Fisiologia da Reprodução Animal: Ovulação, Controle e Sincronização do Cio

Abstract

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO DEPARTAMENTO DE ZOOTECNIA – 50 ANOS EMANUEL ISAQUE CORDEIRO DA SILVA REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO REPRODUÇÃO ANIMAL: OVULAÇÃO, CONTROLE E SINCRONIZAÇÃO DO CICLO ESTRAL ANIMAL REPRODUCTION: OVULATION, CONTROL AND SYNCHRONIZATION OF THE ESTRAL CYCLE Autor: Emanuel Isaque Cordeiro da Silva – IFPE-BJ/CAP-UFPE/EEFCC-BJ/UFRPE 1. INTRODUÇÃO As fêmeas dos animais domésticos possuem em seus ovários, desde praticamente o nascimento, a dotação completa de gametas dos quais vão dispor para o resto de sua vida. No entanto, terão que esperar até a puberdade para que se produza a evolução completa dos folículos (foliculogênese) que darão como resultado as primeiras ovulações. Este momento caracteriza-se, por um lado, pelo início gradual da secreção por parte da hipófise de quantidades importantes de hormonas gonadotropinas (hormonas folículo estimulante «FSH» e sobretudo luteinizante «LH»); por outro lado, pelo aumento da capacidade dos seus ovários para responder a estas secreções. A partir daí, o aparelho reprodutor feminino das fêmeas domésticas deve apresentar, durante todo o período de atividade sexual, alterações morfológicas, endócrinas e fisiológicas, que devem ser repetidas sequencialmente e periodicamente, consoante com a duração e a frequência do ciclo estral característico de cada espécie animal, assegurando assim a liberação de um ou mais ovócitos férteis nos ciclos estrais correspondentes. 2. EVOLUÇÃO DO OVÓCITO E DOS FOLÍCULOS OVÁRICOS O ovário constitui um órgão de armazenamento de ovócitos formados durante a vida fetal ou após o nascimento, os quais permanecerão «latentes», num estado de imaturidade, paralisando a sua atividade de desenvolvimento e crescimento após o processo de mitose pelo qual as células germinativas ou ovogonias evoluem para ovócitos primários. Estes ovócitos devem ser rodeados por células foliculares para alcançar sua maturação e posterior ovulação, constituindo-se, desta maneira, os folículos. Estes últimos, que se localizam no parênquima ovárico, sofrem uma série de mudanças evolutivas que os fazem passar de folículos primordiais (constituídos por um ovócito rodeado de células planas) a folículos maduros ou de Graaf, passando pelos estágios primário, secundário e terciários. A estrutura do ovário e a terminologia correspondente, bem como a sua fisiologia, já foram tratados em trabalhos anteriores. Basicamente, o folículo maduro ou de Graaf, que ressalta já na superfície ovariana como se tratasse de uma pequena vesícula cheia de líquido, encontra-se constituído, no caso dos mamíferos, pelas tecas externa e interna, a folha basal, o ovócito e o seu núcleo ou vesícula germinativa e um acúmulo de células da granulosa chamado cumulus. O antro-folicular ou cavidade intrafolicular formada durante o estágio de folículo terciário possui no seu interior um líquido cuja composição provém do plasma sanguíneo. Por outro lado, o ovócito, que desde a constituição da reserva de folículos primordiais se encontrava em estado de ovócito primário, começa a aumentar de volume (durante a fase de evolução do folículo terciário a folículo maduro) e a cobrir-se de uma membrana celular denominada zona pelúcida. Nos momentos que precedem imediatamente à ovulação reativa-se a meiose, liberando-se o primeiro corpúsculo polar e convertendo-se o ovócito em secundário. Produzida a ovulação retoma-se de novo a meiose, que tinha permanecido em repouso, e depois de ocorrer a fecundação libera-se o segundo corpúsculo polar, passando a ser uma ovotida ou óvulo maduro. 3. A OVULAÇÃO Acabado o crescimento, o folículo maduro ou de Graaf é capaz de responder à descarga pré-ovulatória de gonadotropinas (LH e em menor medida FSH) de tal forma que se produza uma reestruturação completa do mesmo e a subsequente liberação de um ovócito fértil através de um pequeno orifício (estigma) produzido no ponto de ruptura da sua parede celular e das camadas celulares mais superficiais do córtex ovárico, cuja espessura, neste momento, é muito reduzida. No momento da ovulação tanto o líquido folicular como o ovócito são projetados, entre outras causas, pela contração da musculatura lisa que rodeia os folículos para a cavidade peritoneal caindo perto das fimbrias do oviduto ou trompas de Falópio. Esta expulsão, no caso das vacas e ovelhas, ocorre sob a forma de um fluxo fluido, enquanto na coelha ocorre sob a forma de um jato súbito ou de um processo explosivo. No caso da égua, a estrutura dos seus ovários difere das outras fêmeas domésticas, no sentido em que a zona vascular se localiza superficialmente e os folículos se distribuem no interior do ovário. Ao mesmo tempo, a ovulação ocorre unicamente num determinado ponto denominado fossa de ovulação. Por tudo isso, durante a foliculogênese, os folículos vão migrando para a fossa de ovulação, chegando em algumas ocasiões a ficarem presos no interior do ovário, não conseguindo desenvolver-se nem evolucionar (folículo cístico) e que, ao apresentar uma secreção contínua de estrogênios, produz na fêmea um estado de cio permanente ou ninfomania. Nas espécies cuja ovulação é espontânea, o processo supra ocorre periódica e sequencialmente em todos os ciclos estrais com um intervalo conhecido a partir do início do estro ou, no caso da vaca, após o término deste (tabela 1). Por outro lado, nas espécies de ovulação induzida (coelha, gata e fêmeas de furão e camelo) esta ocorre pouco depois de realizado o coito. Nestas espécies, o estímulo coital, favorecido pelas espículas localizadas no pênis do macho, determina por via eferente nervosa a liberação hipotalâmica de GnRH, que em poucos minutos depois provoca a secreção adeno-hepática de LH, que por via sistêmica alcança os folículos, desencadeando os processos fisiológicos que conduzem à ovulação. Tabela 1: Parâmetros que definem o ciclo sexual e tipo de ovulação de algumas espécies domésticas (adaptado e elaborado a partir de DUKES, et. al. 1996). Espécie Duração do ciclo estral Atividade sexual Tipo de ovulação E/I N° de ovócitos Duração do estro Momento da ovulação Vaca 21 dias Poliéstrica contínua E 1 18 horas 11 horas após o final do estro Ovelha 17 dias Poliéstrica estacional E 1-3 29 horas Ao final do estro Porca 21 dias Poliéstrica contínua E 11-24 45 horas 24-36 horas do começo do estro Égua 21 dias Poliéstrica estacional E 1 6 dias 24-48 horas antes do final do cio Cabra 20 dias Poliéstrica estacional E 1-3 40 horas 33 horas do começo do estro Cadela 9 dias Monoéstrica a cada 4-8 E — 7-9 dias 3-4 dias do começo do estro Gata 5 dias Poliéstrica estacional I 3-4 4 dias 27 horas postcoito Coelha 16 dias Poliéstrica I 4-12 Não definida 10 horas postcoito Dado que a vida fértil dos ovócitos, uma vez produzida a ovulação, raramente ultrapassa as 10-12 horas, é importante, sobretudo quando se realiza inseminação artificial ou monta dirigida, determinar, a partir da presença dos sintomas de cio, o período de tempo durante o qual a fertilização numa exploração específica será efetuada, evitando-se assim uma redução da fecundidade. 3.1 Ovulação simples e múltipla Em algumas ocasiões, dependendo da espécie (ver tab. 1), são vários os folículos que apresentam uma evolução completa, chegando a possuir nas células da granulosa receptores de LH, com o qual realiza-se a descarga ovulante de gonadotropinas e produz-se uma ovulação múltipla ou multiovulação, sendo, neste caso, libertados vários ovócitos férteis. No esquema abaixo, observa-se os processos de recrutamento, seleção e dominação da espécie ovina, a partir dos quais um ou vários folículos em crescimento chegam a ovular, bem como a influência das gonadotropinas FSH e LH em cada uma destas fases. Independentemente da influência genética, manifestada pelas diferenças entre espécies, raças e mesmo estirpes, os processos que determinam que entre um grupo de folículos em crescimento sejam um ou vários deles que cheguem a ovular englobam-se sob os termos de recrutamento, seleção e dominação folicular (fig. 1). Figura 1. Recrutamento, seleção e dominação folicular na espécie ovina e influência do FSH e LH nas fases. SILVA, 2019. O recrutamento é definido como a entrada em crescimento terminal de um grupo de folículos gonadodependentes, ou seja, que dentre os folículos em crescimento que existem no reservatório ovariano iniciarão seu crescimento terminal aqueles que possuem receptores à FSH (a partir do estágio primário já os possuem) e tenham igualmente atingido um tamanho determinado, que varia entre as diferentes espécies (2 mm Ø em ovelhas). Geralmente o número de folículos recrutados é duas ou três vezes superior ao número de folículos ovulados. O recrutamento no caso da ovelha ocorre três dias antes da ovulação sob a regressão do corpo lúteo e aumento de FSH. A seleção é caracterizada porque entre os folículos recrutados um ou vários folículos continuam a aumentar de tamanho, enquanto o resto se torna atrésico. No caso da ovelha, o tamanho do folículo no momento da seleção corresponde ao tamanho em que aparecem os receptores de LH sobre a granulosa (folículo terciário) ou quando, como se verá posteriormente, a aromatização de andrógenos em estrogênios é máxima. Por outro lado, a produção de inibina (hormônio gonodal não esteroide) é igualmente elevada. A interação destes dois fatores de retroalimentação (estrogénios e inibina) para a secreção de FSH provoca uma redução dos níveis desta hormona, facilitando a seleção: neste contexto, verificou-se que a injeção de FSH em ovinos bloqueia a seleção produzindo, com efeito, uma multiovulação. No caso da vaca, poderia existir um segundo mecanismo regulador: o folículo maior poderia secretar, em um momento da seleção, um composto de ação parácrina, diminuindo a resposta de outros folículos à ação dos níveis existentes de FSH. A dominância que produz os folículos selecionados está associada com a regressão ou atresia de outros folículos recrutados e com a inibição do recrutamento de novos folículos. Embora os níveis de FSH diminuam, os folículos dominantes persistem porque reduzem suas necessidades em FSH. Esta adaptação a meios mais pobres em FSH poderia explicar-se, entre outras causas, pela ampliação da resposta a esses níveis baixos em FSH graças à produção de IGFI (Insulin Like Growth Factor l), no caso da ovelha, pelo folículo dominante. O IGFI estimula a aromatização dos androgênios em estrogênios e, por sua vez, o estradiol estimula a produção de IGFI nas células granulosas, tornando-a ao mesmo tempo mais sensível ao IGFI. Este laço formado pelo estradiol e IGFI pode desempenhar um papel importante na produção do folículo dominante do estradiol. 4. MECANISMOS NEUROENDÓCRINOS QUE CONDUZEM À OVULAÇÃO A ovulação, propriamente dita, pode ser um bom ponto de partida para explicar os mecanismos neuroendócrinos que se sucedem para alcançar, no próximo ciclo estral, uma nova ovulação. Imediatamente após a ocorrência da ovulação, forma-se um coágulo de sangue no interior do folículo em consequência da hemorragia causada pela ruptura celular (folículo hemorrágico) e que servirá de substrato para o crescimento das células granulosas. Em seguida, as células da granulosa hipertrofiam e proliferam rapidamente, acumulando lipídios e pigmentos carotenoides (luteína) que lhe conferem uma cor amarelada (corpo lúteo). Esta estrutura formada, sob a ação do LH e também da prolactina, começa a produzir progesterona, a qual além de preparar o aparelho reprodutor para uma possível gestação inibe, a nível da hipófise, a secreção cíclica de LH, impedindo assim novas ovulações. À medida que os níveis de progesterona diminuem devido à regressão do corpo lúteo sob a ação da PGF2a (prostaglandina 2a), vários folículos começam seu crescimento sob a ação dos níveis de FSH (cada vez maiores), atingindo o seu crescimento final na fase folicular. Alcançado o estado de terciário, as células da teca interna do folículo, estimuladas pela secreção tônica do LH liberada pela hipófise em pequenas ondas (sem chegar a atingir a quantidade que provoca a ovulação), sintetizam a partir do colesterol, passando por alguns passos intermediários, testosterona, que é depois aromatizada a estradiol sob a ação do FSH pelas células da granulosa (fig. 2). A prolactina, juntamente com o FSH, também influencia o crescimento e a maturação dos folículos, bem como a produção de estrogênios. À medida que avança o crescimento e maturação dos folículos, a concentração de estradiol aumenta (os folículos que em um momento da evolução se tornam atrésicos aportam também uma quantidade importante de estradiol), sendo máxima nos momentos imediatos à ovulação (fig. 3). Este aumento, sustentado na taxa circulante de estrogênios, é a responsável pelo aparecimento do cio nas fêmeas, cujo final, geralmente, exerce um efeito feedback positivo sobre o eixo hipotálamo-hipofisário induzindo o pico pré-ovulatório de LH (e também FSH), que conduz a nova ovulação. Figura 2. Processo de aromatização dos andrógenos em estrógenos. (Adaptado e elaborado a partir de ILLERA, 1994). Figura 3. Crescimento prático folicular, e níveis de progesterona e 17 estradiol (a) e FSH e LH (b), durante o ciclo estral da ovelha. (Elaborado a partir de DURÁN DEL CAMPO, 1980). Nota importante: a ovulação em algumas espécies não é acompanhada do cio (ovulações silentes ou silenciosas), sobretudo nas primeiras ovulações da puberdade e após o anestro estacionário, devido a produção nula da estimulação prévia da progesterona. Embora citado anteriormente que o crescimento folicular começa no final da fase lútea no caso da vaca, a ovelha e a égua, a população de folículos ovulatórios se renova ao longo do ciclo estral, produzindo-se um crescimento e regressão dos folículos, denominado onda folicular. Nestas ondas, que também podem ocorrer durante o período pré-púbere, anestro estacionário e pós-parto, os folículos são receptores à descarga de LH, no entanto, a sua capacidade de produzir estradiol é muito limitada devido a uma deficiência de precursores em tecas ou a uma inadequação da aromatização dos androgênios em estrogênios, com o qual não se atinge a quantidade de estrogênios necessários para produzir a ativação nervosa necessária para a liberação cíclica de LH. Do ponto de vista prático, o conhecimento dos mecanismos neuroendócrinos que se sucedem durante o ciclo estral e que conduzem à ovulação, bem como a sua possível regulação mediante técnicas culturais ou tratamentos hormonais, é de vital importância quando o que se pretende é realizar um controle e sincronização tanto do cio quanto da ovulação. 5. ALTERAÇÕES MORFOLÓGICAS ASSOCIADAS À OVULAÇÃO Nos momentos prévios à ovulação, o folículo ovulatório experimenta uma série de mudanças morfológicas e histológicas regulamentadas endocrinamente e cuja finalidade será a modificação da estrutura do folículo, facilitando a liberação do ovócito fértil. Logo após a descarga pré-ovulatória, ocorre um aumento do fluxo sanguíneo associado a um acúmulo de sangue que dependerá, entre outros, da prostaglandina E2 (PGF2) secretada pelas células granulosas. A teca externa é edemaciada pela difusão do plasma sanguíneo e o volume do antro folicular aumenta pela atração de água exercida pelo ácido hialurônico secretado pelas células do cumulus sob a ação do FSH/LH. Este aumento de volume é facilitado pela dissociação dos feixes de fibras de colágeno da teca externa e da túnica albugínea sob a ação de duas enzimas: a colagenase e a plasmina. A plasmina age em primeiro lugar e aparece como resultado da produção de ativadores do plasminogênio pelas células da granulosa e do cumulus; sua atividade é máxima no ápice do folículo dissociando a matriz proteica dos feixes de fibras de colágeno e ativando o precursor da colagenase. Além disso, a atividade da colagenase é máxima no momento da ruptura do folículo. A maioria das células da granulosa que estão fixadas na lâmina basal se soltam, perdem sua união em colônia e deixam de se dividir (fig. 4). As ligações que as ligavam desaparecem, mas a sua dissociação não é completa devido, provavelmente, à produção local de inibidores da colagenase. As células do cumulus sofrem as mesmas transformações, mas a sua dissociação é total porque estas secretam ácido hialurônico. No entanto, as células que asseguraram, desde o início do crescimento folicular, a ligação entre a granulosa e o ovócito permanecem durante um período mais ou menos longo, ligadas à coroa radiada. Figura 4. Estado de um folículo pouco antes da ovulação. DRIANCOURT, et al. 1991. Pouco antes da ovulação, a lâmina basal desaparece de seu lugar, ocorre uma individualização dos vasos sanguíneos e as células da teca interna penetram no folículo. No ápice do folículo, produz-se uma deficiência na irrigação sanguínea e, portanto, de oxigênio, o que faz com que as células do epitélio ovariano morram. As hidrolases, que nesse momento são liberadas, contribuem para a destruição completa dos tecidos subjacentes. Em definitivo, é o conjunto de fatos comentado supra que conduzem à ruptura do ápice do folículo e provocam um aumento da pressão hidrostática que se traduz em uma contração do folículo expulsando o ovócito e as células da coroa radiada. 6. CONTROLE, SINCRONIZAÇÃO E INDUÇÃO DA OVULAÇÃO 6.1 Introdução O controle e a sincronização da ovulação se situa dentro de um contexto muito mais amplo como é o controle da reprodução, entendendo como tal o governo dos elementos manipuláveis do processo reprodutivo. No âmbito do controle da reprodução, existem muitos objetivos, entre os quais a indução da puberdade, a cobertura em época de anestro, aumento da prolificidade, entre outras. Além disso, o controle da reprodução é necessário para a utilização de determinadas técnicas, como a inseminação artificial ou a transferência de embriões. Com efeito, e consoante com o objetivo pretendido, poderão ser utilizadas diferentes técnicas e métodos, tais como os tratamentos hormonais, o efeito macho, a alimentação (Flushing) e os cruzamentos, tudo isso, por sua vez, empregado nos esquemas de seleção. Neste sentido e como passo prévio à sincronização e indução da ovulação, em muitas ocasiões se realiza também um controle e sincronização do cio. Este último, além de permitir que o criador regule o momento do estro e da cobrição, podendo em algumas espécies suprimir o anestro estacionário, permite que os animais se agrupem em lotes homogêneos e assim poder alimentá-los com as dietas adequadas segundo o estado de gestação, atender os partos e assim diminuir a mortalidade neonatal, programar os desmames e engordar os animais para, por fim, vender os animais por lotes. Na sincronização do cio o que se pretende é atuar sobre o intervalo entre a fase folicular e a fase luteica, modificando, portanto, a duração do ciclo estral (fig. 5). Figura 5. Representação dos métodos de sincronização do ciclo estral: (a) duração normal das fases luteica e folicular: (b) fase luteica cortada: (c) extensão da fase luteica. HUNTER, 1987. Para alcançar esse objetivo, os criadores podem adotar dois métodos: a) Induzindo a regressão do corpo lúteo de um grupo de animais de forma que todos eles iniciem a fase folicular e apresentem o cio num espaço de tempo bastante semelhante (injeções de prostaglandinas) (fig. 5b). b) Alargando artificialmente, através de um bloqueio hormonal, a fase luteica de tal modo que, ao cessar esse bloqueio e injetar-lhes gonadotropinas exógenas, os animais iniciem conjuntamente uma fase folicular seguida de um cio sincronizado (injeções de progesterona, implantes de progesterona ou progestágenos, esponjas vaginais impregnadas de progestágenos) (fig. 5c). 6.2 Objetivos e fundamentos Os tratamentos de controle e sincronização da ovulação têm por objetivo tentar regular, por um lado, o momento exato da ovulação, e por outro, o número de folículos que possam chegar a liberar ovócitos férteis, ao qual pode-se conseguir mediante a intervenção nos processos de recrutamento e seleção dos folículos. O primeiro objetivo permitirá que se realize a inseminação artificial no momento propício, evitando o envelhecimento dos ovócitos e que se possa calcular o momento da fertilização e a fase de desenvolvimento dos embriões (realização de transplantes). Por outro lado, o segundo objetivo ajudará a aumentar a fertilidade e a prolificidade em um rebanho e, no caso de fêmeas doadoras para a transferência de embriões, a relação: número de embriões/fêmea doadora. A indução da ovulação e/ou o aumento da taxa de ovulação pode ser conseguida aumentando os níveis de gonadotropinas no sangue antes do início da atresia folicular, ou seja, 3 a 5 dias antes da ovulação. Por outro lado, a taxa de ovulação pode também ser aumentada através da imunização contra esteroides, embora, por outro lado, permitam uma sincronização de cios. Além disso, o aumento dos níveis de gonadotropinas pode ser conseguido estimulando a sua secreção pelo próprio organismo do animal, por injeção de fatores de liberação hipotalâmicos que estimulem na hipófise a secreção de gonadotropinas, através do manejo dos reprodutores (efeito macho) e da alimentação (Flushing) ou por injeção das gonadotropinas no animal. 6.3 Imunização contra esteroides A imunização contra esteroides é uma técnica eficaz para aumentar a taxa de ovulação de animais que encontram-se em atividade sexual, ou seja, fora do anestro, uma vez que o seu mecanismo de ação baseia-se na alteração do controle endócrino da ovulação devido à ação dos anticorpos contra os esteroides ováricos, especialmente contra a androstenediona. Esta última regula a produção de uma proteína denominada «interleucina l», secretada pelos macrófagos do sistema imunitário e que inibe a diferenciação dos receptores à LH nos folículos, sem afetar a quantidade de sangue do FSH. Por isso, a teoria que tenta explicar o mecanismo de ação dos tratamentos de imunização é a seguinte: «O bloqueio dos esteroides pelos anticorpos do tratamento reduziria a produção de «interleucina l», permitindo assim que um maior número de folículos tivessem receptores à LH e pudessem ovular». Existem dois tipos de imunização: imunização ativa e imunização passiva. Na primeira, a metodologia consiste em tratar o animal com uma série de vacinas por via subcutânea ou intradérmica, pelo menos em duas ocasiões, até que a resposta imunitária atinja o nível desejado e ele próprio produza os anticorpos contra o antígeno (androstenediona) contido no conteúdo da vacina. Por outro lado, na imunização passiva o animal tratado recebe soro, por via intravenosa, de outro animal que foi imunizado (anticorpos policlonais), ou anticorpos monoclonais produzidos mediante técnicas imunológicas modernas. 6.4. Injeções de hormonas gonadotropinas As preparações hormonais de gonadotropinas injetadas num momento adequado do ciclo estral permitem, por um lado, aumentar o número de folículos em desenvolvimento (preparações ricas em atividade FSH) e, por outro lado, controlar e sincronizar o momento da ovulação (preparações ricas em atividade LH). Atualmente, os preparados hormonais à base de LH e FSH puros obtidos a partir de glândulas pituitárias em matadouros deixaram de ser utilizados, já que, além de não serem economicamente rentáveis, a sua conservação e utilização acarreta inúmeros problemas. a) A PMSG ou gonadotropina do soro de égua gestante com atividade predominante em FSH. Este hormônio, que permite aumentar o número de folículos em desenvolvimento, deve ser injetado (em doses variáveis segundo a espécie; tabela 2) no início da fase folicular, imediatamente após a regressão do corpo lúteo, quando as gonadotropinas endógenas do próprio animal estimulam o crescimento folicular. Para determinar esse exato momento, normalmente se realiza uma sincronização do cio. Tabela 2. Doses de aplicação do PMSG e do HCG (em unidades internacionais SI) para regular a quantidade e o momento da ovulação Espécie PMSG HCG Vaca 2000 - 3000 500 - 2500 Ovelha 500 - 800 250 - 500 Porca 750 - 1500 500 - 1000 Adaptado e elaborado a partir de HUNTER, 1987. b) A HCG ou gonadotropina coriónica humana com atividade predominante em LH. Pode ser obtida facilmente, já que se acumula na urina da mulher gestante, servindo sua detecção como teste para a determinação da gestação (teste da rã: origina a ejaculação na rã macho). Uma vez que com esta hormona se pretende controlar o momento da ovulação, a injeção deve ser feita por via intravenosa ou intramuscular, algumas horas antes do animal ter iniciado o estro e portanto a liberação das hormonas gonadotropinas. Pode-se conseguir mediante a injeção, com um intervalo conhecido e em doses adequadas (2), após estimulação com PMSG ou após sincronização do estro. 6.5 Limites das técnicas de controle, sincronização e indução à ovulação Os objetivos almejados durante o tratamento de sincronização e indução da ovulação, acima mencionados, não chegaram a ser alcançados em sua totalidade devido, principalmente, aos seguintes fatores: a) O hipotálamo mediante a liberação em forma de ondas ou pulsações cada um ou dois minutos de fatores liberadores (GnRH) estimula a hipófise para a secreção de hormônios gonadotropinas, o que na prática é muito difícil de se artificializar. b) Como resultado das injeções de hormonas gonadotropas produz-se um feedback dos esteroides gonodais, o qual interfere na secreção de hormonas endógenas e na precisão da resposta. c) As preparações hormonais de natureza proteica provocam a formação de anticorpos no animal, pelo qual a relação dose-resposta não é exata. d) Uma vez que os níveis de resposta tenham sido atingidos, a administração de doses excessivas de gonadotropinas produz uma redução do número de ovulações e interfere nos mecanismos ovulatórios. 7. RESUMO E PRIMEIRAS CONCLUSÕES A ovulação marca o culminar de uma série de alterações morfológicas, fisiológicas e endócrinas que se sucedem no aparelho reprodutor feminino e mais concretamente no ovário e nos folículos ováricos e cujo objetivo é a liberação, após a descarga ovulante de LH, de um ou mais ovócitos férteis, de acordo com as espécies. Da mesma forma, a ovulação se caracteriza pela retomada da meiose e a liberação do primeiro corpúsculo polar, bem como a iniciação da luteinização das células da granulosa e a reestruturação da parede do folículo. Isto ocorre tanto em espécies de ovulação espontânea como induzida. Todas estas alterações são condicionadas pela variação da concentração sanguínea das hormonas gonadotropinas devido ao feedback positivo ou negativo que os esteroides ováricos exercem sobre o hipotálamo em cada uma das fases do ciclo estral. Por este motivo, se num momento preciso do ciclo estral estimula-se a secreção, por parte da hipófise, de hormonas gonadotropinas mediante a injeção de fatores de liberação hipotalâmicos (GnRH) ou a aplicação de algumas técnicas de manejo (efeito macho e Flushing) ou mediante a incrementação da sua concentração no sangue através de injeções de preparações hormonais, será obtido um controle, sincronização e indução da ovulação. Os diferentes tratamentos de sincronização e indução da ovulação, embora apresentem algumas limitações, permitem regular o momento da ovulação e o número de folículos que chegarão a ovular, alcançando em alguns casos uma superovulação, objetivo pretendido na técnica de transplante de embriões. 8. REFERÊNCIAS BIBLIOGRÁFICAS BARUSELLI, Pietro Sampaio; GIMENES, Lindsay Unno; SALES, José Nélio de Sousa. Fisiologia reprodutiva de fêmeas taurinas e zebuínas. Revista Brasileira de Reprodução Animal, v. 31, n. 2, p. 205-211, 2007. BINELLI, Mario; IBIAPINA, Bruna Trentinaro; BISINOTTO, Rafael Siscôneto. Bases fisiológicas, farmacológicas e endócrinas dos tratamentos de sincronização do crescimento folicular e da ovulação. Acta Scientiae Veterinariae, v. 34, n. Supl 1, p. 1-7, 2006.p BRACKETT, B. G.; JÚNIOR, G. E. A.; SEIDEL, S. M. Avances en zootecnia. Nuevas técnicas de reproducción animal. 1ª ed. Zaragoza: Editorial Acribia, 1988. COLE, H. H.; CUPPS, P. T. Reproduction in domestic animals. 1ª ed. Londres: Academic Press, 1977. CORTEZ, A. A.; TONIOLLI, R. Aspectos fisiológicos e hormonais da foliculogênese e ovulação em suínos. Revista Brasileira de Reprodução Animal, v. 36, p. 163-173, 2012. CUNNINGHAM, James. Tratado de fisiologia veterinária. Elsevier Health Sciences, 2011. DA SILVA, Emanuel Isaque Cordeiro. Características Gerais dos Bovinos/General Characteristics of Cattle Bovine. Disponível em: philpeople. Acesso em: Fevereiro de 2020. DERUSSI, A. A. P.; LOPES, M. D. Fisiologia da ovulação, da fertilização e do desenvolvimento embrionário inicial na cadela. Revista Brasileira de Reprodução Animal, v. 33, n. 4, p. 231-237, 2009. DRIANCOURT, M. A. et al. The ovarian function. Paris: INRA, 1991. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Rio de Janeiro: Guanabara Koogan, 1996. DURÁN DEL CAMPO, A. Anatomia, fisiologia de la reproduccion e inseminación artificial en ovinos. Montevideo, Editorial Hemisferio Sur, 1980. 245p. HAFEZ, E. S. E.; HAFEZ, B. Reprodução animal. São Paulo: Manole, 2004. HUNTER, R. H. F. Reproducción de los animales de granja. Zaragoza: Acribia, 1987. ILLERA, M. Endocrinología Veterinaria y Fisiología de la Reproducción. Zaragoza: Fareso, 1994. MARTIN, Ian; FERREIRA, João Carlos Pinheiro. Fisiologia da ovulação e da formação do corpo lúteo bovino. Veterinária e Zootecnia, v. 16, n. 2, p. 270-279, 2009. RASWEILER IV, John J.; BADWAIK, Nilima K. Anatomy and physiology of the female reproductive tract. In: Reproductive biology of bats. Academic Press, 2000. p. 157-219.

Author's Profile

Emanuel Isaque Cordeiro da Silva
Universidade Federal Rural de Pernambuco - UFRPE

Analytics

Added to PP
2020-03-03

Downloads
3,470 (#2,253)

6 months
410 (#3,039)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?