Switch to: Citations

Add references

You must login to add references.
  1. (3 other versions)Fragments of $HA$ based on $\Sigma_1$ -induction.Kai F. Wehmeier - 1997 - Archive for Mathematical Logic 37 (1):37-49.
    In the first part of this paper we investigate the intuitionistic version $iI\!\Sigma_1$ of $I\!\Sigma_1$ (in the language of $PRA$ ), using Kleene's recursive realizability techniques. Our treatment closely parallels the usual one for $HA$ and establishes a number of nice properties for $iI\!\Sigma_1$ , e.g. existence of primitive recursive choice functions (this is established by different means also in [D94]). We then sharpen an unpublished theorem of Visser's to the effect that quantifier alternation alone is much less powerful intuitionistically (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Fragments of HA Based on Σ 1 -Induction.Kai F. Wehmeier - 2001 - Bulletin of Symbolic Logic 7 (4):532-532.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Some results on cut-elimination, provable well-orderings, induction and reflection.Toshiyasu Arai - 1998 - Annals of Pure and Applied Logic 95 (1-3):93-184.
    We gather the following miscellaneous results in proof theory from the attic.1. 1. A provably well-founded elementary ordering admits an elementary order preserving map.2. 2. A simple proof of an elementary bound for cut elimination in propositional calculus and its applications to separation problem in relativized bounded arithmetic below S21.3. 3. Equivalents for Bar Induction, e.g., reflection schema for ω logic.4. 4. Direct computations in an equational calculus PRE and a decidability problem for provable inequations in PRE.5. 5. Intuitionistic fixed (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (1 other version)An intuitionistic fixed point theory.Wilfried Buchholz - 1997 - Archive for Mathematical Logic 37 (1):21-27.
    In this article we prove that a certain intuitionistic version of the well-known fixed point theory \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\widehat{\rm ID}_1$\end{document} is conservative over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $\mbox{\sf HA}$\end{document} for almost negative formulas.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Relativized realizability in intuitionistic arithmetic of all finite types.Nicolas D. Goodman - 1978 - Journal of Symbolic Logic 43 (1):23-44.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (3 other versions)Fragments of HA based on b-induction.Kai F. Wehmeier - 1998 - Archive for Mathematical Logic 37 (1):37-50.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Intuitionistic Fixed Point Theories for Strictly Positive Operators.Christian Rüede & Thomas Strahm - 2002 - Mathematical Logic Quarterly 48 (2):195-202.
    In this paper it is shown that the intuitionistic .xed point theory equation image for α times iterated fixed points of strictly positive operator forms is conservative for negative arithmetic and equation image sentences over the theory equation image for α times iterated arithmetic comprehension without set parameters.This generalizes results previously due to Buchholz [5] and Arai [2].
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Fragments of Heyting arithmetic.Wolfgang Burr - 2000 - Journal of Symbolic Logic 65 (3):1223-1240.
    We define classes Φnof formulae of first-order arithmetic with the following properties:(i) Everyφϵ Φnis classically equivalent to a Πn-formula (n≠ 1, Φ1:= Σ1).(ii)(iii)IΠnandiΦn(i.e., Heyting arithmetic with induction schema restricted to Φn-formulae) prove the same Π2-formulae.We further generalize a result by Visser and Wehmeier. namely that prenex induction within intuitionistic arithmetic is rather weak: After closing Φnboth under existential and universal quantification (we call these classes Θn) the corresponding theoriesiΘnstill prove the same Π2-formulae. In a second part we consideriΔ0plus collection-principles. We (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations