Switch to: Citations

References in:

Many Worlds, the Born Rule, and Self-Locating Uncertainty

In Daniele C. Struppa & Jeffrey M. Tollaksen (eds.), Quantum Theory: A Two-Time Success Story. Springer. pp. 157-169 (2014)

Add references

You must login to add references.
  1. Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but we (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Sleeping beauty and the dynamics of de se beliefs.Christopher J. G. Meacham - 2008 - Philosophical Studies 138 (2):245-269.
    This paper examines three accounts of the sleeping beauty case: an account proposed by Adam Elga, an account proposed by David Lewis, and a third account defended in this paper. It provides two reasons for preferring the third account. First, this account does a good job of capturing the temporal continuity of our beliefs, while the accounts favored by Elga and Lewis do not. Second, Elga’s and Lewis’ treatments of the sleeping beauty case lead to highly counterintuitive consequences. The proposed (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Attitudes de dicto and de se.David Lewis - 1979 - Philosophical Review 88 (4):513-543.
    I hear the patter of little feet around the house, I expect Bruce. What I expect is a cat, a particular cat. If I heard such a patter in another house, I might expect a cat but no particular cat. What I expect then seems to be a Meinongian incomplete cat. I expect winter, expect stormy weather, expect to shovel snow, expect fatigue---a season, a phenomenon, an activity, a state. I expect that someday mankind will inhabit at least five planets. (...)
    Download  
     
    Export citation  
     
    Bookmark   818 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Defeating dr. evil with self-locating belief.Adam Elga - 2004 - Philosophy and Phenomenological Research 69 (2):383–396.
    Dr. Evil learns that a duplicate of Dr. Evil has been created. Upon learning this, how seriously should he take the hypothesis that he himself is that duplicate? I answer: very seriously. I defend a principle of indifference for self-locating belief which entails that after Dr. Evil learns that a duplicate has been created, he ought to have exactly the same degree of belief that he is Dr. Evil as that he is the duplicate. More generally, the principle shows that (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • The Emergent Multiverse: Quantum Theory According to the Everett Interpretation.David Wallace - 2012 - Oxford, GB: Oxford University Press.
    David Wallace argues that we should take quantum theory seriously as an account of what the world is like--which means accepting the idea that the universe is constantly branching into new universes. He presents an accessible but rigorous account of the 'Everett interpretation', the best way to make coherent sense of quantum physics.
    Download  
     
    Export citation  
     
    Bookmark   262 citations  
  • Quantum Theory of Probability and Decisions.David Deutsch - 1999 - Proceedings of the Royal Society of London:3129--37.
    Download  
     
    Export citation  
     
    Bookmark   141 citations  
  • Born's rule is insufficient in a large universe.Don N. Page - unknown
    Probabilities in quantum theory are traditionally given by Born’s rule as the expectation values of projection operators. Here it is shown that Born’s rule is insufficient in universes so large that they contain identical multiple copies of observers, because one does not have definite projection operators to apply. Possible replacements for Born’s rule include using the expectation value of various operators that are not projection operators, or using vari-.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Born again.Don N. Page - unknown
    A simple proof is given that the probabilities of observations in a large universe are not given directly by Born’s rule as the expectation values of projection operators in a global quantum state of the entire universe. An alternative procedure is proposed for constructing an averaged density matrix for a random small region of the universe and then calculating observational probabilities indirectly by Born’s rule as conditional probabilities, conditioned upon the existence of an observation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The born rule dies.Don N. Page - unknown
    The Born rule may be stated mathematically as the rule that probabilities in quantum theory are expectation values of a complete orthogonal set of projection operators. This rule works for single laboratory settings in which the observer can distinguish all the different possible outcomes corresponding to the projection operators. However, theories of inflation suggest that the universe may be so large that any laboratory, no matter how precisely it is defined by its internal state, may exist in a large number (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Decoherence and Ontology, or: How I Learned To Stop Worrying And Love FAPP.David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford, U.K.: Oxford University Press.
    I make the case that the Universe according to unitary quantum theory has a branching structure, and so can literally be regarded as a "many-worlds" theory. These worlds are not part of the _fundamental_ ontology of quantum theory - instead, they are to be understood as structures, or patterns, emergent from the underlying theory, through the dynamical process of decoherence. That they are structures in this sense does not mean that they are in any way unreal: indeed, pretty much all (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • On Being a Random Sample.David Manley - manuscript
    It is well known that de se (or ‘self-locating’) propositions complicate the standard picture of how we should respond to evidence. This has given rise to a substantial literature centered around puzzles like Sleeping Beauty, Dr. Evil, and Doomsday—and it has also sparked controversy over a style of argument that has recently been adopted by theoretical cosmologists. These discussions often dwell on intuitions about a single kind of case, but it’s worth seeking a rule that can unify our treatment of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Decoherence and Ontology (or: How I learned to stop worrying and love FAPP).David Wallace - 2010 - In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press. pp. 53--72.
    NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from Earth.1 We have never been there, and (although I would love to be wrong about this) we will never go there; all we will ever know about NGC 1300 is what we can see of it from sixty-five million light years away, and what we can infer from our best physics. Fortunately, “what we can infer from our best physics” is actually quite a lot. To (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • How to prove the Born rule.David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Probability in the Many-Worlds Interpretation of Quantum Mechanics.Lev Vaidman - 2011 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 299--311.
    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no ``probability'' for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: a). A ``sleeping pill'' gedanken experiment which makes correspondence between an illegitimate question: ``What is the probability of an outcome of a quantum measurement?'' with a legitimate question: ``What is the probability that ``I'' am in the world corresponding to that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • ”Relative state’ formulation of quantum mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454--462.
    Download  
     
    Export citation  
     
    Bookmark   292 citations  
  • 'Relative State' Formulation of Quantum Mechanics.Hugh Everett - 1957 - Reviews of Modern Physics 29 (3):454-462.
    Download  
     
    Export citation  
     
    Bookmark   256 citations