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a b s t r a c t

In pedestrian detection, occlusions are typically treated as an unstructured source of noise and explicit
models have lagged behind those for object appearance, which will result in degradation of detection
performance. In this paper, a hierarchical co-occurrence model is proposed to enhance the semantic
representation of a pedestrian. In our proposed hierarchical model, a latent SVM structure is employed
to model the spatial co-occurrence relations among the parent–child pairs of nodes as hidden variables
for handling the partial occlusions. Moreover, the visibility statuses of the pedestrian can be generated
by learning co-occurrence relations from the positive training data with large numbers of synthetically
occluded instances. Finally, based on the proposed hierarchical co-occurrence model, a pedestrian
detection algorithm is implemented to incorporate visibility statuses by means of a Random Forest
ensemble. The experimental results on three public datasets demonstrate the log-average miss rate of
the proposed algorithm has 5% improvement for pedestrians with partial occlusions compared with the
state-of-the-arts.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Pedestrian detection is an important topic for practical applica-
tions, such as video surveillances [9,29], intelligent vehicles [10],
and robot sensing. State-of-the-art algorithms have been used for
achieving progress on pedestrian detection. However, the presence
of partial occlusions causes significant degradation of perfor-
mance, even for part-based algorithms that are supposed to be
robust in that respect [11]. Therefore, pedestrian detection is still a
challenge [1–8].

A general part-based hierarchy approach is introduced for detec-
tion of partially occluded objects in [15]. The algorithm requires a
design for hierarchical object-parts to place parts for sharing weak
features. Enzweiler et al. [16] presented a mixture of experts to focus
on the unoccluded region applied to depth and motion images for
handling partial occlusion. Javier et al. [17] describe a general alg-
orithm for building a robust classifier ensemble by random subspace
algorithm against partial occlusions. Zhang et al. [28] proposed a
latent hierarchical model with varying structures to represent
the behavior with multiple groups, and employ a multi-layer-based

inference method to infer the group affiliation. Girshick et al. [6]
proposed an extension of the deformable part-based detector [18]
with occlusion handling. Specifically, the algorithm tries to place diff-
erent body parts over the window. However, most previous app-
roaches rely only on the detection score of a part for estimating its
visibility and do not consider spatial co-occurrence relations among
body parts.

Recently, Duan et al. [19] proposed a structural filter approach to
human detection to deal with occlusions and articulated poses. The
method manually defines the rules to describe the relationship
between the visibility of a part and its overlapping larger and smaller
parts. However, the visibility status of a part is obtained by hard thr-
esholding of its detection score. Quyang et al. [20] presented a
probabilistic pedestrian detection framework to learn the visibility
relationship among overlapping parts at multiple layers. However,
this method subjectively designs seven visibility parts to integrate in
the last layer and thus is unable to model complex occlusion statuses
for pedestrian detection.

The above algorithms have improved the performance for ped-
estrian detection to some extent. However, these algorithms rely
only on their respective detection scores of parts for estimating
visibility or depend on spatial consistency among the adjacent vis-
ibility parts. These algorithms fail to capture strong correlati-
ons among random visible parts, especially complex dependenc-
ies among nonadjacent visible parts. Moreover, complex occlusion
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patterns are often inevitable due to various viewpoint changes.
These algorithms just manually design several visibility statuses to
integrate adjacent parts and not learn from training data. Thus, the
algorithms fail to represent complex occlusion patterns for pedes-
trian detection.

As shown in Fig. 1, single-part detectors are imperfect, and such
visibility estimation is inaccurate. Part detection score is relatively
low when its visual cue does not fit the part detector well no
matter whether the partial occlusion occurs or not. Furthermore, it
is a key issue that how to integrate the inaccurate scores of part
detectors and to estimate its location when there is partial
occlusion in the sliding window. For example, many part-based
deformable models in [6,21] summed the scores of part detectors.
A pedestrian existing input window is considered as having a high
sum for its score. However, when one part is occluded, the score of
its part detector will be relatively low. Consequently, the summed
score will be low. If the part-based deformable model [6] is used to
detect the image, these occluded pedestrians may be mistaken for
negative examples with low summed scores.

Considering the problems faced by the approaches discussed
above, this proposes a hierarchical co-occurrence model to auto-
matically learn complex dependencies among different parts for
occlusion handling. Spatial consistency is built among the parent–
child pairs of nodes from multiple layers, which fully explore com-
plex correlation among visible parts. Moreover, the co-occurrence
relations among random visibility parts within the same layer are
modeled as latent variables of the structural SVM to generate
visibility statuses. Finally, the random forest is used to combine
visibility statuses to build a classifier ensemble robust against partial
occlusions. Based on the proposed hierarchical co-occurrence model,
a pedestrian detection algorithm is implemented for partial occlusion
handling. Experimental results on three public datasets demonstrate
that the proposed algorithm improves the log-average miss rate by

around 5% for pedestrians with partial occlusions compared with the
state-of-the-art algorithms.

2. Hierarchical co-occurrence model

2.1. Representation of the hierarchical co-occurrence model

To deal with the variations that cannot be tackled by a monolithic
model, approaches to learning multiple parts model have been
introduced in [19,20]. Integrating the advantage of part-based det-
ectors in occlusion handling requires solving two key issues for
successful detection of partially occluded pedestrians. The first issue
is the decision if partial occlusion occurs in a scanning window and
which body parts are occluded. The second issue is integrating ina-
ccurate scores of part detectors and estimating their locations if
partial occlusion is found in the sliding window. Therefore, the major
challenges are the modeling of the correlation of the visibilities of
different parts and the proper combinations of the results of part
detectors according to the estimation of component visibility.

Fig. 2 shows the proposed hierarchical co-occurrence model
with latent variables. The top layer has a wide variety of visibility
status, which represents the possibility of the appearance of lea-
rned behavior from positive training data with large numbers of
synthetically occluded instances. A visibility status is obtained by
randomly combining one or more parts in the middle layer. The
second layer has 12 part nodes in a 4�3 grid layout. Each of which
represents one part of an object. Each node at the second layer has
4 child nodes at the bottom layer that contains 32 block nodes in
an 8�4 grid layout. The nodes at lower layers capture more det-
ailed appearance.

Note that in our model, we followed the implementations of
[7] to calculate HOG descriptors. Fig. 2 shows the weights of HOG
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Fig. 1. Complex occlusion patterns and estimation of visibility of a part from its detection score or from its correlated components. Black regions represent the estimated
parts that are not visible.
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descriptors at different layers. The features at different layers cap-
ture object appearance in a coarse-to-fine way.

In our model, we assume the model contains M visibility sta-
tuses in layer 1. The labels of all the blocks are denoted as b¼(b1,
b2,…, b32) in layer 3, where bi is the label of the i-th block.
Similarly, the labels in layer 2 can be defined as p¼(p1, p2,…, p12),
where pi is the label of the i-th part. The labels in layer 1 can be
signified as s¼(s1, s2,…,sM), where si is the label of the i-th
subspace. Let B, P, and S be the spaces of all the possible label
set for the blocks, parts, and subspaces, respectively (i.e., bAB,
pAP, and sAS), as shown in Fig. 2.

Inspired by [20,28,31], we propose four types of co-occurrence
relations to represent the interaction among the nodes in our
hierarchical model. These four types of co-occurrence relations are
block–block dependencies (in layer 3), block–part dependencies
(between layers 3 and 2), part–part dependencies (in layer 2), and
part–subspace dependencies (between layers 2 and 1), as shown in
Fig. 3. The visibility status of a subspace is obtained by randomly
combining one or several parts in the middle layer. The co-occ-
urrence relations in our model allow parts to be switched off and
thus are robust to partial occlusion parts or hard to detect parts. The
visibility of one part is also correlated with the visibility of other parts
at the same layer by modeling the co-occurrence relations among the
parent–child pairs of nodes with sharing parents.

Let h¼(b, p, s) signify co-occurrence relations. We then con-
struct a score function to evaluate the compatibility of candidate
labels. To generalize the structural SVM formulation, we extend
our joint feature vector Φðx; yÞ with an extra argument h to Ψ ðx;
y;hÞ to describe the relation among input x, output y, and latent
variable h. Given a training set of input–output structure pairs T ¼
ðx1; y1Þ; ðx2; y2Þ; :::; ðxn; ynÞ
� �

, the score function f ωðx; yÞ with latent
variables h can be rewritten as

f ωðx; yÞ ¼ arg max
y;h

ωT UΨ ðx; y;hÞ ð1Þ

Note that in our hierarchical model, given the extracted image
features X, ωT UΨ ðx; y;hÞ can be calculated by Eq. (2)

ωTΨ ðx; y;hÞ ¼ ∑
bi∈B

ωT
1ϕ1ðbi; xiÞþ ∑

K

k ¼ 1
∑

ðbki ; bkj Þ∈B;
pk∈P

ωT
2ϕ2ðbki ; bkj ;pkÞ

þ ∑
K

k ¼ 1
∑

bki ∈B;
pk∈P

ωT
3ϕ3ðbki ;pkÞþ ∑

pi∈P
ωT
4ϕ4ðpi; xiÞ

þ ∑
K

k ¼ 1
∑

ðpki ; pkj Þ∈B;
sk∈S

ωT
5ϕ5ðpki ; pkj ; skÞþ ∑

K

k ¼ 1
∑

pki ∈P;
sk∈S

ωT
6ϕ6ðpki ; skÞ∏∏

ð2Þ
where ω¼ fω1;ω2;ω3;ω4;ω5;ω6g is the concatenation of linear
parameters for the interaction among the nodes in the hierarchical
model. ω1 and ω4 indicate that the image is not only linked to the
block level, it also connects the part level. ω2, ω3, ω5 and ω6

represent the four types of co-occurrence relations among the

Fig. 2. Hierarchical co-occurrence model (The model is composed of a collection of HOG filters at different layers. HOG filters form a parent–child hierarchy where
connections control the relative displacement of the parts).
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Fig. 3. Structure illustration of co-occurrence relations. Dashed lines and nodes
indicate that the interaction and the node labels are latent.
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nodes in our hierarchical model. Ψ ¼ fϕ1;ϕ2;ϕ3;ϕ4;ϕ5;ϕ6g is the
concatenated vector of all features given feature X and candidate
labels (b, p, s).

Therefore, the detection process with our hierarchical model is
to learn a suitable model parameter vector ω and to infer optimal
labels (b, p, s).

2.2. Model learning with latent variables

To learn the structure SVM model and parameter vector ω, the
model is optimized by minimizing the objective function, follow-
ing the structure SVM formulation of [22]:

LðωÞ ¼min
ω

1
2
‖ω‖2þC

Xn
i ¼ 1

max
ŷi

ωTψðxi; ŷiiÞþΔðyi; ŷiÞ
� ��ωTψðxi; yiÞ

� �

ð3Þ
where C is the regularization parameter and Δðyi; ŷiÞ is the 0–1 loss
function, Δðyi; ŷiÞ ¼ 1 if yia ŷi, and Δðyi; ŷiÞ ¼ 0.

In our hierarchical co-occurrence model, the input–output
relationship is characterized by (x, y) pairs in the training set
and depends on a set of unobserved latent variables h¼(b, p, s). As
[30] used the structure SVM to learn the latent hierarchical model,
the structural SVM formulation with latent variables adopted for
learning is as follows:

LðωÞ ¼min
ω

1
2
‖ω‖2þC

Xn
i ¼ 1

max
ŷi ;ĥ

ωT Uψðxi; ŷi; ĥÞþΔðyi; ŷi; ĥÞ
ih !

�C
Xn
i ¼ 1

max
h

ωT Uψðxi; ŷi; ĥÞÞ
�

ð4Þ

Note that parameters h¼(b, p, s) define the co-occurrence
relations of the image and are considered as latent variables. It is
easy to observe that the above formulation reduces to the usual
structural SVM formulation in the absence of latent variables. The
variable models spatial consistency among the parent–child pairs
of nodes from multiple layers.

A latent SVM leads to a non-convex optimization problem.
However, a latent SVM is semi-convex, and the training problem
becomes convex once latent information is specified for positive
training examples. To solve the optimization problem of Eq. (4),
the incremental concave–convex procedure (iCCCP) [12] can be
rewritten as the difference of two convex functions

LðωÞ ¼min
ω

f ωð Þ�g ωð Þ� � ð5Þ

where f and g are both convex, but f ωð Þ�g ωð Þ is not. The cutting
plane algorithm [30] is employed to solve the standard structural
SVM optimization problem inside the iCCCP loop. The implemen-
tation procedures of the iCCCP are shown in Algorithm 1.

Algorithm 1. Incremental concave–convex procedure algorithm

Initialization: t¼0; S¼ xi; yi
� �þ [ xj; yj

n o�
, i¼ 1;2:::;Nþ ,

j¼ 1;2:::;N�

Repeat t ¼ tþ1
1. Fill in latent variables xi; yi

	 

AS:

hn

i ¼ arg max
h

ωt UΨ ðxi; yi;hÞ

2. Solve the structure SVM problem over S (given h, estimate
ω):

ωtþ1 ¼ argminωf ðωÞ�C
P

iωUΨ ðxi; yi;hn

i Þ
3. S¼ S [ xj; yj

n o�
, j¼N�Kt�1þ1;N�Kt�1þ2; :::;N�Kt

Until f ωtð Þ�g ωtð Þ� �� f ωt�1ð Þ�g ωt�1ð Þ� �
oδ.

In our algorithm, the iCCCP starts from a small number
N� ¼ 30 (set by hand) of negative images, learns ω given the hard
negative examples selected from 30 images, and proceeds to
update ω by incrementally adding more negative images into the
training set. The scaling factor K of new negative images is 1.15.
The tolerance parameter is δ¼ 10�6. After several rounds, the
number of hard negative examples decreases exponentially.

We learn a latent SVM model ω to predict the visibility statuses
of an unseen image window through giving a set of training
samples X ¼ x1; x2; :::; xnf g and their labels Y ¼ y1; y2; :::; yn

� �
, where

each yi¼{�1,1}, i¼ 1;2; :::;nf g. We also use latent parameters
h¼ b;p; sð Þ to model the spatial configuration and co-occurrence
relations among the components of image windows for the
estimation of visibility statuses.

2.3. Model inference for visibility estimation

Generally, partial occlusions can vary considerably in terms of
shape and size. Hence, a flexible model is needed to handle various
occlusion statuses. Fortunately, the valuable visibility status sub-
space sk can be generated by modeling the co-occurrence relations
among component pi as latent variable, which can have a more
discriminative performance compared with the scores of part
detectors.

Fig. 4 shows that discriminative visibility statuses are built by
combining three pairs of subspace against partial occlusions. This
step will result in weak classifiers being more concentrated in
non-occluded areas than when training a non-constrained classi-
fier. The key insight of this work is the possibility of changing the
spatial distribution of the regions selected by the random sub-
space for estimating the label of the sliding image window
accurately.

B1 B2 B3 B4
B5 B6 B7 B8
B9 B10

B32B31

P1 P2 P3

P6P4 P5

P9P8P7

P11 P12P10 Sn

S1 S2

Sn-1

Fig. 4. Visibility status by modeling the co-occurrence relations among components. The features at different layers capture pedestrian appearance in a down-to-up way. The
features at lower layers capture more detailed appearances. (a) Block Representation, (b) Part Representation and (c)Visibility Statuses Representation.
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To infer visibility statuses, spatial consistency relationship
among components is built to decide the visibility of the object
region. Each block bi is the smallest unit at the bottom layer and is
the basis to build the upper layer structure detector. Every four
adjacent block bi is modeled as a consistency part unit pi through
building the co-occurrence relations among their discriminative
local classifier, as shown in Fig. 4. Visibility part pi is well provided
with anti-interference ability.

In the case of partial occlusion, visibility part unit pi is relatively
less discriminative. For example, as shown in the first row in Fig. 1,
only a few parts are considered as visible regions, whereas others
are viewed as occlusion or background. If naively using the few
visibility parts to decide whether partial occlusion occurs or not,
the pedestrian can be incorrectly classified. Considering inherent
correlation between the whole and the parts and among the parts,
the co-occurrence relations in part unit pi is further established to
integrate all part detectors for improving performance. Every three
pairs of random visibility parts pi are modeled as spatial subspace
sk through building the co-occurrence relations among their parts
pi, as shown in Fig. 4. Spatial subspace sk models inherent co-
occurrence correlations among visibility parts to integrate inaccu-
rate scores of part detectors. The visibility of spatial subspace sk is
defined as follows:

pðynj skÞ ¼ ∑
bi∈B

ωT
1ϕ1ðbi; xiÞþ ∑

ðbki ; bkj Þ∈B;
pk∈P

ωT
2ϕ2ðbki ; bkj ; pkÞ

þ ∑
bki ∈B;
pk∈P

ωT
3ϕ3ðbki ; pkÞþ ∑

pi∈P
ωT
4ϕ4ðpi; xiÞ

þ ∑
ðpki ; pkj Þ∈B;
sk∈S

ωT
5ϕ5ðpki ; pkj ; skÞþ ∑

pki ∈P;
sk∈S

ωT
6ϕ6ðpki ; skÞ ð6Þ

where p yn j skð Þ represents the visibility of k� th random spatial
subspace, and ωT

i represents the co-occurrence relations among
the nodes in our hierarchical model.

In our algorithm, visibility status sk is represented as a decision
tree of random subspace. The random forest [23] can be used to
build a robust classifier ensemble against partial occlusions, which
consist of multiple trees constructed by pseudo-randomly select-
ing subsets of components of the feature vector. Each decision tree
returns a probability distribution p yn j skð Þ of visibility status sk for a
given test sample x and the final class label y is calculated via

y¼ arg max
yn

1
T

XT
k ¼ 1

pðynj skÞ ð7Þ

where T represents the number of trees in random forest F, and sk
denotes the visibility status of a random subspace.

In pedestrian detection, the vast majority of training examples
are negative. This result makes it infeasible to consider all negative
examples at a time. Instead, a common practice is to construct
training data consisting of positive instances and “hard negative”
instances. The positive examples are constructed from the unoc-
cluded training examples (as labeled in the INRIA data) and we use
random subwindows from negative images to generate negative
examples. Hard negatives are data mined from the very large set of
possible negative examples. For this purpose, we propose to use an
efficient procedure that consists of the following steps, as shown
in Algorithm 2.

Algorithm 2. Random forest algorithm for visibility estimation

Initialization: Training Set S¼ P [ N, P ¼ xi; yi
� �þ ,

N¼ xj; yj
n o�

;

Random Forest F ¼ ϕ;
Output: Score of visibility estimation score
1. For i¼1, . , n do:
(a) Train M new trees T of visibility statuses sk using training set
S.

F : ¼ F [ Tk, k¼ 1;2:::;M;
(b) Use the current random forest F for detecting sliding
window.

If the sliding window xiA false positive, then
Consider xi as negative samples and add them to

training set S.
(c) Use the new training set S to update probabilities p yn j skð Þ
for all trees

in random forest F.

2. Calculate the score of sliding window: score¼ 1
M

PM
t ¼ 1

pðynj skÞ.

3. While scoreoθ and koTdo:
score¼ 1

kþ1 scoreUkþpðynj skþ1Þ
	 


and t ¼ tþ1.
4. If scoreoθ reject sliding window; otherwise, output is the
score.

Our algorithm allows reducing the number of hard negatives
obtained at each iteration. This is mainly due to the fact that at
each iteration, more detection trees of random subspace are resp-
onsible for classification. In addition, all the probabilities p yn j skð Þ
of the detection trees are updated by using the entire training set,
in which slight increments indicate their discriminative ability.
Moreover, training time is reduced to the smaller number of neg-
ative samples introduced at each iteration.

In particular, a testing sample is positive if at least one decision
tree in the random forest gives a positive decision at last. Hence,
computing the probability for all the trees of the random forest on
these windows is not needed because the scores of sliding win-
dows are visible at early stages of the cascade. Note that the num-
ber of features in visibility subspace is randomly generated from
visibility statuses, unlike the original RSM [3], which has a fixed
number of randomly selected features from the original space hav-
ing the same dimension.

3. Pedestrian detection based on hierarchical co-occurrence
model

In this paper, we propose a novel hierarchical co-occurrence
model and a corresponding coarse-to-fine inference process, which is
extremely efficient. The hierarchical structure can be used for better
modeling and for accelerating inferences. All the best performing
part-based models incorporate hierarchical structure [11,26,32]. The
speed of our model results from the placement of higher layer vis-
ibility parts, which is guided by the placement of lower layers. This
feature yields high computational savings, but makes inferences
more sensitive to partial occlusion or other sources of noise.

Therefore, pedestrian detection based on hierarchical co-occ-
urrence model is proposed to prune the search top-down step. The
model starts the inference from the root filter and propagates only
solutions that are locally more promising. With the holistic object
detected, we simply use the root filter to detect the bounding box
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for the holistic object hypothesis as the detection output. We use
the configuration of their body parts to generate complex visibility
statuses for pedestrian detection.

We present a general method for handling partial occlusions (as
shown in Fig. 5). In such a design, if the confidence given by the
holistic classifier falls into an ambiguous range, then an occlusion
inference process is applied by using the responses of the hierarchical
co-occurrence model. Finally, if the inference process determines a
partial occlusion, a random forest ensemble classifies the window.

Otherwise, the final output is given by the holistic classifier. To obtain
a more accurate decision, we apply the ensemble only when partial
occlusion is suspected.

Our established co-occurrence relations are modeled as hidden
variables with the multi-layers of the hierarchical model, which
integrates the inaccurate scores of part detectors based on the visibility
probabilities of parts with multiple sizes when occlusions exist.
Through learning co-occurrence relations among visible parts in the
hierarchical model, the visibility patterns can be generated to build the

Confidence
>Threshold

Holistic
Classifier

Hierarchical
Co-Occurrence

Model

Occlusion Handing

Random
Forest

Classifiers
Ensemble

Output
Holistic
Score

Output
Ensemble
Score

No

Yes

Fig. 5. Pedestrian detection scheme based on hierarchical co-occurrence model. (The resulting feature vector is first evaluated by the holistic classifier for accelerating
pedestrian detection. Then, an occlusion inference process can be executed to incorporate visibility statuses when the confidence given by the holistic classifier falls into an
ambiguous range.)

Fig. 6. Experimental comparisons of different part-based models on INRIA and ETHZ datasets. (a) INRIA dataset and (b) ETHZ dataset.
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robust classifier ensemble against partial occlusions. By including
multiple layers, the proposed hierarchical model achieves better
variational lower bound on the training data and has more reliable
visibility estimation.

4. Experiments and discussion

In this section, the performance of proposed algorithm is fully
evaluated based on three datasets, namely, INRIA [7], ETH [24], and
Caltech [25] datasets, which are publicly available. In the following
experiments, the state-of-the-art approaches can be compared with
our approach, as they are also trained from the INRIA dataset. The
labels and evaluation code provided by Dollar et al. online are used
for evaluating the criteria proposed in [10]. We focus on the
reasonable subset, i.e., images with 50 pixels or larger, and non-occ-
luded or partially occluded pedestrians. The performance of our
proposed hierarchical model is compared with other relevant state-
of-the-art approaches, which are HOG [7], HOGLBP [13], MultiFtr
[5], ChnFtrs [4], LatSVM-V2 [6], VeryFast [2], MT-DPM [1], Random
Forest [3], FPDW [27], and Random Subspace [17]. As [10] proposed
the evaluation criteria, log-average miss rate is used to summarize
the detector performance. The performance is computed by aver-
aging miss rate at FPPI rates evenly spaced in log-space within the
range of 10�3–100. The experiments demonstrate that the proposed
hierarchical co-occurrence model outperforms the state-of-the-art
algorithms, especially on pedestrian data with partial occlusions.

4.1. Experimental results on ETHZ dataset

Experimental results indicate the performance of our proposed
algorithm on public datasets. Studies in [2,3,5,6] report that state-
of-the-art algorithms have the best performance when evaluated

on the ETHZ dataset. As most approaches are trained on the INRIA
training dataset (as shown in Fig. 6(a)), our proposed model is also
trained on the INIRA training dataset. It can be seen that the log-
average miss rate of our approach has 6% improvement over
LatSVM-V2 by Felzenszwalb et al. [6] on the ETHZ dataset, as
shown in Fig. 6(b).

The pedestrian detection results of our hierarchical co-occu-
rrence model are shown in Fig. 7 on the ETH dataset. A detected
image sliding window is represented by the green dotted bound-
ing box if the area overlaps the detected window, and the ground
truth (green solid bounding box) exceeds 50%, or by the red dotted
bounding box if otherwise. Fig. 7 shows the green dotted boxes
demonstrating the performance of our proposed hierarchi-
cal model.

4.2. Experimental results on the Caltech dataset

Similar to other relevant publications previously [3,11], we use
the Caltech Training Dataset as training data and test our proposed
model on the Caltech Testing Dataset. Our hierarchical co-occurrence
model matches or outperforms the state-of-the-art algorithms on the
Caltech datasets. Fig.8 shows the comparison of the log-average miss
rate with HOG [7], HOGLBP [14], MultiFtr [5], ChnFtrs [4], LatSVM-V2
[6], VeryFast [2], MT-DPM [1], and Random Subspace [17] under
varying levels of occlusion. Fig. 8(a) indicates that our approach has
similar performance for the overall Caltech testing dataset under no
occlusion. However, our approach has 5% log-average miss rate
improvement for pedestrians with partial occlusions compared with
MT-DPM [1], as shown in Fig. 8(b). Fig. 9 shows the detection results
of our model on the Caltech dataset. This experiment shows that the
usage of the hierarchical co-occurrence model outperforms state-of-
the-art algorithms especially for partial occlusion. With more

Ground
Truth

True
Positive

Missed
Detection

False
Positive

Fig. 7. Detection results using our hierarchical structure model on the ETHZ dataset. (The green dotted bounding box means correct detection; the red solid bounding box is
missed detection; and the red dotted bounding box is false positive.) (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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features being included, the performance of our approach can be
further improved.

4.3. Computational complexity analysis

Fast detection rates are of the essence in many applications of
pedestrian detection, such as video surveillances, intelligent vehicles,
robot sensing, and human machine interfaces. Although our study
focuses on accuracy, we also conclude by jointly considering accuracy
and speed. Wemeasure the runtime of each detector by using images
from the Caltech dataset (averaging runtime over multiple frames).
To compensate for detectors running on different hardware, all
runtimes are normalized to the rate of a single modern machine.

Table 1, which is ordered according to descending log-average
miss rate on partial occlusion pedestrians in the Caltech dataset, gives
an overview of each detector. In Fig. 8(b), we plot log-average miss
rate versus runtime for each detector on 640�480 images. To save
runtime in our pedestrian detection algorithm, we employ this met-
hod. If the confidence given by the holistic classifier falls into an
ambiguous range, then an occlusion inference process is applied by
using the responses of the hierarchical co-occurrence model, as
shown in Fig. 4.

Although the frame rates may seem low, all tested detectors can
be employed as part of a full system. Such systems may employ
ground plane constraints and perform region-of-interest selection

(e.g., from stereo disparity or motion), which reduces runtime
drastically. Moreover, numerous approaches have been proposed for
speeding up detection, including increasing the speed of the detector
itself, through the use of approximations or special purpose hard-
ware, such as GPUs (for a review of fast detection see [2]). Never-
theless, the above runtime analysis gives a sense of the speed of
current detectors.

5. Conclusion

This study describes an effective approach for pedestrian
detection with occlusion handling in still images. The approach
effectively estimates the visibility of components at multiple layers
by learning spatial co-occurrence relations with the proposed
hierarchical co-occurrence model. The latent SVM structure mod-
eling with the co-occurrence relations as latent variables is
employed to generate visibility statuses. Then, random forest is
used to build a robust classifier ensemble for handling various
partial occlusions. Through comparing experimental results on
multiple publicly datasets, various schemes of integrating compo-
nent detectors are investigated. The log-average miss rate of our
proposed algorithm has 5% improvement for pedestrian detection,
especially on pedestrian datasets with partial occlusions compared
with the state-of-the-art approaches.

Fig. 8. Per-image evaluation. Experimental comparisons of different part-based models on Caltech testing dataset. (a) Non-Occlusion and (b) Partial Occlusion.
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