Switch to: Citations

Add references

You must login to add references.
  1. How probable is an infinite sequence of heads?Timothy Williamson - 2007 - Analysis 67 (3):173-180.
    Isn't probability 1 certainty? If the probability is objective, so is the certainty: whatever has chance 1 of occurring is certain to occur. Equivalently, whatever has chance 0 of occurring is certain not to occur. If the probability is subjective, so is the certainty: if you give credence 1 to an event, you are certain that it will occur. Equivalently, if you give credence 0 to an event, you are certain that it will not occur. And so on for other (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Toward a Clarity of the Extreme Value Theorem.Karin U. Katz, Mikhail G. Katz & Taras Kudryk - 2014 - Logica Universalis 8 (2):193-214.
    We apply a framework developed by C. S. Peirce to analyze the concept of clarity, so as to examine a pair of rival mathematical approaches to a typical result in analysis. Namely, we compare an intuitionist and an infinitesimal approaches to the extreme value theorem. We argue that a given pre-mathematical phenomenon may have several aspects that are not necessarily captured by a single formalisation, pointing to a complementarity rather than a rivalry of the approaches.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Non-Archimedean Probability.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2013 - Milan Journal of Mathematics 81 (1):121-151.
    We propose an alternative approach to probability theory closely related to the framework of numerosity theory: non-Archimedean probability (NAP). In our approach, unlike in classical probability theory, all subsets of an infinite sample space are measurable and only the empty set gets assigned probability zero (in other words: the probability functions are regular). We use a non-Archimedean field as the range of the probability function. As a result, the property of countable additivity in Kolmogorov’s axiomatization of probability is replaced by (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • A subjectivist’s guide to objective chance.David K. Lewis - 2010 - In Antony Eagle (ed.), Philosophy of Probability: Contemporary Readings. New York: Routledge. pp. 263-293.
    Download  
     
    Export citation  
     
    Bookmark   603 citations  
  • A definable nonstandard model of the reals.Vladimir Kanovei & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (1):159-164.
    We prove, in ZFC,the existence of a definable, countably saturated elementary extension of the reals.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Realism and the underdetermination of theory.F. John Clendinnen - 1989 - Synthese 81 (1):63 - 90.
    The main theme is that theorizing serves empirical prediction. This is used as the core of a counter to contemporary anti-realist arguments. Different versions of the thesis that data underdetermines theory are identified and it is shown that none which are acceptable differentiates between theory selection and prediction. Criteria sufficient for the former are included amongst those necessary for the latter; and obviously go beyond mere compatibility with data.Special attention is given to causal process theories. It is argued that the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.
    Download  
     
    Export citation  
     
    Bookmark   588 citations  
  • Applied Nonstandard Analysis.Martin Davis - 1978 - Journal of Symbolic Logic 43 (2):383-384.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Infinite Lotteries, Spinners, Applicability of Hyperreals†.Emanuele Bottazzi & Mikhail G. Katz - 2021 - Philosophia Mathematica 29 (1):88-109.
    We analyze recent criticisms of the use of hyperreal probabilities as expressed by Pruss, Easwaran, Parker, and Williamson. We show that the alleged arbitrariness of hyperreal fields can be avoided by working in the Kanovei–Shelah model or in saturated models. We argue that some of the objections to hyperreal probabilities arise from hidden biases that favor Archimedean models. We discuss the advantage of the hyperreals over transferless fields with infinitesimals. In Paper II we analyze two underdetermination theorems by Pruss and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Model Theory.C. C. Chang & H. Jerome Keisler - 1992 - Studia Logica 51 (1):154-155.
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • Non-standard Analysis.Gert Heinz Müller - 2016 - Princeton University Press.
    Considered by many to be Abraham Robinson's magnum opus, this book offers an explanation of the development and applications of non-standard analysis by the mathematician who founded the subject. Non-standard analysis grew out of Robinson's attempt to resolve the contradictions posed by infinitesimals within calculus. He introduced this new subject in a seminar at Princeton in 1960, and it remains as controversial today as it was then. This paperback reprint of the 1974 revised edition is indispensable reading for anyone interested (...)
    Download  
     
    Export citation  
     
    Bookmark   172 citations  
  • Infinitesimals as an issue of neo-Kantian philosophy of science.Thomas Mormann & Mikhail Katz - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science (2):236-280.
    We seek to elucidate the philosophical context in which one of the most important conceptual transformations of modern mathematics took place, namely the so-called revolution in rigor in infinitesimal calculus and mathematical analysis. Some of the protagonists of the said revolution were Cauchy, Cantor, Dedekind,and Weierstrass. The dominant current of philosophy in Germany at the time was neo-Kantianism. Among its various currents, the Marburg school (Cohen, Natorp, Cassirer, and others) was the one most interested in matters scientific and mathematical. Our (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.
    Many historians of the calculus deny significant continuity between infinitesimal calculus of the seventeenth century and twentieth century developments such as Robinson’s theory. Robinson’s hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Infinitesimal chances and the laws of nature.Adam Elga - 2004 - Australasian Journal of Philosophy 82 (1):67 – 76.
    The 'best-system' analysis of lawhood [Lewis 1994] faces the 'zero-fit problem': that many systems of laws say that the chance of history going actually as it goes--the degree to which the theory 'fits' the actual course of history--is zero. Neither an appeal to infinitesimal probabilities nor a patch using standard measure theory avoids the difficulty. But there is a way to avoid it: replace the notion of 'fit' with the notion of a world being typical with respect to a theory.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Internal laws of probability, generalized likelihoods and Lewis' infinitesimal chances–a response to Adam Elga.Frederik Herzberg - 2007 - British Journal for the Philosophy of Science 58 (1):25-43.
    The rejection of an infinitesimal solution to the zero-fit problem by A. Elga ([2004]) does not seem to appreciate the opportunities provided by the use of internal finitely-additive probability measures. Indeed, internal laws of probability can be used to find a satisfactory infinitesimal answer to many zero-fit problems, not only to the one suggested by Elga, but also to the Markov chain (that is, discrete and memory-less) models of reality. Moreover, the generalization of likelihoods that Elga has in mind is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Model Theory.Michael Makkai, C. C. Chang & H. J. Keisler - 1991 - Journal of Symbolic Logic 56 (3):1096.
    Download  
     
    Export citation  
     
    Bookmark   410 citations  
  • Nonarchimedean Fields and Asymptotic Expansions.A. H. Lightstone & Abraham Robinson - 1981 - Journal of Symbolic Logic 46 (1):163-164.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Equivocation in the Foundations of Leibniz's Infinitesimal Fictions.Tzuchien Tho - 2012 - Society and Politics (2):63-87.
    In this article, I address two different kinds of equivocations in reading Leibniz’s fictional infinite and infinitesimal. These equivocations form the background of a reductive reading of infinite and infinitesimal fictions either as ultimately finite or as something whose status can be taken together with any other mathematical object as such. The first equivocation is the association of a foundation of infinitesimals with their ontological status. I analyze this equivocation by criticizing the logicist influence on 20th century Anglophone reception of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.
    Cauchy’s contribution to the foundations of analysis is often viewed through the lens of developments that occurred some decades later, namely the formalisation of analysis on the basis of the epsilon-delta doctrine in the context of an Archimedean continuum. What does one see if one refrains from viewing Cauchy as if he had read Weierstrass already? One sees, with Felix Klein, a parallel thread for the development of analysis, in the context of an infinitesimal-enriched continuum. One sees, with Emile Borel, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Underdetermination of infinitesimal probabilities.Alexander R. Pruss - 2018 - Synthese 198 (1):777-799.
    A number of philosophers have attempted to solve the problem of null-probability possible events in Bayesian epistemology by proposing that there are infinitesimal probabilities. Hájek and Easwaran have argued that because there is no way to specify a particular hyperreal extension of the real numbers, solutions to the regularity problem involving infinitesimals, or at least hyperreal infinitesimals, involve an unsatisfactory ineffability or arbitrariness. The arguments depend on the alleged impossibility of picking out a particular hyperreal extension of the real numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals.Alexandre Borovik, Renling Jin & Mikhail G. Katz - 2012 - Notre Dame Journal of Formal Logic 53 (4):557-570.
    A construction of the real number system based on almost homomorphisms of the integers $\mathbb {Z}$ was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limit ultrapower construction to construct the hyperreals out of integers. In fact, any hyperreal field, whose universe is a set, can be obtained by such a one-step construction directly out of integers. Even the maximal (i.e., On -saturated) hyperreal number system described by Kanovei and Reeken (2004) and independently (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The absolute arithmetic continuum and the unification of all numbers great and small.Philip Ehrlich - 2012 - Bulletin of Symbolic Logic 18 (1):1-45.
    In his monograph On Numbers and Games, J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many less familiar numbers including $-\omega, \,\omega/2, \,1/\omega, \sqrt{\omega}$ and $\omega-\pi$ to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered fields—be individually definable in terms of sets of NBG, it may be said to contain (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.
    One of the most influential scientific treatises in Cauchy's era was J.-L. Lagrange's Mécanique Analytique, the second edition of which came out in 1811, when Cauchy was barely out of his teens. Lagrange opens his treatise with an unequivocal endorsement of infinitesimals. Referring to the system of infinitesimal calculus, Lagrange writes:Lorsqu'on a bien conçu l'esprit de ce système, et qu'on s'est convaincu de l'exactitude de ses résultats par la méthode géométrique des premières et dernières raisons, ou par la méthode analytique (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Nonstandard Methods in Stochastic Analysis and Mathemetical Physics.Sergio Albeverio & Jens Erik Fenstad - 1986 - Journal of Symbolic Logic 55 (1):362-363.
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Galileo’s quanti: understanding infinitesimal magnitudes.Tiziana Bascelli - 2014 - Archive for History of Exact Sciences 68 (2):121-136.
    In On Local Motion in the Two New Sciences, Galileo distinguishes between ‘time’ and ‘quanto time’ to justify why a variation in speed has the same properties as an interval of time. In this essay, I trace the occurrences of the word quanto to define its role and specific meaning. The analysis shows that quanto is essential to Galileo’s mathematical study of infinitesimal quantities and that it is technically defined. In the light of this interpretation of the word quanto, Evangelista (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Review: H. Jerome Keisler, Model Theory. [REVIEW]C. C. Chang - 1973 - Journal of Symbolic Logic 38 (4):648-648.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond.Mikhail G. Katz, David M. Schaps & Steven Shnider - 2013 - Perspectives on Science 21 (3):283-324.
    Adequality, or παρισóτης (parisotēs) in the original Greek of Diophantus 1 , is a crucial step in Fermat’s method of finding maxima, minima, tangents, and solving other problems that a modern mathematician would solve using infinitesimal calculus. The method is presented in a series of short articles in Fermat’s collected works (1891, pp. 133–172). The first article, Methodus ad Disquirendam Maximam et Minimam 2 , opens with a summary of an algorithm for finding the maximum or minimum value of an (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The mysteries of adaequare: A vindication of fermat.Herbert Breger - 1994 - Archive for History of Exact Sciences 46 (3):193-219.
    The commonly accepted interpretations ofFermat's method of extreme values tell us that this is a curious method, based on an approximate equality and burdened with several contradictions withinFermat's writings. In this article, both a philological approach taking into account that there is only one manuscript written inFermat's own handwriting and a mathematical approach taking into account that brilliant mathematicians usually are not so very confused when talking about their own central mathematical ideas are combined. A new hypothesis is put forward (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations