Switch to: Citations

Add references

You must login to add references.
  1. Science in the age of computer simulation.Eric B. Winsberg - 2010 - Chicago: University of Chicago Press.
    Introduction -- Sanctioning models : theories and their scope -- Methodology for a virtual world -- A tale of two methods -- When theories shake hands -- Models of climate : values and uncertainties -- Reliability without truth -- Conclusion.
    Download  
     
    Export citation  
     
    Bookmark   164 citations  
  • Explanatory unification.Philip Kitcher - 1981 - Philosophy of Science 48 (4):507-531.
    The official model of explanation proposed by the logical empiricists, the covering law model, is subject to familiar objections. The goal of the present paper is to explore an unofficial view of explanation which logical empiricists have sometimes suggested, the view of explanation as unification. I try to show that this view can be developed so as to provide insight into major episodes in the history of science, and that it can overcome some of the most serious difficulties besetting the (...)
    Download  
     
    Export citation  
     
    Bookmark   576 citations  
  • The use of the ‘materiality argument’ in the literature on computer simulations.Juan M. Durán - 2013 - In Juan M. Durán & Eckhart Arnold (eds.), Computer simulations and the changing face of scientific experimentation. Cambridge Scholars Publishing. pp. 76-98.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1620 citations  
  • Review of M aking Things Happen. [REVIEW]Eric Hiddleston - 2005 - Philosophical Review 114 (4):545-547.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defences, objections, and replies into a convincing defence of the core of his theory, which is that we can analyse causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   314 citations  
  • Review of Woodward, Making Things Happen. [REVIEW]Michael Strevens - 2007 - Philosophy and Phenomenological Research 74 (1):233-249.
    Download  
     
    Export citation  
     
    Bookmark   600 citations  
  • Sanctioning Models: The Epistemology of Simulation.Eric Winsberg - 1999 - Science in Context 12 (2):275-292.
    The ArgumentIn its reconstruction of scientific practice, philosophy of science has traditionally placed scientific theories in a central role, and has reduced the problem of mediating between theories and the world to formal considerations. Many applications of scientific theories, however, involve complex mathematical models whose constitutive equations are analytically unsolvable. The study of these applications often consists in developing representations of the underlying physics on a computer, and using the techniques of computer simulation in order to learn about the behavior (...)
    Download  
     
    Export citation  
     
    Bookmark   114 citations  
  • Outline of a theory of scientific understanding.Gerhard Schurz & Karel Lambert - 1994 - Synthese 101 (1):65-120.
    The basic theory of scientific understanding presented in Sections 1–2 exploits three main ideas.First, that to understand a phenomenonP (for a given agent) is to be able to fitP into the cognitive background corpusC (of the agent).Second, that to fitP intoC is to connectP with parts ofC (via arguments in a very broad sense) such that the unification ofC increases.Third, that the cognitive changes involved in unification can be treated as sequences of shifts of phenomena inC. How the theory fits (...)
    Download  
     
    Export citation  
     
    Bookmark   76 citations  
  • Review of Scientific Explanation and the Causal Structure of the World. [REVIEW]James Woodward - 1988 - Noûs 22 (2):322-324.
    Download  
     
    Export citation  
     
    Bookmark   144 citations  
  • Scientific Explanation and the Causal Structure of the World.Wesley C. Salmon - 1984 - Princeton University Press.
    The philosophical theory of scientific explanation proposed here involves a radically new treatment of causality that accords with the pervasively statistical character of contemporary science. Wesley C. Salmon describes three fundamental conceptions of scientific explanation--the epistemic, modal, and ontic. He argues that the prevailing view is untenable and that the modal conception is scientifically out-dated. Significantly revising aspects of his earlier work, he defends a causal/mechanical theory that is a version of the ontic conception. Professor Salmon's theory furnishes a robust (...)
    Download  
     
    Export citation  
     
    Bookmark   1039 citations  
  • Scientific Explanation and the Causal Structure of the World. Wesley Salmon.James H. Fetzer - 1987 - Philosophy of Science 54 (4):597-610.
    If the decades of the forties through the sixties were dominated by discussion of Hempel's “covering law“ explication of explanation, that of the seventies was preoccupied with Salmon's “statistical relevance” conception, which emerged as the principal alternative to Hempel's enormously influential account. Readers of Wesley C. Salmon's Scientific Explanation and the Causal Structure of the World, therefore, ought to find it refreshing to discover that its author has not remained content with a facile defense of his previous investigations; on the (...)
    Download  
     
    Export citation  
     
    Bookmark   158 citations  
  • Understanding (with) Toy Models.Alexander Reutlinger, Dominik Hangleiter & Stephan Hartmann - 2018 - British Journal for the Philosophy of Science 69 (4):1069-1099.
    Toy models are highly idealized and extremely simple models. Although they are omnipresent across scientific disciplines, toy models are a surprisingly under-appreciated subject in the philosophy of science. The main philosophical puzzle regarding toy models concerns what the epistemic goal of toy modelling is. One promising proposal for answering this question is the claim that the epistemic goal of toy models is to provide individual scientists with understanding. The aim of this article is to precisely articulate and to defend this (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Understanding (With) Toy Models.Alexander Reutlinger, Dominik Hangleiter & Stephan Hartmann - 2016 - British Journal for the Philosophy of Science:axx005.
    Toy models are highly idealized and extremely simple models. Although they are omnipresent across scientific disciplines, toy models are a surprisingly under-appreciated subject in the philosophy of science. The main philosophical puzzle regarding toy models is that it is an unsettled question what the epistemic goal of toy modeling is. One promising proposal for answering this question is the claim that the epistemic goal of toy models is to provide individual scientists with understanding. The aim of this paper is to (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • A Contextual Approach to Scientific Understanding.Henk W. de Regt & Dennis Dieks - 2005 - Synthese 144 (1):137-170.
    Achieving understanding of nature is one of the aims of science. In this paper we offer an analysis of the nature of scientific understanding that accords with actual scientific practice and accommodates the historical diversity of conceptions of understanding. Its core idea is a general criterion for the intelligibility of scientific theories that is essentially contextual: which theories conform to this criterion depends on contextual factors, and can change in the course of time. Our analysis provides a general account of (...)
    Download  
     
    Export citation  
     
    Bookmark   194 citations  
  • Does matter really matter? Computer simulations, experiments, and materiality.Wendy S. Parker - 2009 - Synthese 169 (3):483-496.
    A number of recent discussions comparing computer simulation and traditional experimentation have focused on the significance of “materiality.” I challenge several claims emerging from this work and suggest that computer simulation studies are material experiments in a straightforward sense. After discussing some of the implications of this material status for the epistemology of computer simulation, I consider the extent to which materiality (in a particular sense) is important when it comes to making justified inferences about target systems on the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   134 citations  
  • Models, measurement and computer simulation: the changing face of experimentation.Margaret Morrison - 2009 - Philosophical Studies 143 (1):33-57.
    The paper presents an argument for treating certain types of computer simulation as having the same epistemic status as experimental measurement. While this may seem a rather counterintuitive view it becomes less so when one looks carefully at the role that models play in experimental activity, particularly measurement. I begin by discussing how models function as “measuring instruments” and go on to examine the ways in which simulation can be said to constitute an experimental activity. By focussing on the connections (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Computer simulation: The cooperation between experimenting and modeling.Johannes Lenhard - 2007 - Philosophy of Science 74 (2):176-194.
    The goal of the present article is to contribute to the epistemology and methodology of computer simulations. The central thesis is that the process of simulation modeling takes the form of an explorative cooperation between experimenting and modeling. This characteristic mode of modeling turns simulations into autonomous mediators in a specific way; namely, it makes it possible for the phenomena and the data to exert a direct influence on the model. The argumentation will be illustrated by a case study of (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • How Digital Computer Simulations Explain Real‐World Processes.Ulrich Krohs - 2008 - International Studies in the Philosophy of Science 22 (3):277 – 292.
    Scientists of many disciplines use theoretical models to explain and predict the dynamics of the world. They often have to rely on digital computer simulations to draw predictions fromthe model. But to deliver phenomenologically adequate results, simulations deviate from the assumptions of the theoretical model. Therefore the role of simulations in scientific explanation demands itself an explanation. This paper analyzes the relation between real-world system, theoretical model, and simulation. It is argued that simulations do not explain processes in the real (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Extending Ourselves: Computational Science, Empiricism, and Scientific Method.Paul Humphreys - 2004 - New York, US: Oxford University Press.
    Computational methods such as computer simulations, Monte Carlo methods, and agent-based modeling have become the dominant techniques in many areas of science. Extending Ourselves contains the first systematic philosophical account of these new methods, and how they require a different approach to scientific method. Paul Humphreys draws a parallel between the ways in which such computational methods have enhanced our abilities to mathematically model the world, and the more familiar ways in which scientific instruments have expanded our access to the (...)
    Download  
     
    Export citation  
     
    Bookmark   274 citations  
  • Scientific Explanation and the Causal Structure of the World.Ronald N. Giere - 1988 - Philosophical Review 97 (3):444.
    Download  
     
    Export citation  
     
    Bookmark   355 citations  
  • Explanation and scientific understanding.Michael Friedman - 1974 - Journal of Philosophy 71 (1):5-19.
    Download  
     
    Export citation  
     
    Bookmark   572 citations  
  • Understanding Brute Facts.Ludwig Fahrbach - 2005 - Synthese 145 (3):449-466.
    Brute facts are facts that have no explanation. If we come to know that a fact is brute, we obviously don’t get an explanation of that fact. Nevertheless, we do make some sort of epistemic gain. In this essay, I give an account of that epistemic gain, and suggest that the idea of brute facts allows us to distinguish between the notion of explanation and the notion of understanding. I also discuss Eric Barnes’ (1994) attack on Friedman’s (1974) version of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Unfolding in the empirical sciences: experiments, thought experiments and computer simulations.Rawad El Skaf & Cyrille Imbert - 2013 - Synthese 190 (16):3451-3474.
    Experiments (E), computer simulations (CS) and thought experiments (TE) are usually seen as playing different roles in science and as having different epistemologies. Accordingly, they are usually analyzed separately. We argue in this paper that these activities can contribute to answering the same questions by playing the same epistemic role when they are used to unfold the content of a well-described scenario. We emphasize that in such cases, these three activities can be described by means of the same conceptual framework—even (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Understanding and the facts.Catherine Elgin - 2007 - Philosophical Studies 132 (1):33 - 42.
    If understanding is factive, the propositions that express an understanding are true. I argue that a factive conception of understanding is unduly restrictive. It neither reflects our practices in ascribing understanding nor does justice to contemporary science. For science uses idealizations and models that do not mirror the facts. Strictly speaking, they are false. By appeal to exemplification, I devise a more generous, flexible conception of understanding that accommodates science, reflects our practices, and shows a sufficient but not slavish sensitivity (...)
    Download  
     
    Export citation  
     
    Bookmark   184 citations  
  • Computer Simulations: An Inferential Conception.Otávio Bueno - 2014 - The Monist 97 (3):378-398.
    In this paper, I offer an inferential conception of computer simulations, emphasizing the role that simulations play as inferential devices to represent empirical phenomena. Three steps are involved in a simulation: an immersion step, a derivation step, and an interpretation and correction step. After presenting the view, I mention some cases, such as simulations of the current flow between silicon atoms and buckyballs as well as of genetic regulatory systems. I argue that the inferential conception accommodates the integration of empirical (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • How can computer simulations produce new knowledge?Claus Beisbart - 2012 - European Journal for Philosophy of Science 2 (3):395-434.
    It is often claimed that scientists can obtain new knowledge about nature by running computer simulations. How is this possible? I answer this question by arguing that computer simulations are arguments. This view parallels Norton’s argument view about thought experiments. I show that computer simulations can be reconstructed as arguments that fully capture the epistemic power of the simulations. Assuming the extended mind hypothesis, I furthermore argue that running the computer simulation is to execute the reconstructing argument. I discuss some (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Explanatory unification and the causal structure of the world.Philip Kitcher - 1989 - In Philip Kitcher & Wesley Salmon (eds.), Scientific Explanation. Minneapolis: University of Minnesota Press. pp. 410-505.
    Download  
     
    Export citation  
     
    Bookmark   515 citations  
  • The World as a Process: Simulations in the Natural and Social Sciences.Stephan Hartmann - 1996 - In Rainer Hegselmann (ed.), Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View.
    Simulation techniques, especially those implemented on a computer, are frequently employed in natural as well as in social sciences with considerable success. There is mounting evidence that the "model-building era" (J. Niehans) that dominated the theoretical activities of the sciences for a long time is about to be succeeded or at least lastingly supplemented by the "simulation era". But what exactly are models? What is a simulation and what is the difference and the relation between a model and a simulation? (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • ``Is Understanding Factive?".Catherine Z. Elgin - 2009 - In Adrian Haddock, Alan Millar & Duncan Pritchard (eds.), Epistemic Value. Oxford: Oxford University Press. pp. 322--30.
    Download  
     
    Export citation  
     
    Bookmark   116 citations  
  • Computer Simulations.Paul Humphreys - 1990 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990:497 - 506.
    This article provides a survey of some of the reasons why computational approaches have become a permanent addition to the set of scientific methods. The reasons for this require us to represent the relation between theories and their applications in a different way than do the traditional logical accounts extant in the philosophical literature. A working definition of computer simulations is provided and some properties of simulations are explored by considering an example from quantum chemistry.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Explanatory Unification and Scientific Understanding.Eric Barnes - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:3 - 12.
    The theory of explanatory unification was first proposed by Friedman (1974) and developed by Kitcher (1981, 1989). The primary motivation for this theory, it seems to me, is the argument that this account of explanation is the only account that correctly describes the genesis of scientific understanding. Despite the apparent plausibility of Friedman's argument to this effect, however, I argue here that the unificationist thesis of understanding is false. The theory of explanatory unification as articulated by Friedman and Kitcher thus (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Scientific Explanation.P. Kitcher & W. C. Salmon - 1992 - British Journal for the Philosophy of Science 43 (1):85-98.
    Download  
     
    Export citation  
     
    Bookmark   239 citations  
  • Explaining Brute Facts.Eric Barnes - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:61-68.
    I aim to show that one way of testing the mettle of a theory of scientific explanation is to inquire what that theory entails about the status of brute facts. Here I consider the nature of brute facts, and survey several contemporary accounts of explanation vis a vis this subject. One problem with these accounts is that they seem to entail that brute facts represent a gap in scientific understanding. I argue that brute facts are non-mysterious and indeed are even (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations