A Decision Procedure for Herbrand Formulas without Skolemization

Abstract

This paper describes a decision procedure for disjunctions of conjunctions of anti-prenex normal forms of pure first-order logic (FOLDNFs) that do not contain V within the scope of quantifiers. The disjuncts of these FOLDNFs are equivalent to prenex normal forms whose quantifier-free parts are conjunctions of atomic and negated atomic formulae (= Herbrand formulae). In contrast to the usual algorithms for Herbrand formulae, neither skolemization nor unification algorithms with function symbols are applied. Instead, a procedure is described that rests on nothing but equivalence transformations within pure first-order logic (FOL). This procedure involves the application of a calculus for negative normal forms (the NNF-calculus) with A -||- A & A (= &I) as the sole rule that increases the complexity of given FOLDNFs. The described algorithm illustrates how, in the case of Herbrand formulae, decision problems can be solved through a systematic search for proofs that reduce the number of applications of the rule &I to a minimum in the NNF-calculus. In the case of Herbrand formulae, it is even possible to entirely abstain from applying &I. Finally, it is shown how the described procedure can be used within an optimized general search for proofs of contradiction and what kind of questions arise for a &I-minimal proof strategy in the case of a general search for proofs of contradiction.

Author's Profile

Timm Lampert
Humboldt-University, Berlin

Analytics

Added to PP
2017-09-08

Downloads
226 (#60,953)

6 months
55 (#67,202)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?