Switch to: Citations

Add references

You must login to add references.
  1. Rational analysis, intractability, and the prospects of ‘as if’-explanations.Iris van Rooij, Johan Kwisthout, Todd Wareham & Cory Wright - 2018 - Synthese 195 (2):491-510.
    Despite their success in describing and predicting cognitive behavior, the plausibility of so-called ‘rational explanations’ is often contested on the grounds of computational intractability. Several cognitive scientists have argued that such intractability is an orthogonal pseudoproblem, however, since rational explanations account for the ‘why’ of cognition but are agnostic about the ‘how’. Their central premise is that humans do not actually perform the rational calculations posited by their models, but only act as if they do. Whether or not the problem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • No entailing laws, but enablement in the evolution of the biosphere.G. Longo, M. Montévil & S. Kauffman - 2012 - In G. Longo, M. Montévil & S. Kauffman (eds.), Genetic and Evolutionary Computation Conference. Acm. pp. 1379 -1392.
    Biological evolution is a complex blend of ever changing structural stability, variability and emergence of new phe- notypes, niches, ecosystems. We wish to argue that the evo- lution of life marks the end of a physics world view of law entailed dynamics. Our considerations depend upon dis- cussing the variability of the very ”contexts of life”: the in- teractions between organisms, biological niches and ecosys- tems. These are ever changing, intrinsically indeterminate and even unprestatable: we do not know ahead of (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.Judea Pearl - 1988 - Morgan Kaufmann.
    The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.
    Download  
     
    Export citation  
     
    Bookmark   413 citations  
  • Perspectives On Organisms: Biological Time, Symmetries And Singularities.Maël Montévil & Giuseppe Longo - 2014 - Springer.
    This authored monograph introduces a genuinely theoretical approach to biology. Starting point is the investigation of empirical biological scaling including their variability, which is found in the literature, e.g. allometric relationships, fractals, etc. The book then analyzes two different aspects of biological time: first, a supplementary temporal dimension to accommodate proper biological rhythms; secondly, the concepts of protension and retention as a means of local organization of time in living organisms. Moreover, the book investigates the role of symmetry in biology, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The New Mechanical Philosophy.Stuart Glennan - 2017 - Oxford: Oxford University Press.
    This volume argues for a new image of science that understands both natural and social phenomena to be the product of mechanisms, casting the work of science as an effort to understand those mechanisms. Glennan offers an account of the nature of mechanisms and of the models used to represent them in physical, life, and social sciences.
    Download  
     
    Export citation  
     
    Bookmark   123 citations  
  • Idealization and the Aims of Science.Angela Potochnik - 2017 - Chicago: University of Chicago Press.
    Science is the study of our world, as it is in its messy reality. Nonetheless, science requires idealization to function—if we are to attempt to understand the world, we have to find ways to reduce its complexity. Idealization and the Aims of Science shows just how crucial idealization is to science and why it matters. Beginning with the acknowledgment of our status as limited human agents trying to make sense of an exceedingly complex world, Angela Potochnik moves on to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   138 citations  
  • What is Life?: With Mind and Matter and Autobiographical Sketches.Roger Schrodinger, Erwin Schrödinger & Erwin Schr Dinger - 1992 - Cambridge University Press.
    Nobel laureate Erwin Schrödinger's What is Life?, one of the great science classics of the twentieth century appears here together with Mind and Matter.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • What is Life?A. Cornelius Benjamin - 1948 - Philosophy and Phenomenological Research 8 (3):481-483.
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • Bluff Your Way in the Second Law of Thermodynamics.Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (3):305-394.
    The aim of this article is to analyse the relation between the second law of thermodynamics and the so-called arrow of time. For this purpose, a number of different aspects in this arrow of time are distinguished, in particular those of time-reversal (non-)invariance and of (ir)reversibility. Next I review versions of the second law in the work of Carnot, Clausius, Kelvin, Planck, Gibbs, Caratheodory and Lieb and Yngvason, and investigate their connection with these aspects of the arrow of time. It (...)
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • Moving Beyond Causes: Optimality Models and Scientific Explanation.Collin Rice - 2013 - Noûs 49 (3):589-615.
    A prominent approach to scientific explanation and modeling claims that for a model to provide an explanation it must accurately represent at least some of the actual causes in the event's causal history. In this paper, I argue that many optimality explanations present a serious challenge to this causal approach. I contend that many optimality models provide highly idealized equilibrium explanations that do not accurately represent the causes of their target system. Furthermore, in many contexts, it is in virtue of (...)
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Integrating psychology and neuroscience: functional analyses as mechanism sketches.Gualtiero Piccinini & Carl Craver - 2011 - Synthese 183 (3):283-311.
    We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By this process, functional analyses are seamlessly integrated (...)
    Download  
     
    Export citation  
     
    Bookmark   198 citations  
  • Energy flow and the organization of life.Harold Morowitz & Eric Smith - 2007 - Complexity 13 (1):51-59.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Integrative pluralism.Sandra D. Mitchell - 2002 - Biology and Philosophy 17 (1):55-70.
    The `fact' of pluralism in science is nosurprise. Yet, if science is representing andexplaining the structure of the oneworld, why is there such a diversity ofrepresentations and explanations in somedomains? In this paper I consider severalphilosophical accounts of scientific pluralismthat explain the persistence of bothcompetitive and compatible alternatives. PaulSherman's `Levels of Analysis' account suggeststhat in biology competition betweenexplanations can be partitioned by the type ofquestion being investigated. I argue that thisaccount does not locate competition andcompatibility correctly. I then defend anintegrative (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • What do predictive coders want?Colin Klein - 2018 - Synthese 195 (6):2541-2557.
    The so-called “dark room problem” makes vivd the challenges that purely predictive models face in accounting for motivation. I argue that the problem is a serious one. Proposals for solving the dark room problem via predictive coding architectures are either empirically inadequate or computationally intractable. The Free Energy principle might avoid the problem, but only at the cost of setting itself up as a highly idealized model, which is then literally false to the world. I draw at least one optimistic (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • The Explanatory Force of Dynamical and Mathematical Models in Neuroscience: A Mechanistic Perspective.David Michael Kaplan & Carl F. Craver - 2011 - Philosophy of Science 78 (4):601-627.
    We argue that dynamical and mathematical models in systems and cognitive neuro- science explain (rather than redescribe) a phenomenon only if there is a plausible mapping between elements in the model and elements in the mechanism for the phe- nomenon. We demonstrate how this model-to-mechanism-mapping constraint, when satisfied, endows a model with explanatory force with respect to the phenomenon to be explained. Several paradigmatic models including the Haken-Kelso-Bunz model of bimanual coordination and the difference-of-Gaussians model of visual receptive fields are (...)
    Download  
     
    Export citation  
     
    Bookmark   190 citations  
  • Why propensities cannot be probabilities.Paul Humphreys - 1985 - Philosophical Review 94 (4):557-570.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The Self‐Evidencing Brain.Jakob Hohwy - 2016 - Noûs 50 (2):259-285.
    An exciting theory in neuroscience is that the brain is an organ for prediction error minimization. This theory is rapidly gaining influence and is set to dominate the science of mind and brain in the years to come. PEM has extreme explanatory ambition, and profound philosophical implications. Here, I assume the theory, briefly explain it, and then I argue that PEM implies that the brain is essentially self-evidencing. This means it is imperative to identify an evidentiary boundary between the brain (...)
    Download  
     
    Export citation  
     
    Bookmark   167 citations  
  • The free-energy principle: a rough guide to the brain?Karl Friston - 2009 - Trends in Cognitive Sciences 13 (7):293-301.
    Download  
     
    Export citation  
     
    Bookmark   254 citations  
  • Free-Energy Minimization and the Dark-Room Problem.Karl Friston, Christopher Thornton & Andy Clark - 2012 - Frontiers in Psychology 3.
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Free-Energy and the Brain.Karl J. Friston & Klaas E. Stephan - 2007 - Synthese 159 (3):417 - 458.
    If one formulates Helmholtz's ideas about perception in terms of modern-day theories one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring what cause our sensory inputs and learning causal regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on (...)
    Download  
     
    Export citation  
     
    Bookmark   125 citations  
  • Free-energy and the brain.Karl Friston & Klaas Stephan - 2007 - Synthese 159 (3):417-458.
    If one formulates Helmholtz’s ideas about perception in terms of modern-day theories one arrives at a model of perceptual inference and learning that can explain a remarkable range of neurobiological facts. Using constructs from statistical physics it can be shown that the problems of inferring what cause our sensory inputs and learning causal regularities in the sensorium can be resolved using exactly the same principles. Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on (...)
    Download  
     
    Export citation  
     
    Bookmark   140 citations  
  • What Are the “True” Statistics of the Environment?Jacob Feldman - 2017 - Cognitive Science 41 (7):1871-1903.
    A widespread assumption in the contemporary discussion of probabilistic models of cognition, often attributed to the Bayesian program, is that inference is optimal when the observer's priors match the true priors in the world—the actual “statistics of the environment.” But in fact the idea of a “true” prior plays no role in traditional Bayesian philosophy, which regards probability as a quantification of belief, not an objective characteristic of the world. In this paper I discuss the significance of the traditional Bayesian (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Entropy in evolution.John Collier - 1986 - Biology and Philosophy 1 (1):5-24.
    Daniel R. Brooks and E. O. Wiley have proposed a theory of evolution in which fitness is merely a rate determining factor. Evolution is driven by non-equilibrium processes which increase the entropy and information content of species together. Evolution can occur without environmental selection, since increased complexity and organization result from the likely capture at the species level of random variations produced at the chemical level. Speciation can occur as the result of variation within the species which decreases the probability (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Bayes in the Brain—On Bayesian Modelling in Neuroscience.Matteo Colombo & Peggy Seriès - 2012 - British Journal for the Philosophy of Science 63 (3):697-723.
    According to a growing trend in theoretical neuroscience, the human perceptual system is akin to a Bayesian machine. The aim of this article is to clearly articulate the claims that perception can be considered Bayesian inference and that the brain can be considered a Bayesian machine, some of the epistemological challenges to these claims; and some of the implications of these claims. We address two questions: (i) How are Bayesian models used in theoretical neuroscience? (ii) From the use of Bayesian (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Explanation in Computational Neuroscience: Causal and Non-causal.M. Chirimuuta - 2018 - British Journal for the Philosophy of Science 69 (3):849-880.
    This article examines three candidate cases of non-causal explanation in computational neuroscience. I argue that there are instances of efficient coding explanation that are strongly analogous to examples of non-causal explanation in physics and biology, as presented by Batterman, Woodward, and Lange. By integrating Lange’s and Woodward’s accounts, I offer a new way to elucidate the distinction between causal and non-causal explanation, and to address concerns about the explanatory sufficiency of non-mechanistic models in neuroscience. I also use this framework to (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The rational analysis of mind and behavior.Nick Chater & Mike Oaksford - 2000 - Synthese 122 (1-2):93-131.
    Rational analysis (Anderson 1990, 1991a) is an empiricalprogram of attempting to explain why the cognitive system isadaptive, with respect to its goals and the structure of itsenvironment. We argue that rational analysis has two importantimplications for philosophical debate concerning rationality. First,rational analysis provides a model for the relationship betweenformal principles of rationality (such as probability or decisiontheory) and everyday rationality, in the sense of successfulthought and action in daily life. Second, applying the program ofrational analysis to research on human reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The anticipating brain is not a scientist: the free-energy principle from an ecological-enactive perspective.Jelle Bruineberg, Julian Kiverstein & Erik Rietveld - 2018 - Synthese 195 (6).
    In this paper, we argue for a theoretical separation of the free-energy principle from Helmholtzian accounts of the predictive brain. The free-energy principle is a theoretical framework capturing the imperative for biological self-organization in information-theoretic terms. The free-energy principle has typically been connected with a Bayesian theory of predictive coding, and the latter is often taken to support a Helmholtzian theory of perception as unconscious inference. If our interpretation is right, however, a Helmholtzian view of perception is incompatible with Bayesian (...)
    Download  
     
    Export citation  
     
    Bookmark   108 citations  
  • From cognitivism to autopoiesis: towards a computational framework for the embodied mind.Micah Allen & Karl J. Friston - 2018 - Synthese 195 (6):2459-2482.
    Predictive processing approaches to the mind are increasingly popular in the cognitive sciences. This surge of interest is accompanied by a proliferation of philosophical arguments, which seek to either extend or oppose various aspects of the emerging framework. In particular, the question of how to position predictive processing with respect to enactive and embodied cognition has become a topic of intense debate. While these arguments are certainly of valuable scientific and philosophical merit, they risk underestimating the variety of approaches gathered (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.William Bechtel & Robert C. Richardson - 2010 - Princeton.
    An analysis of two heuristic strategies for the development of mechanistic models, illustrated with historical examples from the life sciences. In Discovering Complexity, William Bechtel and Robert Richardson examine two heuristics that guided the development of mechanistic models in the life sciences: decomposition and localization. Drawing on historical cases from disciplines including cell biology, cognitive neuroscience, and genetics, they identify a number of "choice points" that life scientists confront in developing mechanistic explanations and show how different choices result in divergent (...)
    Download  
     
    Export citation  
     
    Bookmark   512 citations  
  • Biological Autonomy: A Philosophical and Theoretical Enquiry.Alvaro Moreno & Matteo Mossio - 2015 - Dordrecht: Springer. Edited by Matteo Mossio.
    Since Darwin, Biology has been framed on the idea of evolution by natural selection, which has profoundly influenced the scientific and philosophical comprehension of biological phenomena and of our place in Nature. This book argues that contemporary biology should progress towards and revolve around an even more fundamental idea, that of autonomy. Biological autonomy describes living organisms as organised systems, which are able to self-produce and self-maintain as integrated entities, to establish their own goals and norms, and to promote the (...)
    Download  
     
    Export citation  
     
    Bookmark   124 citations  
  • Reasoning in Biological Discoveries: Essays on Mechanisms, Interfield Relations, and Anomaly Resolution.Lindley Darden - 2006 - New York: Cambridge University Press.
    Reasoning in Biological Discoveries brings together a series of essays, which focus on one of the most heavily debated topics of scientific discovery. Collected together and richly illustrated, Darden's essays represent a groundbreaking foray into one of the major problems facing scientists and philosophers of science. Divided into three sections, the essays focus on broad themes, notably historical and philosophical issues at play in discussions of biological mechanism; and the problem of developing and refining reasoning strategies, including interfield relations and (...)
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Explanatory Pluralism: An Unrewarding Prediction Error for Free Energy Theorists.Matteo Colombo & Cory Wright - 2017 - Brain and Cognition 112:3–12.
    Courtesy of its free energy formulation, the hierarchical predictive processing theory of the brain (PTB) is often claimed to be a grand unifying theory. To test this claim, we examine a central case: activity of mesocorticolimbic dopaminergic (DA) systems. After reviewing the three most prominent hypotheses of DA activity—the anhedonia, incentive salience, and reward prediction error hypotheses—we conclude that the evidence currently vindicates explanatory pluralism. This vindication implies that the grand unifying claims of advocates of PTB are unwarranted. More generally, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Where there is life there is mind: In support of a strong life-mind continuity thesis.Michael David Kirchhoff & Tom Froese - 2017 - Entropy 19.
    This paper considers questions about continuity and discontinuity between life and mind. It begins by examining such questions from the perspective of the free energy principle (FEP). The FEP is becoming increasingly influential in neuroscience and cognitive science. It says that organisms act to maintain themselves in their expected biological and cognitive states, and that they can do so only by minimizing their free energy given that the long-term average of free energy is entropy. The paper then argues that there (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The Markov blankets of life: autonomy, active inference and the free energy principle.Michael David Kirchhoff - 2018 - Journal of the Royal Society Interface 15 (138).
    This work addresses the autonomous organization of biological systems. It does so by considering the boundaries of biological systems, from individual cells to Home sapiens, in terms of the presence of Markov blankets under the active inference scheme—a corollary of the free energy principle. A Markov blanket defines the boundaries of a system in a statistical sense. Here we consider how a collective of Markov blankets can self-assemble into a global system that itself has a Markov blanket; thereby providing an (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Vanilla PP for Philosophers: A Primer on Predictive Processing.Wanja Wiese & Thomas Metzinger - 2017 - Philosophy and Predictive Processing.
    The goal of this short chapter, aimed at philosophers, is to provide an overview and brief explanation of some central concepts involved in predictive processing (PP). Even those who consider themselves experts on the topic may find it helpful to see how the central terms are used in this collection. To keep things simple, we will first informally define a set of features important to predictive processing, supplemented by some short explanations and an alphabetic glossary. -/- The features described here (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • How to Knit Your Own Markov Blanket.Andy Clark - 2017 - Philosophy and Predictive Processing.
    Hohwy (Hohwy 2016, Hohwy 2017) argues there is a tension between the free energy principle and leading depictions of mind as embodied, enactive, and extended (so-called ‘EEE1 cognition’). The tension is traced to the importance, in free energy formulations, of a conception of mind and agency that depends upon the presence of a ‘Markov blanket’ demarcating the agent from the surrounding world. In what follows I show that the Markov blanket considerations do not, in fact, lead to the kinds of (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • A Response to Our Theatre Critics.J. A. Hobson & K. J. Friston - 2016 - Journal of Consciousness Studies 23 (3-4):245-254.
    We would like to thank Dolega and Dewhurst for a thought-provoking and informed deconstruction of our article, which we take as applause from valued members of our audience. In brief, we fully concur with the theatre-free formulation offered by Dolega and Dewhurst and take the opportunity to explain why we used the Cartesian theatre metaphor. We do this by drawing an analogy between consciousness and evolution. This analogy is used to emphasize the circular causality inherent in the free energy principle. (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Review: The Grand Leap; Reviewed Work: Causation, Prediction, and Search. [REVIEW]Peter Spirtes, Clark Glymour & Richard Scheines - 1996 - British Journal for the Philosophy of Science 47 (1):113-123.
    Download  
     
    Export citation  
     
    Bookmark   437 citations  
  • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.J. Pearl, F. Bacchus, P. Spirtes, C. Glymour & R. Scheines - 1988 - Synthese 104 (1):161-176.
    Download  
     
    Export citation  
     
    Bookmark   230 citations  
  • Complexly organised dynamical systems.John D. Collier & Clifford A. Hooker - 1999 - Open Systems and Information Dynamics 6 (3):241–302.
    Both natural and engineered systems are fundamentally dynamical in nature: their defining properties are causal, and their functional capacities are causally grounded. Among dynamical systems, an interesting and important sub-class are those that are autonomous, anticipative and adaptive (AAA). Living systems, intelligent systems, sophisticated robots and social systems belong to this class, and the use of these terms has recently spread rapidly through the scientific literature. Central to understanding these dynamical systems is their complicated organisation and their consequent capacities for (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Grene on Mechanism and Reductionism: More Than Just a Side Issue.Robert N. Brandon - 1984 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1984:345 - 353.
    In this paper the common association between ontological reductionism and a methodological position called 'Mechanism' is discussed. Three major points are argued for: (1) Mechanism is not to be identified with reductionism in any of its forms; in fact, mechanism leads to a non-reductionist ontology. (2) Biological methodology is thoroughly mechanistic. (3) Mechanism is compatible with at least one form of teleology. Along the way the nature and value of scientific explanations, some recent controversies in biology and why reductionism has (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Design for a Brain.W. Ross Ashby - 1953 - British Journal for the Philosophy of Science 4 (14):169-173.
    Download  
     
    Export citation  
     
    Bookmark   299 citations