Switch to: Citations

Add references

You must login to add references.
  1. Mathias–Prikry and Laver–Prikry type forcing.Michael Hrušák & Hiroaki Minami - 2014 - Annals of Pure and Applied Logic 165 (3):880-894.
    We study the Mathias–Prikry and Laver–Prikry forcings associated with filters on ω. We give a combinatorial characterization of Martinʼs number for these forcing notions and present a general scheme for analyzing preservation properties for them. In particular, we give a combinatorial characterization of those filters for which the Mathias–Prikry forcing does not add a dominating real.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Continuum-many Boolean algebras of the form.Michael Oliver - 2004 - Journal of Symbolic Logic 69 (3):799-816.
    We examine the question of how many Boolean algebras, distinct up to isomorphism, that are quotients of the powerset of the naturals by Borel ideals, can be proved to exist in ZFC alone. The maximum possible value is easily seen to be the cardinality of the continuum 2ℵ0; earlier work by Ilijas Farah had shown that this was the value in models of Martin’s Maximum or some similar forcing axiom, but it was open whether there could be fewer in models (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Continuum-Many Boolean Algebras of the Form [image] Borel.Michael Ray Oliver - 2004 - Journal of Symbolic Logic 69 (3):799 - 816.
    We examine the question of how many Boolean algebras, distinct up to isomorphism, that are quotients of the powerset of the naturals by Borel ideals, can be proved to exist in ZFC alone. The maximum possible value is easily seen to be the cardinality of the continuum $2^{\aleph_{0}}$ ; earlier work by Ilijas Farah had shown that this was the value in models of Martin's Maximum or some similar forcing axiom, but it was open whether there could be fewer in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Happy families.A. R. D. Mathias - 1977 - Annals of Mathematical Logic 12 (1):59.
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Countable Fréchet Boolean groups: An independence result.Jörg Brendle & Michael Hrušák - 2009 - Journal of Symbolic Logic 74 (3):1061-1068.
    It is relatively consistent with ZFC that every countable $FU_{fin} $ space of weight N₁ is metrizable. This provides a partial answer to a question of G. Gruenhage and P. Szeptycki [GS1].
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Mathias forcing and combinatorial covering properties of filters.David Chodounský, Dušan Repovš & Lyubomyr Zdomskyy - 2015 - Journal of Symbolic Logic 80 (4):1398-1410.
    We give topological characterizations of filters${\cal F}$onωsuch that the Mathias forcing${M_{\cal F}}$adds no dominating reals or preserves ground model unbounded families. This allows us to answer some questions of Brendle, Guzmán, Hrušák, Martínez, Minami, and Tsaban.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Combinatorics on ideals and forcing with trees.Marcia J. Groszek - 1987 - Journal of Symbolic Logic 52 (3):582-593.
    Classes of forcings which add a real by forcing with branching conditions are examined, and conditions are found which guarantee that the generic real is of minimal degree over the ground model. An application is made to almost-disjoint coding via a real of minimal degree.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Forcing with quotients.Michael Hrušák & Jindřich Zapletal - 2008 - Archive for Mathematical Logic 47 (7-8):719-739.
    We study an extensive connection between quotient forcings of Borel subsets of Polish spaces modulo a σ-ideal and quotient forcings of subsets of countable sets modulo an ideal.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Bounding, splitting, and almost disjointness.Jörg Brendle & Dilip Raghavan - 2014 - Annals of Pure and Applied Logic 165 (2):631-651.
    We investigate some aspects of bounding, splitting, and almost disjointness. In particular, we investigate the relationship between the bounding number, the closed almost disjointness number, the splitting number, and the existence of certain kinds of splitting families.
    Download  
     
    Export citation  
     
    Bookmark   6 citations