Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)New dichotomies for borel equivalence relations.Greg Hjorth & Alexander S. Kechris - 1997 - Bulletin of Symbolic Logic 3 (3):329-346.
    We announce two new dichotomy theorems for Borel equivalence relations, and present the results in context by giving an overview of related recent developments.§1. Introduction. For X a Polish space and E a Borel equivalence relation on X, a classification of X up to E-equivalence consists of finding a set of invariants I and a map c : X → I such that xEy ⇔ c = c. To be of any value we would expect I and c to be (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Analytic ideals and their applications.Sławomir Solecki - 1999 - Annals of Pure and Applied Logic 99 (1-3):51-72.
    We study the structure of analytic ideals of subsets of the natural numbers. For example, we prove that for an analytic ideal I, either the ideal {X (Ω × Ω: En X ({0, 1,…,n} × Ω } is Rudin-Keisler below I, or I is very simply induced by a lower semicontinuous submeasure. Also, we show that the class of ideals induced in this manner by lsc submeasures coincides with Polishable ideals as well as analytic P-ideals. We study this class of (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Topometric spaces and perturbations of metric structures.Itaï Ben Yaacov - 2008 - Logic and Analysis 1 (3-4):235-272.
    We develop the general theory of topometric spaces, i.e., topological spaces equipped with a well-behaved lower semi-continuous metric. Spaces of global and local types in continuous logic are the motivating examples for the study of such spaces. In particular, we develop Cantor-Bendixson analysis of topometric spaces, which can serve as a basis for the study of local stability (extending the ad hoc development in Ben Yaacov I and Usvyatsov A, Continuous first order logic and local stability. Trans Am Math Soc, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Polish metric spaces: Their classification and isometry groups.John D. Clemens, Su Gao & Alexander S. Kechris - 2001 - Bulletin of Symbolic Logic 7 (3):361-375.
    § 1. Introduction. In this communication we present some recent results on the classification of Polish metric spaces up to isometry and on the isometry groups of Polish metric spaces. A Polish metric space is a complete separable metric space.Our first goal is to determine the exact complexity of the classification problem of general Polish metric spaces up to isometry. This work was motivated by a paper of Vershik [1998], where he remarks : “The classification of Polish spaces up to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Nonreduction of Relations in the Gromov Space to Polish Actions.Jesús A. Álvarez López & Alberto Candel - 2018 - Notre Dame Journal of Formal Logic 59 (2):205-213.
    We show that in the Gromov space of isometry classes of pointed proper metric spaces, the equivalence relations defined by existence of coarse quasi-isometries or being at finite Gromov–Hausdorff distance cannot be reduced to the equivalence relation defined by any Polish action.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)We announce two new dichotomy theorems for Borel equivalence rela-tions, and present the results in context by giving an overview of related recent developments. § 1. Introduction. For X a Polish (ie, separable, completely metrizable) space and E a Borel equivalence relation on X, a (complete) classification. [REVIEW]Greg Hjorth & Alexander S. Kechris - 1997 - Bulletin of Symbolic Logic 3 (3):329-346.
    We announce two new dichotomy theorems for Borel equivalence relations, and present the results in context by giving an overview of related recent developments.§1. Introduction. For X a Polish space and E a Borel equivalence relation on X, a classification of X up to E-equivalence consists of finding a set of invariants I and a map c : X → I such that xEy ⇔ c = c. To be of any value we would expect I and c to be (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computing the complexity of the relation of isometry between separable Banach spaces.Julien Melleray - 2007 - Mathematical Logic Quarterly 53 (2):128-131.
    We compute here the Borel complexity of the relation of isometry between separable Banach spaces, using results of Gao, Kechris [2], Mayer-Wolf [5], and Weaver [8]. We show that this relation is Borel bireducible to the universal relation for Borel actions of Polish groups. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Isometry of Polish metric spaces.John D. Clemens - 2012 - Annals of Pure and Applied Logic 163 (9):1196-1209.
    Download  
     
    Export citation  
     
    Bookmark   2 citations