwise remaining ignorant of what is there.  

Both α = 0.05 and β = 0.20 thus appear to be justified epistemically. But 

Cohen’s additional reason—that a “materially larger value [than β = .20] would 

result in a demand for [the sample size] n that is likely to exceed the investigator’s 

resources” (Cohen, 1992, 156)—may suggest that Cohen’s justification specifically 

for β = 0.20 instead grounds in the practical consideration that resource restrictions 

limit the sample size researchers can collect. The justification for α = 0.05 would 

thus remain epistemic, while the justification β = 0.20 would be practical. 

 

publishing ultimately reflects Popper’s (1959) falsification principle: a hypothesis 

can be falsified, but not verified. Statistically insignificant hypothesis test results 

thus are uninformative in NHST because researchers can maintain the H0, but they 

cannot interpret data as verifying the H0 (see Sect. 2.1). Arguably the best 

countermeasure against the negative effects of selective publishing is to combine 

results blind manuscript evaluation (RBME), whereby publication decisions become 

independent of statistical significance (Locascio, 2019; Berlin & Ghersi, 2005; 

Chambers 2013), with a likelihood ratio (LR) hypothesis test that leaves statistically 

insignificant test results informative towards verifying the H0 (Witte & Zenker, 

2017; Krefeld-Schwalb, Witte & Zenker, 2018). 
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 Yet had Cohen considered β = 0.20 epistemically unjustifiable in discovery-

oriented research, then an epistemic warrant would be lacking to consider β = 0.20 a 

reasonable compromise between the epistemic goal of discovery-oriented research 

(i.e., making genuine discoveries while avoiding mistaken and missed discoveries) 

and using the limited resources that researchers have towards this goal. Resource 

restrictions would thus not only dominate the epistemic goal of discovery-oriented 

research but undercut it. By Cohen’s standards, however, that is absurd. For Cohen, 

the primary sufficient reason for 0.20 as an upper β-error-bound, therefore, must be 

the epistemic consideration of limiting the proportion of missed discoveries that fail 

to enter the body of scientific knowledge. Hence, invoking resource restrictions to 

justify 0.20 also as a lower β-error-bound merely provides a supererogatory reason 

(i.e., an additional sufficient reason).  

This, we claim, is the only reasonable reconstruction of Cohen’s justificatory 

structure. Alternative reconstructions simply cannot account for all considerations 

that Cohen brings to bear. Of course, presenting this reconstruction is distinct from 

claiming that Cohen “got it right.” Indeed, the following sections argue that Cohen’s 

convention is not only unreasonable in other contexts of hypothesis testing but also 

long run unreasonable in the context for which Cohen had proposed it. 

 

3. The shape of knowledge in behavioral science 

3.1 The replicability of observed effects  

What has rightly raised doubt about the application of NHST in behavioral science 

is widely referred to as the replication or confidence crisis. Its statistical mark is that 

a sizable proportion of published NHST-based studies, the reported effects of which 

are non-replicable, were observed under low statistical test power (Krefeld-Schwalb, 

Witte, Zenker, 2018; Szucs et al., 2017a; van Dongen et al., 2021; Wagenmakers et 

al., 2011). Conceptually equivalent to the (1 - β)-error rate, statistical test power is a 

function of the sample size (N), the effect size (d = [(m1 - m0) / s]), and the α-error 

rate. Statistical test power largely determines the replication probability of a true 

observed effect—largely because replication studies are subject to a regression 

effect, the size of which correlates inversely with sample size (Fiedler & Prager, 

2018). Replication studies, therefore, are likely to observe a smaller effect than an 

original study.  
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Other things equal, the (1 - β)-error rate increases with N (see Table 2 and 

Fig. 1). As the β-error rate decreases, therefore, the cost of the sample collection 

process increases.   

 

 

 

Figure 1 

The overlap of the probability density distributions for H0 and H1 per group 

for a one-sided t-test, given α=0.05, (1 - β) = 0.80, and d = 0.20.  

(CC-BY license, https://rpsychologist.com/d3/nhst/) 

 

 

 

The best explanation for why published NHST-based studies in behavioral 

science report effects that are observed under low statistical test power is that 

Table 2 

The total minimum sample size for both groups (e.g., experimental and 

control group) in a one-sided t-test as a function of test-power (1 - β) and 

effect size d = [(m1 - m0) / s], given α = 0.05. 

 d 

(1 - β) 0.01 0.20 0.50 0.80 

0.40 38726 97 15 6 

0.50 54111 135 22 8 

0.80 123651 309 49 19 

0.95 216443 541 87 34 
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samples are typically too small (Cohen, 1962; 1992; Maxwell, 2004; Rossi, 1990; 

Sedlmeier & Gigerenzer, 1989; Szucs & Ioannidis, 2017b). For instance, the median 

total sample size for published studies in psychology is estimated as N = 40 

(Marszalek et al, 2011; Wetzels et al., 2011; see Bakker, van Dijk & Wicherts, 

2012). What contributes to low statistical test power is that “most studies involve 

tests of multiple hypotheses, [thus] creating a gap between the power for any single 

test and the power for the collection of tests,” wherefore—despite underpowered 

single tests—“the probability of rejecting at least one hypothesis in the collection of 

tests will clearly exceed the probability that any specific hypothesis is rejected” 

(Maxwell, 2004, 148). Low statistical test power, therefore, also results from 

applying a questionable research practice that increases the probability of observing 

a publishable test result (see our note 1). 

Cohen had demonstrated awareness that published effects in behavioral 

science are typically underpowered already in 1962. He then estimated the average 

statistical test-power in behavioral science as (1 - β) = 0.18 (Cohen, 1962). Some 30 

years later, this estimate had not significantly improved (Cohen, 1992; Maxwell, 

2004). Although Cohen thus recognized the need to collect yet larger samples, his 

proposed value (1 - β) = 0.80 would at least significantly improve over (1 - β) = 

0.18. Because of the minimum sample size (Table 1), indeed, a yet smaller value 

than (1 - β) = 0.80 may have appeared unachievable given that published effects in 

behavioral science are typically small (d = 0.20). (We return to this in Sect. 5).  

 

3.2 The p-value fallacy, statistical significance, and scientific importance 

That samples are typically too small holds both for research in the Neyman-Pearson 

version of NHST—for which Cohen’s convention declares it to be more relevant to 

control the α-error rate than the β-error rate—as well as for research in the Fisher 

version of NHST, which recognizes only the p-value as relevant, respectively the 

associated α-error rate.2 In critiquing this asymmetrical evaluation of the relevance 

 
2 Originating in the Fisher version of NHST, the p-value states the probability of 

observing actual or more extreme data on the assumption that the H0 is true. 

Whereas the α-error rate originating in Neyman-Pearson test-theory states the long 

run probability of mistakenly rejecting the H0 (false positive). Although differences 

 



Draft version as of 20221125 (aar)  11 

 

of errors, some authors have even proposed to abandon NHST (Lakens et al., 2018; 

McShane et al., 2019; Trafimow et al., 2019). A part of the motivating reason is that 

researchers regularly misinterpret a hypothesis test where P(D, H0) < p = 0.05 (or α 

= 0.05) as implying a probability > 95% that the H1 is true. Known as the p-value 

fallacy or the prosecutor’s fallacy, this inference amounts to an unwarranted 

transition from a probability to a likelihood (see Sect. 2.1), thus reflecting “the 

mistaken idea that a single number [e.g., p = 0.05] can capture both the long run 

outcomes of a scientific study and the evidential meaning of a single result” 

(Goodman, 1999, 995; see Cohen, 1994, 997).  

Avoiding this fallacy requires no more (nor less) than interpreting the 

observed p-value as stating the probability of observing an effect size equal to, or 

more extreme than, the observed effect size given the H0 is true. This interpretation, 

of course, is easily available. Abandoning NHST, therefore, appears overly extreme. 

For rather than NHST or the p-value being intrinsically faulty (Gómez-de-Mariscal 

et at, 2021), the main fault lies with their well-documented misapplication.  

Equally well-documented is the problem of equating statistical significance 

with p = 0.05, as well the related problem of transitioning without warrant from 

‘statistical significance’ to ‘scientific importance’. Recently, a widely cited 

statement by the American Statistical Association (Wasserstein, 2016) once again 

warned against interpreting the p-value as a critical measure of evidence (see Halsey 

et al., 2015). Indeed, already Fisher (1925), who originally proposed p = 0.05 as a 

conventional error rate (Hubbard, 2016; Kennedy-Shaffer, 2019), did merely offer a 

convenience justification for this specific value.   

 

 

in origin, use, and interpretation must keep from equating the p-value and the α-error 

rate, these differences lack practical bearing when estimating the probability of a 

mistaken decision to maintain or reject the H0. If the decision criterion is the p-value, 

then the probability estimate is based on data (objective interpretation), whereas if 

the decision criterion is the α-error rate, then probability estimate is based on a 

researcher’s expected error rate (subjective interpretation). An evidence-based 

decision nevertheless requires that the subjectively expected α-error rate be set to a 

value at least as large as the objective p-value. The conceptual differences between 

the p-value and the α-error rate thus remain “hidden.”  
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“The value [of the standard deviation] for which p = .05, or 1 in 20, is 

1.96 or nearly 2; it is convenient to take this point as a limit in judging 

whether a [statistical] deviation is to be considered significant or not. 

Deviations exceeding twice the standard deviation are thus formally 

regarded as significant. Using this criterion we should be led to follow up 

a negative [test-]result only once in 22 trials, even if the statistics are the 

only guide available. Small effects would still escape notice if the data 

were insufficiently numerous to bring them out, but no lowering of the 

standard of significance would meet this difficulty.” (Fisher, 1925, 47; 

notation adapted) 

 

With p = 0.05 stating roughly the probability that a mean observed effect falls 

more than two standard deviations away from the mean of a normally distributed 

random variable, Fisher thus surmised that “we shall not often be astray if we draw a 

conventional line at .05, and consider that higher values of χ2 [chi-square] indicate a 

real [rather than a mistaken] discrepancy” (Fisher, 1925, p. 79; italics added). 

(Pearson’s (1900) chi-squared test determines the strength of association between 

two variables in a contingency table).  

As the statistical significance threshold for rejecting the H0, then, already p = 

0.05 could be accepted merely conventionally, because a justification to prefer p = 

0.05 to any other p-value was lacking already in Fisher’s (1925) statistical inference 

system, on which NHST is based. Add to this that when, in 1885, Edgeworth coined 

the term ‘statistical significance’, he merely intended “to have a tool to indicate 

when a result warrants further scrutiny; [but] statistical significance was never meant 

to imply scientific importance” (Di Leo et. Al., 2020, 2; italics added). This makes it 

more understandable why despite the frequent misinterpretations of the p-value, the 

conventional acceptance of its probability-based definition remains convenient (see 

Kennedy-Shaffer, 2019, 84).  

 

3.2 Conventions by convention? 

Although both NHST and alternative statistical inference systems rightly count as 

well-established today, behavioral scientists seem to apply these systems for the 

most part conventionally. Conventions, however, cannot justify their own 

application, a truism that Cohen (1965) and Neyman and Pearson (1933) fully 
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acknowledged. To better understand why behavioral scientists conventionally 

adopted α = 0.05 and β = 0.20, the following passage by Neyman and Pearson 

(1933) is worth quoting in full. 

 

“But whatever conclusion is reached, the following position must be 

recognized. If we reject H0, we may reject it when it is true; if we accept 

H0, we may be accepting it when it is false, that is to say, when really some 

alternative Ht [i.e., H1] is true. These two sources of error can rarely be 

eliminated completely; in some cases it will be more important to avoid the 

first, in others the second. We are reminded of the old problem considered 

by LAPLACE of the number of votes in a court of judges that should be 

needed to convict a prisoner. Is it more serious to convict an innocent man 

or to acquit a guilty? That will depend upon the consequences of the error; 

is the punishment death or fine; what is the danger to the community of 

released criminals; what are the current ethical views on punishment? From 

the point of view of mathematical theory all that we can do is to show how 

the risk of errors may be controlled and minimized. The use of these 

statistical tools in any given case, in determining just how the balance 

should be struck, must be left to the investigator.” (Neyman & Pearson, 

1933, 296; italics added) 

 

 Although striking the right balance between both error rates was thus left 

to researchers themselves, Neyman and Pearson likewise advocated an α-error 

rate of α = 0.05 so that “in the long run of experience, we shall not too often be 

wrong” (Neyman & Pearson, 1933, 291). Since Neyman (1950, 262) had already 

suggested that α-errors are more serious than β-errors, all that Cohen added was 

the point-specific ratio α / β = 1 / 4. But not until Cohen (1992) cited resource 

restrictions did his justification exceed the claim that this ratio ought to be 

evaluated according to standards the scientific community already accepts 

conventionally. Precisely why Cohen (1958; 1965) proposed the “arbitrary but 

reasonable value” (Cohen, 1988, 56) of β = 0.20 thus remained vague, or so the 

following quote shows: 
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“First, I believe that generally the consequences of false positive claims 

(rejections of null hypotheses) are more serious than those of false 

negatives (acceptance of null hypotheses). This is in accord with the 

conventional scientific view of these matters. Present practice, which 

concerns itself solely with the former [i.e., the proportion of α-errors 

among published statistically significant test results], by ignoring the latter 

[i.e., the proportion of β-errors] implicitly treats them as if they were of no, 

or at least little, consequence. My proposal maintains the usual emphasis 

but keeps the relation between the two risks within reasonable bounds. 

Since the convention of the 5 per cent level for α has come to be generally 

used, my proposal implies a setting of a ‘subjective general relative 

seriousness’ of 20 per cent/5 per cent = 4. The second consideration, then, 

in setting the β risk convention of .20 is that it is consonant with a rough 

guess that type I errors are in general about four times as serious as type II 

errors. I would, of course, have no serious quarrel with anyone who 

claimed that the factor should be three or five (or even two o[r] six), but 

such is the nature of conventions. I offer this convention so diffidently 

because I would prefer to see [statistical test-]power values set ad hoc 

wherever possible. I deplore the slavish adherence to the quasi-official 

convention of 5 per cent for type I errors, which has resulted in its implicit 

equation with scientific truth for the positive claim and with respectability, 

if not ethical purity, for the claimant. But however abused, conventions 

have their use.” (Cohen, 1958, rev. ed., 1965, 98f.; italics added) 

 

Indeed, Cohen had broadly avoided stating how ‘general relative seriousness’ 

should be interpreted. Although he indicates—notice how the term ‘serious’ simply 

reappears—the lack of serious reasons to oppose conventions other than α / β = 1 / 

4, he simply put one convention on top of another. Since scientists already accepted 

α = 0.05 conventionally, Cohen could thus recommend the dependent convention of 

β = 0.20. More recent scholarship reiterates the same idea. “[I]n the internal dealings 

of science,” for instance, “errors of Type I [α-error] are in general regarded as more 

problematic than those of Type II [β-error]” because “those who claim the existence 

of an as yet unproven phenomenon have the burden of proof” (Hansson, 2018, 7; 

italics added).  
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Cohen’s (1992) justification of why science gives higher priority to avoiding 

an α-error than a β-error, and specifically his justification for β = 0.20, eventually 

cited that resource restrictions limit the sample size that a researcher can collect (see 

Sect. 2.3). The general relative seriousness of errors thus seemed to be justified by a 

practical consideration. But we saw that this can merely provide a supererogatory 

reason for β = 0.20. The primary sufficient reason for β = 0.20, and thus for keeping 

“the relation between the two risks [α- and a β-error] within reasonable bounds” 

(Cohen, 1965, 98f), was the epistemic consideration of limiting the proportion of 

missed discoveries not entering the body of scientific knowledge. 

With Cohen, then, if the probability of avoiding α- and β-errors ought to 

mirror their general relative seriousness, then the more serious an error is, the less 

likely a reasonable researcher would want its occurrence to be. Other things equal, 

therefore, if an α-error takes one-fourth of the numerical value of a β-error—because 

rejecting a true H0 ought to be four times less probable than not rejecting a false 

H0—then a true H0 would in the long run be mistakenly rejected four times less 

often than a false H1 would be mistakenly accepted.  

But is an α-error in fact more serious than a β-error?  

 

4. Two evaluative dimensions  

4.1 Epistemic and non-epistemic values 

By the mid-20th-century, the philosophy of science debate on hypothesis testing, as 

well as the concurrent developments in statistics and probability theory, had not only 

demonstrated the availability of rigorous statistical inference systems that express 

the degree of confidence in a scientific hypothesis under test (Andersen & Hepburn, 

2016, 25) but had also suggested that understanding ‘hypothesis testing’ as a 

decision between possible actions should go along with acknowledging a value 

component (ibid.). Yet the extent to which a correct decision on maintaining or 

rejecting a hypothesis is “driven” by this value component is no less controversial 

than the idea that the decision itself requires not only epistemic but also non-

epistemic values.  

Associated with the truth-likeness of a hypothesis, epistemic values are 

commonly exemplified by truth, simplicity, explanatory power, or predictive 

accuracy (e.g., Kuhn, 1962; 1977). Whereas non-epistemic values, associated with 

the utility of a scientific study’s results, are commonly exemplified by moral, legal, 
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or social values of relevance for public policy making. Hence, if the evaluative 

criterion for a hypothesis under test is the general relative seriousness of errors, then 

the balance between α- and β-errors ought to be struck in ways that are sensitive to 

the epistemic and practical consequences of these errors. 

  

“Many controversies on risk assessment concern the balance between 

risks of type I [α-errors] and type II errors [β-errors]. Whereas science 

gives higher priority to avoiding type I errors than to avoiding type II 

errors, the balance can shift when errors have practical consequences. This 

can be seen from a case in which it is uncertain whether there is a serious 

defect in an airplane engine. A type II error, i.e., acting as if there were no 

such a defect when there is one, would in this case be counted as more 

serious than a type I error, i.e., acting as if there were such a defect when 

there is none.” (Hansson, 2018, 7) 

 

Although similar examples where this balance can shift are easy to come by 

(e.g., regarding legal cases, the environment, or public health), they are orthogonal 

to Cohen’s convention, which is reasonable only if failing to discover what is there 

is less serious for the body of scientific knowledge than mistakenly “discovering” 

what is not there. Given that making a genuine scientific discovery, as well as 

avoiding mistaken and missed discoveries, are epistemic goals, therefore, accepting 

Cohen’s convention is epistemically warranted because preferring a missed over a 

mistaken discovery is epistemically warranted. 

Yet this preference reverses when the seriousness of errors is evaluated based 

on the (negative) utility of mistakenly maintaining a hypothesis under test. The key 

contrast thus is that between epistemic and practical considerations of hypothesis 

testing, a contrast at the heart of a debate between, among others, Fisher and 

Neyman and Pearson (Howie, 2002; Lenhard, 2006; Marks, 2000). For Fisher 

(1955), who understood ‘testing a hypothesis’ as ‘applying a method to decide 

whether the H0 can be accepted as true’, the truth of H0 counts more than its utility. 

On his view, if the available evidence consistent with the H0 is scant compared to 

available evidence for an equally plausible alternative hypothesis, a researcher 

should reject the H0 even if it is true.  



Draft version as of 20221125 (aar)  17 

 

Unlike Fisher, who treated significance tests and p-values as continuous 

measures of evidence against the H0, Neyman and Pearson (Neyman, 1956; Pearson, 

1955) primarily addressed whether researchers should act as if the Hx were true. 

Although they acknowledge that an evidence-based decision between rejecting or 

maintaining the H0 or the H1 must be sensitive to the seriousness of both errors, they 

understood this decision—contra Fisher—to depend on both the available evidence 

and its utility. 

 Speculatively, in recommending increased caution in avoiding α- rather than 

β-errors, Cohen may have recured to utility considerations implicitly. For Cohen 

agrees with Neyman and Pearson that an α-error is more serious than a β-error. And 

he agrees with Fisher that a hypothesis test seeks to determine a hypothesis’s truth 

(rather than maximizing a decision’s utility), as well as that a hypothesis, even if 

true, ought to be rejected if the supporting evidence is scant relative to undermining 

evidence. The last point of agreement between Cohen and Fisher may particularly 

suggest that utility considerations are implicit in Cohen’s notion of evidence. His 

primary reason for α / β = 0.05 / 0.20, however, is epistemic—namely to limit the 

proportion of mistaken discoveries entering the body of scientific knowledge. In 

Cohen’s justification, then, utility considerations fail to play a load-bearing role.   

 

4.2 The functional role of risk-related information 

The functional role of the probabilities associated with each error type implies two 

kinds of risk-related decisions (Hansson, 2018). Based on epistemic considerations, 

the first kind of decision concerns the identity of risk-related information the body 

of scientific knowledge should include if individual researchers publish the decision 

reached in discovery-oriented research as a scientific result. In this context, the 

seriousness (S) of a mistaken discovery is justified by potentially being misled by a 

falsity. Compared to a failed discovery, therefore, itself thought to be unlikely to 

enter that body, a mistaken discovery is a more serious error. In brief, S(α) > S(β).  

To limit the risk of a mistaken discovery, science offers epistemic reasons to 

endorse strict proof standards (Hansson, 2018). The five-sigma (5 × σ) standard 

endorsed in the current standard model of physics, for instance, corresponds to an α-

error rate of α = 0.00003. It implies that the H0 will be rejected, only if an observed 

mean (H1) deviates by at least five standard deviations from an expected mean (H0). 

A similarly small deviation would hence be expected roughly once in three million 
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tests if the H0 is true (Bird, 2018, 17). It thus remains highly unlikely for a mistaken 

discovery to enter the body of scientific knowledge. In behavioral science or 

medicine, by contrast, where a hypothesis is normally tested at α = 0.05, or a proof 

standard of 1.96 × 𝜎 (Bentley, 2021, 2), a mistaken discovery would occur roughly 

once in 20 tests.  

What Cohen’s convention seemingly omits to consider is the second kind of 

decision, the seriousness of which is additionally sensitive to the (negative) utility of 

a missed discovery. A paradigm example from a medical context is to mistakenly 

diagnose a person as diseased, although they are healthy. Compared to the first 

decision (mistaken discovery), the seriousness of a mistaken diagnosis (missed 

discovery) implies a change in the functional role of risk-related information. We 

can therefore have it that S(β) > S(α), namely if a β-error is associated with a larger 

(negative) utility than an α-error. Since this suggests it is more important to control 

for the β- than for the α-error rate, S(β) > S(α) would imply α > β. 

For instance, assume the use of a sufficiently reliable diagnostic test3 to test 

person P for a potentially fatal contagious infection, I. Cohen’s convention would 

state that the seriousness of P not being in condition I given the test says P is in 

condition I (α-error), exceeds that of P being in condition I given the test says P is 

not in I (β-error). But this cannot be right. Someone who is mistakenly diagnosed as 

non-infected presents a risk of spreading I that someone mistakenly diagnosed as 

 
3  To use a current example, the accuracy of the Reverse-Transcription Polymerase 

Chain Reaction (RT-PCR) test, a common diagnostic test for SARS-COVID-19, 

varies with the general laboratory conditions and the kind of polymerase used. 

Recent studies estimate an RT-PCR test’s false positive error rate under real (versus 

test validation) conditions as 0.02 < α < 0.09 (Andrew, 2020) and its false negative 

error rate as 0.01 < β < 0.30 (Arevalo-Rodrigez et al., 2020; Long et al., 2020). Even 

if the true positive rate is at its peak level—such that test-sensitivity (the long run 

rate of true positive over true positive plus false negative test-results) is maximal—

one must expect β = 0.21, while 0.167 < α < 0.29 (ibid.). The staggering range of the 

β-error implies that a single RT-PCR test “cannot be used to ‘clear’ people as being 

non-infected” (Bentley, 2021, 9), wherefore two (or more) independent RT-PCR 

tests are commonly administered because the error rates of n independent tests are a 

multiplicative combination of the error rates of n individual tests. 
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infected cannot present, thus becoming harmful both to themselves and the public. 

In the false positive case (mistaken discovery), P may needlessly quarantine, perhaps 

becoming bored—no doubt a mild negative consequence. Whereas in the false 

negative case (missed discovery), as the risk of spreading the infection endangers 

public health, the negative consequences here may even be tragic. The relative 

seriousness of both errors, therefore, favors avoiding a missed discovery (β-error). 

Both epistemic and practical considerations thus must be applied to evaluate 

the general relative seriousness of errors in contexts of public health. Similar 

contexts point back at the question considered by Laplace of how many votes in a 

court of judges are needed for a conviction (see Sect. 3.2). If the seriousness of a 

mistaken verdict, test result, or diagnosis depends on utility considerations, as 

Neyman and Pearson acknowledge, then the negative utility of an error may vary 

widely—indeed between boredom and death. To strike a balance between both 

errors-rates, therefore, adopting a convention that ignores utility considerations, as 

Cohen’s convention does, is poor advice. 

 

4.3 The argument from inductive risk 

This point generalizes. As utility considerations come into focus, any decision (not) 

to reject a hypothesis under test had better consider the value-laden character of 

science, because non-epistemic considerations can be at least as important as 

epistemic ones (Diekmann & Peterson, 2013). Particularly in the construction and 

selection of scientific models or in engineering, if the error that is preferentially 

minimized has public policy implications, the review and evaluation of scientific 

knowledge cannot be left to experts alone (Lemons et al., 1997). Instead, the public 

should have a say on, and arguably some control over, how scientific knowledge is 

used and produced (ibid., 234).  

Yet the idea of value-free science states that non-epistemic considerations 

should be absent from the justification of scientific knowledge (Betz, 2016). This 

ideal has been variously objected to based on the argument from inductive risk (e.g., 

Douglas, 2009; John, 2016; Rudner, 1953). Although this argument can hardly 

overthrow the value-free ideal of science, it provides compelling reasons that the 

balance between α- and β-error rates ought to be struck based on epistemic 

considerations (e.g., a hypothesis’s truth-likeness) and non-epistemic considerations 

(e.g., the utility of maintaining or rejecting Hx) that affect the seriousness of errors. 
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The argument from inductive risk (John, 2016, 3) 

1. Scientists accept or reject hypotheses. 

2. Hypotheses typically fail to be deductively entailed by the available evidence. 

3. Scientists face ‘problems of inductive risk’: they risk accepting false hypotheses 

(false positive errors) or rejecting true hypotheses (false negative errors). 

4. A determination of the trade-off between the two error types must appeal to non-

epistemic considerations associated with the consequences of these errors. 

5. Therefore, scientific inference must appeal to non-epistemic considerations.  

 

Of course, scientific inference primarily requires an epistemic standard. The 

more stringent this epistemic standard is—i.e., the more evidence of a specific kind 

is required—the less likely scientists are to maintain a falsehood or to reject a truth. 

Since a very stringent epistemic standard would remain appropriate even if it were 

sensitive to the negative utility of error, practical considerations may appear to be 

derivative of epistemic considerations. Whereas if the expected disutility of error 

cannot be evaluated without appealing directly to non-epistemic considerations—as 

the argument from inductive risk claims—then the indispensability of non-epistemic 

considerations in scientific inference would become more plausible.  

Whereas the argument’s first three premises are widely accepted today, the 

fourth premise may raise suspicion. Does determining the trade-off between both 

types of error indispensably require that the consequences of errors are grounded by 

appealing directly to non-epistemic considerations? In criticizing that an inclusion of 

non-epistemic considerations would be neutral for scientific inference, for instance, 

Hudson (2022, 211) rather takes non-epistemic considerations to necessarily lead 

systematically away from truth, predictive accuracy, even logical consistency, and 

thus to amount to a scientific bias. Douglas & Elliott (2022, 202), however, rightly 

object that bias and value-ladenness are distinct concepts. A cognitive bias, after all, 

need not entail value-ladenness, nor vice versa.  

Moreover, as the example of testing for a contagious disease had shown, to 

explain why a β-error is in some contexts of inductive risk more serious than an α-

error may indispensably require a direct appeal to non-epistemic considerations. Of 

course, acknowledging as much cannot vindicate the general form of the argument 

from inductive risk. But that the relevant inductive risk cannot be explained without 
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acknowledging that scientific inference is sensitive to non-epistemic considerations 

in these contexts nevertheless justifies their local indispensability. And no more is 

needed. 

The one non-epistemic consideration that Cohen’s convention recognizes as 

a supererogatory reason for β = 0.20 in the context of discovery-oriented hypothesis 

testing research is the cost of the sample collection process. Whereas his primary 

reason for β = 0.20 in this context is the consideration of limiting to an epistemically 

acceptable level the proportion of mistaken or missed discoveries entering or not  

entering the body of knowledge. As the example of testing for a contagious disease 

had shown, however, Cohen’s justification has obvious faults in other contexts. This 

is a sufficient reason to reject Cohen’s convention outside the context of discovery-

oriented hypothesis testing research. 

 

5. Long-run epistemic consequences 

5.1 Individual vs collective reasonableness  

A sufficient reason to reject Cohen’s convention within the context of discovery-

oriented hypothesis testing research is that it had “set the tone” for asymmetrical 

error rates in behavioral science. Although α / β = 0.05 / 0.20 can be reasonable for 

an individual researcher’s contribution to scientific knowledge, asymmetrical error 

rates entail the long-run failure at the collective level to leverage the best systems of 

statistical inference to develop a progressive science of human behavior. This does 

not only go a long way toward explaining the replication crisis in behavioral science 

experiences; it also suggests that this crisis is self-inflicted and avoidable. 

This explanation counts because, as several systematic attempts at replicating 

a key selection of originally observed effects have broadly failed (e.g., Many Labs 

Projects 1-5, see Ebersorle et al., 2020), most published effects in behavioral science 

should be thought of as non-replicable. We saw that behavioral science journals 

typically published an observed effect only if it met the conventional significance 

level P(D, H0) < α = 0.05 (Sect. 2.3). We also saw that the replication probability of 

a true observed effect is largely determined by a study’s (1 - β)-error rate, i.e., 

statistical test power, itself a function of the α-error rate, the observed effect size (d 

= [(m1- m0) / s]), and the study’s sample size (N) (Sect. 3.1). Recall that other things 

being equal, the (1 - β)-error increases as N increases. 
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It should now be easy to see that, if N and d are constant, then asymmetrical 

error rates of the form β > α imply that the significance level will never match the 

statistical test power level. Per Cohen’s convention, then, if a statistically significant 

true effect was originally observed under (1 - β) = 0.80, then the probability that an 

independent replication study will observe a very similar effect size is only 80%. In 

the long run, therefore, roughly 20 out of 100 replication studies would be expected 

to fail. This 80 : 20 proportion Cohen presumably found acceptable.  

But in psychology, for instance, the largest behavioral science today, median 

observed statistical test power for published studies is estimated to be a mere (1 - β) 

= 0.35 (Bakker et al., 2012)—massively undermining Cohen’s convention (see 

Christopher, 2019; Open Science Collaboration, 2015; Stanley et al., 2018). If 

anything, this is consistent with Cohen’s convention having “set the tone” for large 

β-error rates. At the collective level, therefore, the negative consequence for the 

development of a progressive science of human behavior is that most replication 

attempts in psychology are expected to fail.  

More precisely, for statistically significant observed effects published in 

cognitive neuroscience and psychology journals, median observed statistical power 

for small (d = 0.20), medium (d = 0.50), and large effects (d = 0.80) is estimated as, 

respectively, (1 - β) = 0.12, 0.44, 0.73 (Szucs & Ioannidis, 2017b). Large observed 

effects would thus at least seem to approximate the 80 : 20 proportion of replicable 

effects entailed by Cohen’s convention. Yet the typical pattern of observations in 

behavioral science is: ‘small d, small s’ and ‘medium-to-large d, large s’ (Linden & 

Hönekopp, 2021; Olsson-Collentine, Wicherts & van Assen, 2020; Schauer & 

Hedges, 2020). What can be observed with precision (read: small s), therefore, are 

small effects alone.  

But small effects can be accounted for exclusively by random influences on 

an empirical setting. This makes small effects poor candidates for the theoretical 

constructs that a progressive science of human behavior would have to develop. 

Whereas the large heterogeneity (read: large s) of medium-to-large effects implies 

imprecise observations, making these effects equally poor candidates for this 

purpose. And what other purpose would discovery-oriented research in behavioral 

science ultimately have if not that of precisely identifying the replicable effect that 

progressive science of human behavior requires?  
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 A progressive science of human behavior thus entails developing theoretical 

constructs for replicable effects that have been precisely identified, in turn entailing 

a small s. The most direct way of obtaining a small s-value is to collect a large 

enough sample (law of large numbers), in turn increasing the (1 - β)-error. But if 

already an original study regularly fails to collect a large enough samples, then a 

progressive science of human behavior obviously cannot be developed. This speaks 

against Cohen’s convention within the context of discovery-oriented research for 

which it was proposed.  

Given that a progressive science of human behavior pivots on observing a 

very similar effect size in a series of independent replication studies (Witte, Stanciu, 

Zenker, 2022), if each of i = 3 independent replication studies makes observations 

under (1 - β) = 0.80, then the series’ statistical test power—given as (1 - β)i 

(Francis, 2012)—is close to chance (0.803 = 0.51). Although each independent 

replication study would thus have to already secure maximal statistical test power, it 

is more important than the value of (1 - β)i that each study observes a very similar 

effect size. Evaluating whether this is the case requires an accurate effect size 

estimate, and an effect size estimate’s accuracy again increases with N. The need to 

collect a sufficiently large N thus remains. But this need is precisely what the β = 

0.20-part of Cohen’s convention denies. 

On exclusively epistemic considerations, therefore, low observed statistical 

test power plausibly provides the major explanatory factor for the replication crisis 

in behavioral science. 

 

5.2 Reversible vs. irreversible experimental units 

A potential objection against this claim states (correctly) that the error rates of 

Neyman-Pearson test-theory can be unproblematically interpreted as the long-run 

rate of successful exact or direct replications. An exact replication seeks to duplicate 

all aspects of an original study potentially affecting the originally observed effect, 

whereas a direct replication duplicates merely aspects thought to be theoretically 

relevant to it. Moreover, the application of Neyman-Pearson test-theory to a series of 

replication studies requires that the sampling procedure is randomized and that the 

original study’s methodology remains essentially unchanged (Neyman, 1937, 334-

335; Neyman & Pearson, 1928, esp. 177, 231, 232).  
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Under these conditions, the H0 can be mistakenly rejected only because of the 

random measurement error (reflecting that random factors influence an empirical 

setting) or the random sampling error (reflecting that a given sample is imperfectly 

representative of the population). Whereas if the sampling procedure is altered 

between the n-th and the n + 1-th study—such that the n-th study samples from a 

different population than the n + 1-th study—or if causally relevant aspects of the 

methodology are changed, then the error rates of Neyman-Pearson test-theory cannot 

be interpreted as the long-run rate of successful exact or direct replications.  

As changes in methodology or sampling procedure are normal in behavioral 

science, however, this seems to void interpreting the error rates of Neyman-Pearson 

test theory as the long-run rate of successful exact replications (Rubin, 2019, 202). 

Failure to replicate an original observed statistically significant true effect would 

hence be unsurprising. As Rubin (2009) notes for direct replications, moreover, the 

identification of theoretically relevant aspects entails “a theoretical commitment 

based on the current understanding of the phenomenon under study, reflecting 

current beliefs about what is needed to [causally] produce a finding” (Nosek & 

Errington, 2017). But since behavioral science addresses irreversible experimental 

units (e.g., people, social groups, social systems), an irreversible experimental unit 

that plays a non-negligible causal role in producing the original effect would make it 

conceptually impossible to replicate that effect.  

For these reasons, Rubin (2019) proposes to resort to the Fisherian sample-

specific α-error probability. Instead of being interpreted according to Neyman-

Pearson test-theory—i.e., “in relation to a series of samples that could have been 

randomly drawn from the exact same null population” (Rubin, 2019, 213)—the 

Fisherian sample-specific α-error probability is interpreted relative to a single, time 

and location specific sample. As this interpretation breaks with the idea of an exact 

replication, changes in theoretically relevant aspects would seem unproblematic. But 

this interpretation also relegates observed effects in behavioral science to the realm 

of contingently repeatable findings. Hence, the argument that failing to replicate 

observed effects is problematic would be a non-starter. 

The kind of replication study that Rubin neglects, however, is a conceptual 

replication. Even if experimental units differ, exact and direct replication studies not 

only rely on the same operationalization as an original study but also identify the 

same theoretically relevant aspects. Conceptual replications, by contrast, seek to 
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replicate an originally observed effect by identifying different theoretically relevant 

aspects. This allows researchers to sample from different populations, manipulate 

irreversible experimental units, and use different operationalizations. Compared to 

an effect that is replicable only under the same operationalization, indeed, one that is 

replicable under different theoretical frameworks is arguably more likely to be a true 

positive effect (Crandall & Sherman, 2016). Therefore, the observation that given 

different operationalizations or irreversible units the error rates of Neyman-Pearson 

test-theory cannot be applied, is ultimately misplaced.  

 

5.3 Does the replication crises matter? 

A different question altogether is whether the replication crisis deserves attention. 

Several scholars argue that the replication crisis is not a serious problem (e.g., 

Redish et al., 2018). Lewandowsky et al. (2020, 3) even claim that—despite such 

questionable research practices (QRPs) as Hypothesizing After the Results are 

Known (HARKing), p-hacking, or publication bias being possible causes of the 

replication crisis—in an idealized transparent scientific community that abandons 

QRPs, a low replicability rate supports robust and efficient science (ibid., pp. 2f.) 

because it reduces the cost of acquiring scientific knowledge while simultaneously 

increases its efficiency. This idealized community is modeled such that either “all 

findings are replicated before publication to guard against replication failures” 

(ibid.) or “individual studies are published and are replicated after publication, but 

only if they attract the community’s interest” (ibid.). Community interest here is 

equated with the observed citation pattern for a published study.  

The claim that a low replicability rate supports robust and efficient science is 

based on simulations of discovery-oriented studies that reveal the cost of generating 

scientific knowledge to vary considerably between both replication regimes. 

Compared to leaving it to the scientific community to show interest, the first regime 

“incurred an additional cost of around ten studies […] [,] represent[ing] ~10% of the 

total effort the scientific community expended on data collection” (ibid., 4). 

Although the “analysis of replicability confirms that citations do not predict 

replicability” (ibid.), it holds regardless of the regime that “the probability of 

replication of a study increases with the number of citations” (ibid., 3; italics 

added). The efficiency of knowledge generation, therefore, is proportional to the 

number of potentially nonreplicable published studies. 
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However, not only is Lewandowsky et al.’s (2020) idealized community 

highly idealized. The simulated efficiency of knowledge generation without QRPs is 

also trumped by how knowledge is in fact generated. Independently of the number 

of citations, after all, compared to a statistically significant effect that is observed in 

a well-powered study (a = β < 0.05), a statistically significant effect of similar size 

that is observed in an underpowered study is more likely to be a β-error. For 

corresponding simulation, see Witte, Stanciu, Zenker (2022). 

Bird (2018) likewise acknowledges the problematic role of QRPs, as well as 

the unsound application of statistical methods. Yet he takes the replication crisis to 

indicate that behavioral science is secure because a high proportion of failed direct 

replications is the expected outcome of high-quality science, if “the field of science 

in question produces a high proportion of false hypotheses prior to testing” (Bird, 

2018, 1). Of course, given the lenient α = 0.05, if the base rate of true H0 hypotheses 

that are rejected is high, then a large proportion of published H1 hypotheses that are 

false will “survive” testing (see Sect. 4.2). A good estimate of the actual base rate, 

however, requires a good estimate of the base rate of unpublished studies that 

correctly maintain the H0. But this estimate, which points back at the file-drawer 

problem (Rosenthal, 1979), is highly uncertain (see our note 1).  

Finally, the recent proposal to decrease the α-error rate rather than the β-error 

rate (Bartos & Maier, 2019; Benjamin et al, 2018; Bird, 2018; Lakens et al., 2018) 

ignores that the relative importance of errors varies within and between study areas 

and researchers, as well as across studies (Trafimow et al., 2018). Thus, “setting a 

blanket level of either 0.05 or 0.005, or anything else, forces researchers to pretend 

that the relative importance of Type I and Type II errors is constant” (Trafimow & 

Earp, 2017, 3). But we saw that practical considerations can justify asymmetrical 

error rates (e.g., α > β in contexts of public health). Unless α = β, therefore, for a 

progressive science of human behavior even a wide consensus on a very small α-

error rate in discovery-oriented hypothesis testing research is mere cosmetics. 

 

5. Conclusion  

In proposing that behavioral scientists conventionally default on error rates for false 

positive (α) and false negative errors (β) that mirror their general relative 

seriousness, Jacob Cohen had evaluated an α-error to be about four times as serious 

as a β-error. The antecedently accepted error rate α = 0.05 was thus matched with β 
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= 0.20. Widely accepted in behavioral science today, this convention “set the tone” 

for accepting asymmetrical error rates of the form α < β. 

Cohen’s justification for α / β = 0.05 / 0.20 as a reasonable convention for 

the context of discovery-oriented research did primarily ground in the epistemic 

consideration of preferentially limiting the proportion of mistaken discoveries (as 

opposed to the proportion of missed discoveries) that an individual researcher 

“contributes” to the body of scientific knowledge. The practical consideration that 

resource restrictions limit the sample size that a researcher can collect did merely 

provide a supererogatory reason for β = 0.20. In other contexts of hypothesis testing, 

however, for instance that of public health, α / β = 0.05 / 0.20 is an unreasonable 

convention, because utility considerations decisively show that rejecting a true H1 

(β-error) can be more serious than maintaining a false H0 hypothesis (α-error). This 

holds for individuals and social groups alike. 

Epistemic considerations can thus suffice to justify favoring a low α-error 

rate over a low β-error rate in discovery-oriented hypothesis testing research because 

individual researchers here are epistemically justified in preferring a missed to a 

mistaken discovery. For the development of a progressive science of human 

behavior, however, asymmetrical error rates of the form α < β do necessarily incur 

long-run negative epistemic consequences at the collective level, namely the broad 

inability to replicate an originally observed true effect. This speaks strongly against 

Cohen’s convention in the context for which he proposed it and makes its wide 

acceptance crucial in explaining the replication crisis in behavioral science.  
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